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ABSTRACT 

In this paper, a nonlinear mathematical model is proposed and analyzed to see the effect of harvesting of vegetation 

biomass and grazer population on the predator population. The model is formulated as a food chain model by 

considering the hyperbolic interaction processes. It is assumed that the dynamics of vegetation biomass follows 

regrowth equation. We also study the effect of the degree of habitat complexity and gestation delay on the stability of a 

food chain model. It is observed that there are stability switches, and Hopf bifurcation occurs when the delay crosses 

some critical value. It is observed that the quantitative level of abundance of system populations depends crucially on 

the delay parameter if the gestation period exceeds some critical value. However, the fluctuations in the population 

levels can be controlled completely by increasing the degree of habitat complexity. 
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1. INTRODUCTION: 

In aquatic communities trophic interactions regulate the stability and diversity of communities in space and time. 

Variation in spatial structure influences the outcome of interactions such as predation or resource exploitation 

(Schindler et al., [13]; Nurminen et al., [12]). Macrophytes, pebbles and detritus are some of the components that add to 

the structural complexity of habitats. Such complexity adds to the available refuge and thus influences prey–predator 

interactions (Diehl, [6]; Babbitt and Jordan, [3]). Further, these structures, and Macrophytes in particular, organize the 

assemblages of different invertebrate species (De Szalay and Resh, [5]) and mediate food web dynamics. Thus 

heterogeneity may increase the species' diversity and stabilize predator–prey interactions (Gilinsky, [7]), evident from 

the studies on predation by fishes on chironomid (Diehl, [6]) and mosquito (Hurst et al., [10]) larvae. Structural 

complexity influences predation by odonate nymphs and hemipteran bugs on tadpoles (Babbitt and Jordan,[3]; Kopp et 

al.,[11]) as well as spatial orientation of Notonecta and its intraguild prey Buenoa (Hampton, [8]). The interaction of 

multiple predators, predation rate and prey selection are also modified by the habitat complexity (Hughes and 

Grabowski, [9]). For aquatic predatory insects, ricefields, ponds, and temporary pools are habitats with ample 

heterogeneity with regard to spatial structures and prey species abundance (Bambaradeniya et al., [4]). When ample 

prey species are available structural complexity is more important in determining predator success. 

 

The theory of harvesting is important in natural resource management and bioeconomics. Most species have a growth 

rate which more or less maintains a constant population equal to the carrying capacity of the environment K  (this of 

course depend on the population). In this case the growth and death rates are nearly equal. The harvesting of species 

affects their mortality rates and if the harvesting is not too much the population will adjust to a new 

equilibrium KN <* . It has been evident that there is need to develop ecologically acceptable strategies for harvesting 

any renewable resources such as fish, plants, animals etc. It is interesting to note that even if the excess harvest does not 

threaten extinction, it can cause damage to the resource in the long run. Massive fruit collection from the forest has an 

adverse effect on regeneration. The problem then is to determine a strategy which ensures steady harvest year after year 

without a progressive decline in the abundance of the resource. The problem here is how to maximize the sustainable 

yield (SY) by determining the population growth dynamics so as to obtain a harvesting rate which keeps the population 

at its maximum growth. We consider a logistic population growth model in which the mortality rate is enhanced by 

harvesting; by a term that is proportional to the existing population .N  We consider a logistic growth model 
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Where r  is the intrinsic growth rate and K  the carrying capacity of the environment. Considering the effort E   of 

harvesting, we assume that the harvest is proportional to the stock level as well as the effort i.e.  qENh =  where q  is 

the constant of proportionality called the catchability constant. The effort is measured in man days. If grass is cut with 

strokes of a sickle, the harvest depends on the number of strokes  E  on the grass density. If the effort is constant then 

the harvest as a function of the stock is a straight line passing through the origin. The intersection of the line or the 

growth curve gives the sustainable yield. The net growth rate after harvest is given by 
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There are numerous studies on the effects of harvesting on population growth. In the context of predator-prey 

interaction, some studies that treat the populations being harvested as a homogeneous resource include those of Dai and 

