\(\tilde{g}_\alpha \)-WEAKLY GENERALIZED CONTINUOUS FUNCTIONS

1M. Maria Singam and 2G. Anitha*

1Department of Mathematics, V. O. Chidambaram College, Tuticorin, Tamil Nadu, India

2Research Scholar, V. O. Chidambaram College, Tuticorin, Tamil Nadu, India

*E-mail: anitha_ganesan@yahoo.com

(Received on: 21-10-11; Accepted on: 07-11-11)

ABSTRACT

In this paper we introduce and study of \(\tilde{g}_\alpha \)- weakly generalized continuous functions and \(\tilde{g}_\alpha \)- weakly generalized irresolute functions also obtain some properties of such functions.

Mathematics Subject Classification: 54A05, 54H05, 54C08.

Keywords: \(\tilde{g}_\alpha \) wg-continuity, \(\tilde{g}_\alpha \) wg-irresolute function.

1. INTRODUCTION:

S. Jafari, M. llelis Thivagar and N. Rebecca Paul [19] introduced and studied \(g_\alpha \)-closed sets. M. Maria Singam, G. Anitha [13] introduced the class \(g_\alpha \)-Weakly generalized closed sets. By using such sets we introduce new forms of functions called \(\tilde{g}_\alpha \)-Weakly generalized continuous functions and \(\tilde{g}_\alpha \)-Weakly generalized irresolute functions. We obtain properties of such functions.

2. PRELIMINARIES:

Throughout this paper (\(X, \tau \)) , (\(Y, \sigma \)) and (\(Z, \eta \)) represent non empty topological space on which no separation axiom is defined unless otherwise mentioned. For a subset \(A \) of a space \(\text{Cl}(A) \) and \(\text{Int}(A) \) denote the closure and interior of \(A \) respectively.

Definition 1.1: A subset \(A \) of a space \(X \) is called

1. a semi-open set [10] if \(A \subseteq \text{cl}(\text{int}(A)) \)
2. a pre-open set [15] if \(A \subseteq \text{int}(\text{cl}(A)) \)
3. an \(\alpha \)-open set [17] if \(A \subseteq \text{int}(\text{cl}(\text{int}(A))) \)
4. a regular open[20] if \(A = \text{int}(\text{cl}(A)) \)
5. a semi-preopen set [1] if \(A \subseteq \text{cl}(\text{int}(\text{cl}(A))) \)

The complement of a semi-open (pre open, \(\alpha \)-open, regular open, semi-preopen) set is called a semi-closed (resp. pre-closed, \(\alpha \)-closed, regular closed, semi-preclosed) set.

Definition 1.2: A subset \(A \) of a space \(X \) is called

1. a generalized closed set(g-closed)[9] if \(\text{cl}(A) \subseteq U \) whenever \(A \subseteq U \) and \(U \) is open in \((X, \tau) \).
2. a weakly generalized closed set(wg-closed)[16] if \(\text{Cl}(\text{Int}(A)) \subseteq U \) whenever \(A \subseteq U \) and \(U \) is open in \((X, \tau) \).
3. a semi generalized closed set(sg-closed)[4] if \(\text{scl}(A) \subseteq U \), whenever \(A \subseteq U \) and \(U \) is semi open in \((X, \tau) \).
4. a semi-pre generalized closed set(spcl)([4] if \(\text{spcl}(A) \subseteq U \), whenever \(A \subseteq U \) and \(U \) is w-open in \((X, \tau) \).
5. a generalized \(\alpha \)-closed set (g\(\alpha \)-closed) if \(\alpha \text{cl}(A) \subseteq U \) whenever \(A \subseteq U \) and \(U \) is \(\alpha \)-open in \((X, \tau) \).
6. a generalized \(\alpha \)-closed set (g\(\alpha \)-closed) if \(\alpha \text{cl}(A) \subseteq U \) whenever \(A \subseteq U \) and \(U \) is \(\alpha \)-open in \((X, \tau) \).
7. an \(\alpha \)-generalized closed set (\(\alpha \)-g-closed) [12] if \(\alpha \text{cl}(A) \subseteq U \) whenever \(A \subseteq U \) and \(U \) is open in \((X, \tau) \).
8. a \(\# \) g-closed set[22] if \(\text{cl}(A) \subseteq U \), whenever \(A \subseteq U \) and \(U \) is w-open in \((X, \tau) \).
9. a \(\# \) g-semi closed set[23] if \(\text{scl}(A) \subseteq U \), whenever \(A \subseteq U \) and \(U \) is \(\# \)-g-open in \((X, \tau) \).

