International Journal of Mathematical Archive-2(10), 2011, Page: 2051-2054 Available online through www.i.jma.info
 ISSN 2229-5046

A FIXED POINT THEOREM SATISFYING GENERAL CONTRACTIVE CONDITION OF INTEGRAL TYPE USING TWO PAIR OF CONVERSE COMMUTING MAPPINGS IN METRIC SPACES

Saurabh Manro*, S. S. Bhatia* and Simran Virk**
*School of Mathematics and Computer Applications, Thapar University, Patiala (Punjab), India Corrsponding Author- Saurabh Manro (sauravmanro@hotmail.com)
**Rimt Polytechnic College, Mandi Gobindgarh (Punjab), India

(Received on: 03-09-11; Accepted on: 16-09-11)

ABSTRACT

In this paper, we use the concept of converse commuting maps of Lu[4], to prove a common fixed point theorem satisfies Meir-Killer Type contractive condition[2]. Our result is generalization of the results of various authors like Valeriu P. [5], Pathak H.K. and Verma R.K. [6].

Key words: Commuting point, Coincidence point, Converse commuting maps.
Subject classification: 2000 AMS: 47H10, 54 H 25

In 2002, $\mathrm{Lu}[4]$ introduced the concept of converse commuting maps as a reverse process of weakly compatible maps. Here we use the concept of converse commuting maps of $\mathrm{Lu}[4]$, to prove a common fixed point theorem satisfies Meir-Killer type contractive condition[2]. Our result is generalization of the results of various authors like Valeriu P.[5] , Pathak H. K. and Verma R. K.[6].

Recently, Pathak H.K. and Verma R.K. [6] proved the following result:
Theorem 1[6]: Let A, B, S and T be self maps defined on a metric space (X, d) satisfying the following conditions:
(a) the pairs (A, S) and (B, T) are conversely commuting, and
(b) the generalized contractive condition :

holds, for all $x, y \in X$ and $\mathrm{t}>0$ where $\phi: \mathrm{R}^{+} \rightarrow \mathrm{R}$ is a Lebesgue-integrable mapping which is summable, non-negative and such that $\int_{0}^{\epsilon} \phi(t) d t>0$ for each $\in>0$, and $G: R_{+}^{6} \rightarrow R$ be a map satisfying $\mathrm{G}(\mathrm{s}, \mathrm{s}, 0,0, \mathrm{~s}, \mathrm{~s})>0$, for all $\mathrm{s}>0$.

If A and S have a commuting point and B and T have a commuting point, then $\mathrm{A}, \mathrm{S}, \mathrm{B}$ and T have a unique common coincidence point.

Now, we use the concept of converse commuting maps of Lu [4], to prove a common fixed point theorem satisfies Meir-Killer Type contractive condition[2], which generalizes Theorem-1 as follows:

Theorem 2: Let A, B, S and T be self maps defined on a metric space (X, d) satisfying the following conditions:
(a) The pairs (A, S) and (B, T) are conversely commuting, and
(b) Given $\in>0$, there exists $\delta>0$ such that for all $x, y \in X$
*Corresponding author: Saurabh Manro, *E-mail: sauravmanro@hotmail.com

Saurabh Manro*, S. S. Bhatia* and Simran Virk**/ A Fixed Point Theorem Satisfying General Contractive Condition of Integral Type using Two Pair of Converse Commuting Mappings in Metric Spaces / IJMA- 2(10),

Oct.-2011, Page: 2051-2054
$\in<\int_{0}^{M(x, y)} \phi(t) d t<\epsilon+\delta \quad$ implies $\int_{0}^{d(A x, B y)} \phi(t) d t \leq \in$
and for all $x, y \in X, k \in\left[0, \frac{1}{3}\right]$ such that
$\int_{0}^{d(A x, B y)} \phi(t) d t<k \int_{0}^{[d(S x, T y)+d(A x, S x)+d(B y, T y)+d(S x, B y)+d(A x, T y)]} \phi(t) d t$
where $\phi: \mathrm{R}^{+} \rightarrow \mathrm{R}$ is a Lebesgue-integrable mapping which is summable, non-negative and such that $\int_{0}^{\epsilon} \phi(t) d t>0$ for each $\in>0$,
and $M(x, y)=M a x\left\{d(S x, T y), d(A x, S x), d(B y, T y), \frac{[d(S x, B y)+d(A x, T y)]}{2}\right\}$

If (A, S) and (B, T) have a commuting point, then $\mathrm{A}, \mathrm{S}, \mathrm{B}$ and T have a unique common coincidence point.