Tang [25], Myerscough et al. [26]. Chaudhuri[27] and Leung[28]. In the last few years, researchers have been showing 

keen interest to investigate the direction and stability of Hopf bifurcation arising from a delay-induced neural network 

[14-17]. Study of the bifurcation and its stability, however, is relatively new in ecological system. Recently, Song and 

Wei [18], Yang and Tian [19], Qu and Wei [20], Celik [21,22], have studied the direction and stability of Hopf 

bifurcation of delay-induced ecological systems. In most of the studies, delay occurs in a first degree term. Sun et al. 

[23] investigated the direction and stability of a delay-induced eco-epidemiological system with Type I response 

function [24], where delay occurred in the term of degree two. In this study, we first modify Holling type II response 

function [24] to incorporate the effect of habitat complexity and then put delay in the second degree term. The objective 

is to study the interplay between gestation delay and the degree of habitat complexity. 

 

The rest of this paper is organized as follows: In section 2, we introduce our mathematical model. In sections, 3 and 4 

our model is analyzed with regard to equilibria and their stabilities, respectively. In section 5, we study the effect of 

delay on the model. In section 6, we present a numerical example to illustrate the applicability of results obtained and 

also investigate the occurrence of Hopf bifurcation in absence as well as in the presence of delay for certain set of 

parameters. We conclude with a short discussion in section 7.  
 

2. THE MATHEMATICAL MODEL: 

We first consider the instantaneous model given by the following system of autonomous ordinary differential equations 

as a food chain model with habitat complexity. 
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                                 ,0)0( 0 ≥= VV      ,0)0( 0 ≥= NN     ,0)0( 0 ≥= PP    

 

Where, V be the vegetation biomass, N be the density of grazer population and P be the density of predator 

population. It is assumed that the dynamics of vegetation biomass follows regrowth equation and its depletion due to 

grazer population is given by a hyperbolic type of interaction involving the density of grazer population N as well as 

the concentration V (i.e. )/(
1

VbVN + ). It is further assumed that the rate of depletion of V due to harvesting is 

proportional to the product of vegetation biomass and applied effort with catchability coefficient .1q As grazer 

population wholly depend upon vegetation biomass, its growth rate is proportional to the interaction term 

))./(( 11 VbVNa + It is considered that the natural depletion rate of density of grazer population is proportional to .N  

It is further assumed that the depletion rate of grazer population density by its predator is given by the hyperbolic 

interaction between grazers and its predators( i.e. hNcaNPca )1(1)1(
22

−+− ). The depletion rate of grazer 

population due to harvesting is proportional to the product of concentration of N and applied effort with catchability  
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coefficient .2q  The growth rate of predator population is proportional to the interaction term 

(i.e. hNcaNPca )1(1)1(
22

−+− ). The natural depletion rate of predator population is considered proportional 

to .P 0u  is initial regrowth rate of the vegetation biomass, m is the carrying capacity of vegetation biomass, 
1

a  is the 

attack rate of grazers, 
1

b  is the half-saturation constant, ξ  is the vegetation-grazer conversion rate, η  is the zero 

population growth grazer intake, 
2

a is the saturation killing rate (the maximum killing rate),θ  is the prey (grazer)-

predator conversion rate, µ is the zero population growth predator intake, h is the handling time and c is a dimension 

less parameter that measures the degree or strength of habitat complexity. 

