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ABSTRACT 

In this paper, we use the concept of converse commuting maps of Lu[4], to prove a common fixed point theorem 

satisfies Meir-Killer Type contractive condition[2]. Our result is generalization of the results of various authors 

like Valeriu P. [5], Pathak H.K. and Verma R.K. [6].  
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__________________________________________________________________________________________ 

 

In 2002, Lu[4] introduced the concept of converse commuting maps as a reverse process of weakly compatible 

maps. Here we use the concept of converse commuting maps of Lu[4], to prove a common fixed point theorem 

satisfies Meir-Killer type contractive condition[2]. Our result is generalization of the results of various authors 

like Valeriu P.[5] , Pathak H. K. and Verma R. K.[6].  

 

Recently, Pathak H.K. and Verma R.K. [6] proved the following result: 

 

Theorem 1[6]: Let A, B, S and T be self maps defined on a metric space (X, d) satisfying the following 

conditions: 

 

(a)  the pairs (A, S) and  (B, T) are conversely commuting, and   

(b) the generalized contractive condition : 

 

( )( , ) ( , ) ( , ) ( , ) ( , ) ( , )

0 0 0 0 0 0
( ) , ( ) , ( ) , ( ) , ( ) , ( ) , 0

d Ax By d Sx Ty d Ax Sx d By Ty d By Sx d Ax Ty

G t dt t dt t dt t dt t dt t dtϕ ϕ ϕ ϕ ϕ ϕ ≤� � � � � �  

 

holds,  for all ,x y X∈  and t > 0 where φ  : R+ → R is a Lebesgue-integrable mapping which is summable, 

non-negative and such that 

0

( ) 0t dtφ
∈

>�  for each ∈  > 0, and 
6:G R R+ →    be a map satisfying   

G(s, s, 0, 0, s, s) > 0, for all s > 0. 

 

If A and S have a commuting point and B and T have a commuting point, then A, S, B and T have a unique 

common coincidence point. 

 

Now, we use the concept of converse commuting maps of Lu [4], to prove a common fixed point theorem 

satisfies Meir-Killer Type contractive condition[2], which generalizes Theorem-1 as follows: 

 

Theorem 2: Let A, B, S and T be self maps defined on a metric space (X, d) satisfying the following conditions: 

 

(a)  The pairs (A, S) and (B, T) are conversely commuting, and   

(b) Given 0∈> , there exists 0δ > such that for all ,x y X∈  
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( , )

0
( )

M x y

t dtφ δ∈< <∈ +�    implies 

( , )

0
( )

d A x B y

t d tφ ≤ ∈�  

 

and for all ,x y X∈ ,
1

0,
3

k
� �

∈ � �� �
such that  

 

( , ) [ ( , ) ( , ) ( , ) ( , ) ( , )]

0 0
( ) ( )

d Ax By d Sx Ty d Ax Sx d By Ty d Sx By d Ax Ty

t dt k t dtφ φ
+ + + +

<� �  

 

where φ  : R+ → R is a Lebesgue-integrable mapping which is summable, non-negative and such that 

0

( ) 0t dtφ
∈

>�  for each ∈  > 0, 

and 
[ ]( , ) ( , )

( , ) ( , ), ( , ), ( , ),
2

d Sx By d Ax Ty
M x y Max d Sx Ty d Ax Sx d By Ty

� 	+
= 
 �

� 
 

 

If (A, S) and (B, T) have a commuting point, then A, S, B and T have a unique common coincidence point. 

 

Proof:  Let u be commuting point of (A, S) and v be commuting point of (B, T). As A and S are converse 

commuting we have ASu = SAu  �  Au = Su. Hence d(Au, Su) = 0. It follows that ASu = SAu = AAu = SSu. 

Similarly, as B and T are converse commuting we have BTv = TBv �  Bv = Tv, hence d(Bv, Tv) = 0. It 

follows that BTv = TBv = TTv = BBv. 

 

We claim that AAu = BBv. If not, take x = Au, y = Bv in condition (b), we have  

 

 

( , ) [ ( , ) ( , ) ( , ) ( , ) ( , )]

0 0
( ) ( )

d AAu BBv d SAu TBv d AAu SAu d BBv TBv d SAu BBv d AAu TBv

t dt k t dtφ φ
+ + + +

<� �  

 

( , ) [ ( , ) ( , ) ( , ) ( , ) ( , )]

0 0
( ) ( )

d AAu BBv d AAu BBv d AAu AAu d BBv BBv d AAu BBv d AAu BBv

t dt k t dtφ φ
+ + + +

<� �  

 

           

3 ( , )

0
( )

d AAu BBv

k t dtφ= �  

 

           
( , )

0
3 ( )

d AAu BBv

k t dtφ< �                                    (1)       

 

which is a contradiction, since 
1

0,
3

k
� �

∈ � �� �
. 

 

Hence from (1), we have AAu = BBv. Therefore AAu = SAu = ASu = SSu = BTv = TBv = BBv = TTv. 