Proof: Let u be commuting point of (A, S) and v be commuting point of (B, T). As A and S are converse commuting we have $\mathrm{ASu}=\mathrm{SAu} \Rightarrow \mathrm{Au}=\mathrm{Su}$. Hence $\mathrm{d}(\mathrm{Au}, \mathrm{Su})=0$. It follows that $\mathrm{ASu}=\mathrm{SAu}=\mathrm{AAu}=\mathrm{SSu}$. Similarly, as B and T are converse commuting we have $B T v=T B v \Rightarrow B v=T v$, hence $d(B v, T v)=0$. It follows that $\mathrm{BTv}=\mathrm{TBv}=\mathrm{TTv}=\mathrm{BBv}$.

We claim that $A A u=B B v$. If not, take $x=A u, y=B v$ in condition (b), we have

$$
\begin{align*}
& \int_{0}^{d(A A u, B B v)} \phi(t) d t<k \int_{0}^{[d(S A u, T B v)+d(A A u, S A u)+d(B B v, T B v)+d(S A u, B B v)+d(A A u, T B v)]} \phi(t) d t \\
& \begin{aligned}
\int_{0}^{d(A A u, B B v)} \phi(t) d t & <k \int_{0}^{[d(A A u, B B v)+d(A A u, A A u)+d(B B v, B B v)+d(A A u, B B v)+d(A A u, B B v)]} \phi(t) d t \\
& =k \int_{0}^{3 d(A A u, B B v)} \phi(t) d t \\
& <3 k \int_{0}^{d(A A u, B B v)} \phi(t) d t
\end{aligned}
\end{align*}
$$

which is a contradiction, since $k \in\left[0, \frac{1}{3}\right]$.

Hence from (1), we have $\mathrm{AAu}=\mathrm{BBv}$. Therefore $\mathrm{AA} u=\mathrm{SAu}=\mathrm{ASu}=\mathrm{SSu}=\mathrm{BTv}=\mathrm{TBv}=\mathrm{BB} v=\mathrm{TTv}$.
Now, we claim that $\mathrm{Au}=\mathrm{Bv}$. If not, then put $\mathrm{x}=\mathrm{u}, \mathrm{y}=\mathrm{v}$ in condition (b), we have

$$
\begin{aligned}
& \int_{0}^{d(A u, B v)} \phi(t) d t<k \int_{0}^{[d(S u, T v)+d(A u, S u)+d(B v, T v)+d(S u, B v)+d(A u, T v)]} \phi(t) d t \\
& \int_{0}^{d(A u, B v)} \phi(t) d t<k \int_{0}^{[d(A u, B v)+d(A u, A u)+d(B v, B v)+d(A u, B v)+d(A u, B v)]} \phi(t) d t
\end{aligned}
$$

Saurabh Manro*, S. S. Bhatia* and Simran Virk**/ A Fixed Point Theorem Satisfying General Contractive Condition of Integral Type using Two Pair of Converse Commuting Mappings in Metric Spaces / IJMA- 2(10),

Oct.-2011, Page: 2051-2054

$$
\begin{align*}
& =k \int_{0}^{3 d(A u, B v)} \phi(t) d t \\
& <3 k \int_{0}^{d(A u, B v)} \phi(t) d t \tag{2}
\end{align*}
$$

which is a contradiction, since $k \in\left[0, \frac{1}{3}\right]$.

Hence from (2), $\mathrm{Au}=\mathrm{Bv}$. So that $\mathrm{Au}=\mathrm{Su}=\mathrm{Bv}=\mathrm{Tv}$.
Now, we claim that $\mathrm{Au}=\mathrm{AAu}$. If not, then put $\mathrm{x}=\mathrm{Au}, \mathrm{y}=\mathrm{v}$, in condition (b), we have

$$
\begin{align*}
& \int_{0}^{d(A A u, B v)} \phi(t) d t< k \int_{0}^{[d(S A u, T v)+d(A A u, S A u)+d(B v, T v)+d(S A u, B v)+d(A A u, T v)]} \phi(t) d t \\
& \begin{aligned}
\int_{0}^{d(A A u, B v)} \phi(t) d t< & k \int_{0}^{[d(A A u, B v)+d(A A u, A A u)+d(B v, B v)+d(A A u, B v)+d(A A u, B v]]} \phi(t) d t \\
& =k \int_{0}^{3 d(A A u, B v)} \phi(t) d t \\
& <3 k \int_{0}^{d(A A u, B v)} \phi(t) d t
\end{aligned}
\end{align*}
$$

which is a contradiction, since $k \in\left[0, \frac{1}{3}\right]$.