 

The coefficients ξ and θ  are positive constants and their magnitudes are less than equal to unity. c  is also positive 

constant but its magnitude is less than unity. It is to be noted, when 0=c , i.e. when there is no complexity, we get 

back the original Holling Type II response function. Therefore, this modified functional response would be suitable for 

predator–prey interaction with habitat complexity. It may be pointed out that for feasibility of model (2.1), the growth 

rates of grazer population should be positive. Hence, from the second and third equations of model (2.1), it follows that 

 

                    η>
1

a                                                                                                                                                        (2.2)             

and 

                    µ>2a                                                                                                                                                       (2.3)      

 

To analyze the model (2.1), we need the bounds of dependent variables involved. For this we find the region of 

attraction in the following lemma. 
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Computing the time derivative of )(tW along solutions of system (2.1), we get 

    

                

1 1 2 2
0 1 2

1 1 2 2

(1 ) (1 )
1

1 (1 ) 1 (1 )

a VN a V a c NP a c NPdW V
u q EV N q EN P

dt m b V b V a c hN a c hN

θ
ξ η θ µ

� � − −� �
= − − − + − − − + −� �� �

+ + + − + −� � � �

         

,

)(

0

21

0

0

Wu

PNEqVEq
m

u
u

α

µθξη

−≤

−+−�
�

�
�
�

�
+−≤

 

where  .,,min
21

0

�
�
	



�
�

++= θµξηα EqEq
m

u
 

Thus    .)()(
0

utWtW ≤+′ α   

 

Applying a theorem in differential inequalities [2], we obtain 
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and for any ,∞→t  .0 0

α

u
W ≤≤ Therefore all solutions of system (2.1) enter into the region  
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This completes the proof of lemma. 

 

3. EQUILIBRIUM ANALYSIS: 

There exist following three equilibria of the system (2.1) 
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and 
*

V  is the unique positive root of the following equation 
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4. STABILITY ANALYSIS: 

To discuss the local stability of system (2.1), we compute the variational matrix of system (2.1). The sign of the real 

parts of the eigenvalues of the variational matrix evaluated at a given equilibria determine its stability. The entries of 

general variational matrix are given by differentiating the right side of system (2.1) with respect to ,V  N and P i.e. 
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Using analogous notations to the equilibria (i.e. )(
1

EM is the variational matrix corresponding to ,
1

E )(
2

EM is the 

variational matrix corresponding to 2E and )(
3

EM is the variational matrix corresponding to 
3

E , we get                                                                                                                                               
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The signs of the real parts of +2λ and −2λ  are negative. This implies that 2E is locally asymptotically stable in the 

NV −  plane. It can be easily shown that 2E is globally asymptotically stable in NV −  plane whenever it is locally 
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Now we discus the stability of the interior equilibrium point  
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The characteristic equation corresponding to this variational matrix is given by 
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Then by Routh-Hurwitz criteria equilibrium 
*
3E  is locally asymptotically stable if ,0   ,0 31 >> AA  and 

321 AAA >  and unstable if either of these conditions is not satisfied. 

 

5. ANALYSIS OF THE MODEL WITH DELAY 

 

]In this section, we consider the same model (2.1) with delay. Introducing the gestation delay )0(>τ in the model 

system (2.1), we get the desired delay-induced food-chain model with habitat complexity as follows:  
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where ,v  n  and p are small perturbations given to ,V  N  and ,P respectively such that  ,
*

vVV +=  

nNN +=
*

 and  .
*

pPP +=  



Manju Agarwal & Rachana Pathak*/ Modeling the effect of Harvesting of the Vegetation Biomass and Grazer Population on 

Predator Population with Habitat Complexity/ IJMA- 2(11), Nov.-2011, Page: 2119-2134 

© 2011, IJMA. All Rights Reserved                                                                                                                                                   2125   

 

.

*})1(1{

*)1(

)
*

)1(1(

*
)1(

0

)
*

)1(1(

*
)1(

*

*

)
*

)1(1(

*
)1(

)
*

(

*

0
)

*
(

*

)
*

(

*

2

2

2

2

2

2

2

1

1

2
2

2

2

2

1

11

1

1

2

1

11

1

0




















�

�

�
�
�
�
�
�
�
�
�

�

�

−
−+

−

−+

−

−+

−
−

+
+−−

−+

−
−

+

+
−

+
−−−

=

−

−−

λµ

λτλτ

θµ
θθ

ξ
ξη

ξ

e
hNca

eNca

hNca

ePca

hNca

Nca

Vb

Va
Eq

hNca

Pca

Vb

Nba

Vb

Va

Vb

Nba
Eq

m

u

M

 

 

The characteristic equation associated with system (5.2) is given by  
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We have already shown that the interior equilibrium point 
3

E  is locally asymptotically stable in the absence of delay. 