Corresponding author: 2G. Anitha, *E-mail: anitha_ganesan@yahoo.com*
10. a \(\tilde{a}_g \) -closed\[19\] if \(\alpha \text{cl}(A) \subseteq U \), whenever \(A \subseteq U \) and \(U \) is \# gs-open in \((X, \tau)\).

11. a \(\tilde{a}_g \) -Weakly generalized closed set(\(\tilde{a}_g \) wg-closed) \[13\] if \(\text{Cl}(\text{Int}(A)) \subseteq U \), whenever \(A \subseteq U \), \(U \) is \(\tilde{a}_g \) -open in \((X, \tau)\).

The complements of the above sets are called their respective open sets.

Definition 1.3: A function \(f : (X, \tau) \rightarrow (Y, \sigma) \) is called

1. \(\alpha \) -continuous \[14\] if \(f^{-1}(V) \) is \(\alpha \) -closed in \((X, \tau)\) for every closed set \(V \) in \((Y, \sigma)\).
2. semi continuous \[10\] if \(f^{-1}(V) \) is semi closed in \((X, \tau)\) for every closed set \(V \) in \((Y, \sigma)\).
3. \(g \) \(\alpha \) -continuous \[3\] if \(f^{-1}(V) \) is \(g \) \(\alpha \) -closed in \((X, \tau)\) for every closed set \(V \) in \((Y, \sigma)\).
4. sg-continuous \[21\] if \(f^{-1}(V) \) is sg-closed in \((X, \tau)\) for every closed set \(V \) in \((Y, \sigma)\).
5. \(\alpha \) g-continuous \[5\] if \(f^{-1}(V) \) is \(\alpha \) g-closed in \((X, \tau)\) for every closed set \(V \) in \((Y, \sigma)\).
6. \(g \alpha \) -continuous \[5\] if \(f^{-1}(V) \) is \(g \alpha \) -closed in \((X, \tau)\) for every closed set \(V \) in \((Y, \sigma)\).
7. gs-continuous \[6\] if \(f^{-1}(V) \) is gs-closed in \((X, \tau)\) for every closed set \(V \) in \((Y, \sigma)\).
8. gsp-continuous \[7\] if \(f^{-1}(V) \) is gsp-closed in \((X, \tau)\) for every closed set \(V \) in \((Y, \sigma)\).
9. completely-continuous \[2\] if \(f^{-1}(V) \) is regular closed in \((X, \tau)\) for every closed set \(V \) in \((Y, \sigma)\).
10. \(\alpha \) g-continuous \[8\] if \(f^{-1}(V) \) is \(\alpha \) g-closed in \((X, \tau)\) for every closed set \(V \) in \((Y, \sigma)\).
11. \(g \alpha \) -irresolute \[8\] if \(f^{-1}(V) \) is \(g \alpha \) -closed in \((X, \tau)\) for every \(g \alpha \) -closed set \(V \) in \((Y, \sigma)\).

Proposition 1.4: If a subset \(A \) of a topological space \((X, \tau)\) is a regular closed, then it is \(\tilde{a}_g \) wg-closed but not conversely.

Proof: Suppose a subset \(A \) of a topological space \(X \) is regular closed. Let \(G \) be a \(\tilde{a}_g \) -open set containing \(A \). Then \(G \supseteq \text{cl}(A) = \text{cl}(\text{int}(A)) \) since \(A \) is regular closed. Hence \(A \) is \(\tilde{a}_g \) wg-closed in \((X, \tau)\).

Converse of the above theorem need not be true as seen in the following example.

Example 1.5: Let \(X = \{a, b, c\} \) and \(\tau = \{\phi, \{a\}, \{b, c\}, X\} \). In this topological space the subset \(\{b\} \) is \(\tilde{a}_g \) wg-closed but it is not regular closed.