Hence from (3), we have $\mathrm{Au}=\mathrm{AAu}$.
Therefore, $\mathrm{Au}=\mathrm{AAu}=\mathrm{SAu}=\mathrm{ASu}=\mathrm{SAu}=\mathrm{Bv}=\mathrm{BBv}=\mathrm{TBv}=\mathrm{BTv}=\mathrm{TTv}$.
Hence Au is a common fixed point of $\mathrm{A}, \mathrm{B}, \mathrm{S}$, and T.
Finally now, we show that the common fixed point is unique. If possible, let x_{0} and y_{0} be two common fixed points of A, B, S, and T. Then by condition (b), take $x=x_{0}$ and $y=y_{0}$, we have

$$
\begin{align*}
& \int_{0}^{d\left(A x_{0}, B y_{0}\right)} \phi(t) d t<k \int_{0}^{\left[d\left(S x_{0}, T y_{0}\right)+d\left(A x_{0}, S x_{0}\right)+d\left(B y_{0}, T y_{0}\right)+d\left(S x_{0}, B y_{0}\right)+d\left(A x_{0}, T y_{0}\right)\right]} \phi(t) d t \\
& \begin{aligned}
& \int_{0}^{d\left(x_{0}, y_{0}\right)} \phi(t) d t<k \int_{0}^{\left[d\left(x_{0}, y_{0}\right)+d\left(x_{0}, x_{0}\right)+d\left(y_{0}, y_{0}\right)+d\left(x_{0}, y_{0}\right)+d\left(x_{0}, y_{0}\right)\right]} \phi(t) d t \\
& \int_{0}^{d\left(x_{0}, y_{0}\right)} \phi(t) d t<k \int_{0}^{\left[d\left(x_{0}, y_{0}\right)+d\left(x_{0}, y_{0}\right)+d\left(x_{0}, y_{0}\right)\right]} \phi(t) d t \\
&= k \int_{0}^{3 d\left(x_{0}, y_{0}\right)} \phi(t) d t \\
&< 3 k \int_{0}^{d\left(x_{0}, y_{0}\right)} \phi(t) d t
\end{aligned}
\end{align*}
$$

Saurabh Manro*, S. S. Bhatia* and Simran Virk**/ A Fixed Point Theorem Satisfying General Contractive Condition of Integral Type using Two Pair of Converse Commuting Mappings in Metric Spaces / IJMA- 2(10),

Oct.-2011, Page: 2051-2054
which is a contradiction, since $k \in\left[0, \frac{1}{3}\right]$.
Hence from (4), $\mathrm{x}_{0}=\mathrm{y}_{0}$.
Therefore, the mappings A, B, S, and T have a unique common fixed point.
Example 2.1: Let $\mathrm{X}=\left\{0,1, \frac{1}{2}, \frac{1}{3}, \ldots\right\}$ and d is a usual metric $\mathrm{d}(\mathrm{x}, \mathrm{y})=|x-y|$. Define mappings
A, S, B, T: X $\rightarrow \mathrm{X}$ by
$A x=\frac{1}{n+3}, x=\frac{1}{n}\left(\mathrm{n}\right.$ is odd), $A x=\frac{1}{n+4}, x=\frac{1}{n}(\mathrm{n}$ is even $), \mathrm{A}(0)=0$,
$S x=\frac{1}{n+2}, x=\frac{1}{n}(\mathrm{n}$ is odd $), S x=\frac{1}{n+1}, x=\frac{1}{n}(\mathrm{n}$ is even $), \mathrm{S}(0)=0$,
$B x=\frac{1}{n+4}, x=\frac{1}{n}(\mathrm{n}$ is odd $), \quad B x=\frac{1}{n+3}, x=\frac{1}{n}(\mathrm{n}$ is even $), \mathrm{B}(0)=0$,
$T x=\frac{1}{n+1}, x=\frac{1}{n}(\mathrm{n}$ is odd $), \quad T x=\frac{1}{n+2}, x=\frac{1}{n}(\mathrm{n}$ is even $), \mathrm{T}(0)=0$.
Next, define $\varphi(t)=\max \left\{0, t^{\left(\frac{1}{t}\right)-2}(1-\log t)\right\}$ for $\mathrm{t}>0, \varphi(0)=0$.
Clearly all the conditions of above theorem and condition (b) satisfied for $\mathrm{k}=\frac{1}{3}$. Also $\mathrm{x}=0$ is unique common fixed point of A, S, B and T.

REFRENCES

[1] A. Branciari, A fixed point theorem for mappings satisfying a general contractive condition of integral type, Int.J. Math. Sci. 29 (9) (2002), 531-536.
[2] U.C. Gairola and A.S. Rawat, A fixed point theorem for integral type inequality, Int. J. Math. Anal. 2(15) 2008, 709-712.
[3] Qui-Kaun Liu and Xins-qi Hu, Some new common fixed point theorems for converse commuting multivalued mappings in symmetric spaces with applications, Nonlinear Analysis forum, 10 (1) (2005), 97-104.
[4] Z. Lu, On common fixed points for converse commuting self maps on a metric spaces, Acta. Anal. Funct. Appl., 4(3)(2002), 226-228.
[5] V. Popa, a general fixed point theorem for converse commuting multivalued mappings in symmetric spaces, Filomat, 21 (2) (2007), 267-271.
[6] H. K. Pathak and R. K. Verma, An Integral Type Implicit Relation for Converse Commuting Mappings, Int. Journal of Math. Analysis, 3 (24) (2009), 1191-1198.