 

Now when ,0≠τ  stability of the system (5.1) can change only if there exists at least one root of equation (5.3) such 

that 0)Re( =λ . Let ωλ i=  be one such root. Substituting this in equation (5.3) and equating real and imaginary 

parts, we get 
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Where, 
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 Squaring and adding equations (5.3a) and (5.3b), we get  
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Substituting σω =
2

 equation (5.4) becomes  
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Now, let assume, 
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So by Descartes’ rule of sign, equation (5.5) has at least one positive real root. This implies that equation (5.4) has a 

real solution. Hence  
3

E  does not remain stable for all .0>τ So stability change can occur. 

 

Again solving (5.3a) and (5.3b), we get a critical value of delay that is given as follows 
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This is the least positive value of delay for which stability change can occur. To establish Hopf bifurcation, we can 

verify the following transversality condition: 
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Differentiating equation (5.3) with respect to τ , we obtain 
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We verify the condition (5.6) numerically. Shows that transversality condition holds and hence Hopf bifurcation occurs 

at .
c

ττ =  

 

6. NUMERICAL SIMULATION FOR BIFURCATION: 

In this section, we present numerical simulation to illustrate results obtained in previous sections. The system (2.1) is 

integrated using fourth order Runge – Kutta Method with the help of MATLAB software package. 

Hopf bifurcation analysis of the instantaneous model-    

 

We shall vary c   in system (2.1) so as to obtain a Hopf bifurcation. Now, we write autonomous system (2.1) in the 

form: 

  ),( kxFx =� , where ),,,,,,,,,,,,,(),,,(
221110

µθηξ qhcaEqbamukPNVx ==  

 

we say that an ordered pair ),(
00

kx  is a Hopf bifurcation point if, 

(i) 0),(
00

=kxF  

(ii) ),( kxJ has two complex conjugate eigenvalues 
2,1

λ  around ),(
00

kx , ),(),(2,1 kxibkxa ±=λ  

(iii) 0),(,0),(
0000

≠= kxbkxa  

(iv) The third eigenvalue 0),(
003

≠kxλ  

 

Extensive numerical simulations are carried out for various values of parameters and for different sets of initial 

conditions. We take the parameters of the system (2.1) as, 

07.0,0.1,5.0,0.1,5.0,5.0,0.1,50,3
221110

========= qaqbamu ηξ  

 

04.0 and 6.0,0.1,5.0 ==== hE µθ  
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We consider the system, 
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The system (6.1) always has non-negative equilibrium )0,0,17188.1(
1

E . The system (6.1) has positive equilibra  

 

)0,(
222

NVE  and  *)*,*,(
3

PNVE  if and if [ )1,0∈c . 

 

Now take 4.0=c  

 

)6.0,1,07.0,04.0,4.0,1,6.0,5.0,1,5.0,5.0,1,50,3(=k  

 

The coordinates of 
3

E and the corresponding eigenvalues are: 

 

)673883.0,02459.1,60489.6(
1

=x  

 

258037.0,488218.00,488218.00
321

−=−=+= λλλ ii  

 

In this way ordered pair ),(
00

kx  is satisfied above all conditions (i-iv). So ordered pair ),(
00

kx  is Hopf point. 
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Fig(1) Here  96.0)0(,1)0(,5)0( === PNV  and ,5.0,0.1,50,3
110

==== bamu  

,07.0,0.1,5.0,0.1,5.0
221

===== qaq ηξ 04.0 ,4.0, 6.0,0.1,5.0 ===== hcE µθ  

 