 

Now, we claim that Au = Bv. If not, then put x = u, y = v in condition (b), we have   

  

( , ) [ ( , ) ( , ) ( , ) ( , ) ( , )]

0 0
( ) ( )

d Au Bv d Su Tv d Au Su d Bv Tv d Su Bv d Au Tv

t dt k t dtφ φ
+ + + +

<� �  

 

( , ) [ ( , ) ( , ) ( , ) ( , ) ( , )]

0 0
( ) ( )

d Au Bv d Au Bv d Au Au d Bv Bv d Au Bv d Au Bv

t dt k t dtφ φ
+ + + +

<� �  



Saurabh Manro*, S. S. Bhatia* and Simran Virk**/ A Fixed Point Theorem Satisfying General Contractive Condition of 

Integral Type using Two Pair of Converse Commuting Mappings in Metric Spaces / IJMA- 2(10),  

Oct.-2011, Page: 2051-2054 

© 2011, IJMA. All Rights Reserved                                                                                                                                      2053  

   

3 ( , )

0
( )

d Au Bv

k t dtφ= �  

   

( , )

0
3 ( )

d A u B v

k t d tφ< �                                                 (2) 

which is a contradiction, since 
1

0,
3

k
� �

∈ � �� �
. 

 

Hence from (2), Au   = Bv. So that Au = Su = Bv = Tv.  

 

Now, we claim that Au = AAu. If not, then put x = Au, y = v, in condition (b), we have  

 

( , ) [ ( , ) ( , ) ( , ) ( , ) ( , )]

0 0
( ) ( )

d AAu Bv d SAu Tv d AAu SAu d Bv Tv d SAu Bv d AAu Tv

t dt k t dtφ φ
+ + + +

<� �  

 

( , ) [ ( , ) ( , ) ( , ) ( , ) ( , )]

0 0
( ) ( )

d AAu Bv d AAu Bv d AAu AAu d Bv Bv d AAu Bv d AAu Bv

t dt k t dtφ φ
+ + + +

<� �  

 

   

3 ( , )

0
( )

d AAu Bv

k t dtφ= �  

 

   

( , )

0
3 ( )

d AAu Bv

k t dtφ< �                                    (3) 

 

which is a contradiction, since 
1

0,
3

k
� �

∈ � �� �
. 

 

Hence from (3), we have Au = AAu. 

 

Therefore,  Au = AAu = SAu = ASu = SAu = Bv = BBv = TBv = BTv = TTv. 

 

Hence Au is a common fixed point of A, B, S, and T. 

 

Finally now, we show that the common fixed point is unique. If possible, let x0 and y0 be two common fixed 

points of A, B, S, and T. Then by condition (b), take x = x0 and y = y0, we have   

 

0 0 0 0 0 0 0 0 0 0 0 0( , ) [ ( , ) ( , ) ( , ) ( , ) ( , )]

0 0
( ) ( )

d Ax By d Sx Ty d Ax Sx d By Ty d Sx By d Ax Ty

t dt k t dtφ φ
+ + + +

<� �  

 

0 0 0 0 0 0 0 0 0 0 0 0( , ) [ ( , ) ( , ) ( , ) ( , ) ( , )]

0 0
( ) ( )

d x y d x y d x x d y y d x y d x y

t dt k t dtφ φ
+ + + +

<� �  

 

0 0 0 0 0 0 0 0( , ) [ ( , ) ( , ) ( , )]

0 0
( ) ( )

d x y d x y d x y d x y

t dt k t dtφ φ
+ +

<� �  

 

    
0 03 ( , )

0
( )

d x y

k t d tφ= �  

 

   
0 0( , )

0
3 ( )

d x y

k t d tφ< �                                     (4) 
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which is a contradiction, since 
1

0,
3

k
� �

∈ � �� �
. 

Hence from (4), x0 = y0.  

 

Therefore, the mappings A, B, S, and T have a unique common fixed point. 

 

Example 2.1: Let X = 
1 1

0,1, , ,...
2 3

� 	

 �
� 

 and d is a usual metric d(x, y) = x y− . Define mappings  

A, S, B, T: X �X by  

1 1
,

3
Ax x

n n
= =

+
  (n is odd), 

1 1
,

4
Ax x

n n
= =

+
(n is even), A(0) = 0, 

 

 

1 1
,

2
Sx x

n n
= =

+
  (n is odd ), 

1 1
,

1
Sx x

n n
= =

+
 (n is even) , S(0) = 0, 

1 1
,

4
Bx x

n n
= =

+
 (n is odd),  

1 1
,

3
Bx x

n n
= =

+
 (n is even), B(0) = 0, 

1 1
,

1
Tx x

n n
= =

+
 (n is odd),    

1 1
,

2
Tx x

n n
= =

+
 ( n is even ) , T(0) = 0. 

Next, define ( )tϕ = max {0, 

1
( ) 2
tt

−

(1-logt)} for  t > 0, (0) 0ϕ = . 

Clearly all the conditions of above theorem and condition (b) satisfied for k = 
1

3
. Also x = 0 is unique common 

fixed point of A, S, B and T. 
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