For 4.03.0 <=c  

 

)6.0,1,07.0,04.0,3.0,1,6.0,5.0,1,5.0,5.0,1,50,3(=k  

 

The coordinates of 
3

E and the corresponding eigenvalues are : 

)583462.0,87822.0,0325.7(
1

=x  

 

257589.0,488876.000244973.0,488876.000244973.0
321

−=−=+= λλλ ii . All eigenvalues have not 

negative real parts, only 
3

λ  has negative real part, so 
3

E  is always saddle point at .3.0=c  
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Fig (2) Here  96.0)0(,1)0(,5)0( === PNV  and ,5.0,0.1,50,3
110

==== bamu  

,07.0,0.1,5.0,0.1,5.0
221

===== qaq ηξ 04.0 ,3.0, 6.0,0.1,5.0 ===== hcE µθ  

 

But if we take 4.08.0 >=c  

)6.0,1,07.0,04.0,8.0,1,6.0,5.0,1,5.0,5.0,1,50,3(=k  

 

The coordinates of 
3

E and the corresponding eigenvalues are: 

 

)29747.1,07377.3,86145.1(
1

=x  

267997.0,52648.0130436.0,52648.0130436.0
321

−=−−=+−= λλλ ii . All eigenvalues have negative 

real parts, so equilibrium point is locally asymptotically stable at .8.0=c  
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Fig (3) Here  96.0)0(,1)0(,5)0( === PNV  and ,5.0,0.1,50,3
110

==== bamu  

,07.0,0.1,5.0,0.1,5.0
221

===== qaq ηξ 04.0 ,8.0, 6.0,0.1,5.0 ===== hcE µθ  

 

It has been showed numerically that the Hopf point is found when 4.0=c .
3

E  is unstable when 4.0<c  and stable 

when 4.0>c . The numerical study presented here shows that, using the parameter c as control, it is possible to break 

the stable behavior of the system (6.1) and drive it to an unstable state. Also, it is possible to keep the population levels 

at a required state using the above control. 

 

Hopf bifurcation analysis of the time-delay model:   

 

To check the feasibility of our analysis regarding stability conditions, we have conducted some numerical computation 

using MATLAB 7.9 by choosing the following set of parameters values in model system (2.1) 

 

 6.0,07.0,0.1,5.0,0.1,5.0,5.0,0.1,50,3
221110

========== cqaqbamu ηξ  
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 04.0,6.0,0.1,5.0 ==== hE µθ                                                                                                           

 

For the above set of parameter values, the equilibrium point *
3E exists and is given by 

 

                        ,15785.5
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Variational matrix )(
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EM corresponding to the equilibrium 
3

E is given by 
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The characteristic equation resulting from this is given by 

 

                        .0073661.0239418..0324966.0
23

=+++ λλλ  

 

From this characteristic equation, we note that all conditions of Routh – Hurwitz criteria are satisfied and eigenvalues 

of )(
3

EM are given by i485329.000613417.0 ±− and .312698.0−  Hence, 
3

E is locally asymptotically stable 

equilibrium point. Further, for the above set of parameters, in the presence of delay, stability change occurs and its 

critical value is given by      

                                                        0545544.0=
c

τ  

  

Here we show that the transversality condition (5.6) is satisfied as: 
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Therefore *)*,*,( PNV  is asymptotically stable for 0545544.0=<
c

ττ  (see Fig (4c)) and unstable for 

0545544.0=>
c

ττ  (see Fig (4b)). 
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Fig(4a) when 05.0=τ  and 

96.0)0(,1)0(,5)0( === PNV , ,5.0,0.1,50,3
110

==== bamu

,07.0,0.1,5.0,0.1,5.0
221

===== qaq ηξ 04.0 ,6.0, 6.0,0.1,5.0 ===== hcE µθ  
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Fig(4b) when 1.0=τ  and 96.0)0(,1)0(,5)0( === PNV , ,5.0,0.1,50,3
110

==== bamu  

,07.0,0.1,5.0,0.1,5.0
221

===== qaq ηξ 04.0 ,6.0, 6.0,0.1,5.0 ===== hcE µθ  

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

N

P

 

Fig(4c) when 03.0=τ  and 96.0)0(,1)0(,5)0( === PNV , ,5.0,0.1,50,3
110

==== bamu  

,07.0,0.1,5.0,0.1,5.0
221

===== qaq ηξ 04.0 ,6.0, 6.0,0.1,5.0 ===== hcE µθ  
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Fig(5a)when 0545544.0=τ and 964721.0)0(,53689.1)0(,15785.5)0( === PNV ,   

,5.0,0.1,50,3
110

==== bamu ,07.0,0.1,5.0,0.1,5.0
221

===== qaq ηξ

04.0 ,6.0, 6.0,0.1,5.0 ===== hcE µθ  
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Fig(5b) when 1.0=τ  and 964721.0)0(,53689.1)0(,15785.5)0( === PNV ,   

,5.0,0.1,50,3
110

==== bamu ,07.0,0.1,5.0,0.1,5.0
221

===== qaq ηξ

04.0 ,6.0, 6.0,0.1,5.0 ===== hcE µθ  
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Fig(5c) when 03.0=τ  and 964721.0)0(,53689.1)0(,15785.5)0( === PNV ,   

,5.0,0.1,50,3
110

==== bamu ,07.0,0.1,5.0,0.1,5.0
221

===== qaq ηξ  

04.0 ,6.0, 6.0,0.1,5.0 ===== hcE µθ  
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Fig(6) when 0545544.0=τ  and 964721.0)0(,53689.1)0(,15785.5)0( === PNV ,   

,5.0,0.1,50,3
110

==== bamu ,07.0,0.1,5.0,0.1,5.0
221

===== qaq ηξ

04.0 ,6.0, 6.0,0.1,5.0 ===== hcE µθ  
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Fig(7) when 0545544.0=τ  and 964721.0)0(,53689.1)0(,15785.5)0( === PNV ,   

,5.0,0.1,50,3
110

==== bamu ,07.0,0.1,5.0,0.1,5.0
221

===== qaq ηξ  

04.0 ,6.0, 6.0,0.1,5.0 ===== hcE µθ  
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Fig(8) when 0545544.0=τ  and 964721.0)0(,53689.1)0(,15785.5)0( === PNV ,   

,5.0,0.1,50,3
110

==== bamu ,07.0,0.1,5.0,0.1,5.0
221

===== qaq ηξ  

04.0 ,6.0, 6.0,0.1,5.0 ===== hcE µθ  

 

Figure (6) is the plot of vegetation biomass against t  for different values of E . From figure (6), we note that the 

density of vegetation biomass decreases as E increases. Figures(7) are the plot of grazer population against t for 

different values of .E  From these figures, it can be inferred that grazer population first remains constant as E  

increases, then starts decreasing as E  tends towards the value 7.5. Figures (8) are the plots of predator population 

against t for different value .E  These figure show that predator population decreases and becomes extinct if 5.7≥E  

 

7. CONCLUSION: 

In this paper, we have studied a delay-induced food-chain model in presence of habitat complexity. Using stability 

theory of differential equations, we have obtained conditions for the existence of different equilibria and discussed their 

stabilities. Our numerical study shows that habitat complexity behaves as a control, it is possible that it breaks the 

stable behavior of the system (2.1) and drives it to an unstable state. Also, it is possible to keep the population levels at 

a required state using the above control. Further, we see the effect of harvesting of vegetation biomass and grazer 

population on the predator population. In the presence of delay, critical value of delay for which stability change occurs 

is obtained. It is obtained from the analysis that as the catchability coefficient E  increases without any limit then 

predator population goes to extinction. 
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