Proposition 1.6: If a subset \(A \) of a topological space \((X, \tau)\) is a \(g \alpha \) - closed, then it is \(\tilde{a}_g \) wg-closed but not conversely.

Proof: Suppose \(A \) is \(g \alpha \) - closed subset \(X \) and let \(G \) be a \(\alpha \) -open set containing \(A \). Since every \(\alpha \) -open set is \(g \alpha \) - open. Hence \(G \) is \(\tilde{a}_g \) -open set containing \(A \).

\[G \supseteq \text{cl}(\text{Int}(\text{cl}(A))) \supseteq \text{cl}(\text{int}(A)) \text{Thus } A \text{ is } \tilde{a}_g \text{-wg-closed in } (X, \tau). \]

Converse of the above theorem need not be true as seen in the following example.

Example 1.7: Let \(X = \{a, b, c\} \) and \(\tau = \{\phi, \{a, c\}, X\} \). In this topological space the subset \(\{a\} \) is \(\tilde{a}_g \) wg-closed but it is not \(g \alpha \) - closed.

Proposition 1.8: If a subset \(A \) of a topological space \((X, \tau)\) is a \(\alpha \) g-closed, then it is gsp-closed but not conversely.

Proof: Let \(A \) be a \(\tilde{a}_g \) wg-closed subset \(X \) and \(G \) be an open set containing \(A \) in \((X, \tau)\). Then \(G \supseteq \text{cl}(A) \supseteq \text{cl}(\text{int}(A)) \). Since every open set is \(\tilde{a}_g \) -open. Hence \(G \) is \(\tilde{a}_g \) -open set containing \(A \). \(G \supseteq (\text{int}(\text{cl}(A))) \) which implies \(A \cup G \supseteq A \cup \text{int}(\text{cl}(A)) \). That is \(G \supseteq \text{spcl}(A) \). Thus \(A \) is gsp-closed in \((X, \tau)\).

Converse of the above theorem need not be true as seen in the following example.
Example 1.9: Let \(X = \{a, b, c\} \) and \(\tau = \{\emptyset, \{a\}, \{c\}, \{a, c\}, X\} \). In this topological space the subset \(\{a\} \) is gsp closed but not \(\tilde{g}_\alpha \)-wg-closed.

2. \(\tilde{g}_\alpha \)-CONTINUOUS FUNCTIONS:

We have introduced the following definition

Definition 2.1: A function \(f : (X, \tau) \rightarrow (Y, \sigma) \) is said to be \(\tilde{g}_\alpha \)-continuous if \(f^{-1}(V) \) is \(\tilde{g}_\alpha \)-closed in \((X, \tau) \) for every closed set \(V \) of \((Y, \sigma) \).

Example 2.2: Let \(X = \{a, b, c\} = Y, \tau = \{\emptyset, \{a\}, \{b, c\}, X\} \) and \(\sigma = \{\emptyset, \{a\}, Y\} \). Define a function \(f : (X, \tau) \rightarrow (Y, \sigma) \) by \(f(a) = b, f(b) = c, f(c) = a \). Then \(f \) is \(\tilde{g}_\alpha \)-continuous since the inverse image of the closed set \(\{b, c\} \) in \((Y, \sigma) \) is \(\{a, b\} \) which is in \(\tilde{g}_\alpha \)-wg-closed in \((X, \tau) \).

Theorem 2.3: Every continuous map is \(\tilde{g}_\alpha \)-continuous but not conversely.

Proof: Let \(V \) be a closed set in \((Y, \sigma) \). Since \(f \) is continuous, then \(f^{-1}(V) \) is closed in \((X, \tau) \). By theorem 3.2 of [13], every closed set is \(\tilde{g}_\alpha \)-closed. Then \(f^{-1}(V) \) is \(\tilde{g}_\alpha \)-closed in \((X, \tau) \). Hence \(f \) is \(\tilde{g}_\alpha \)-continuous.

Example 2.4: Let \(X = \{a, b, c\} = Y, \tau = \{\emptyset, \{a, b\}, X\} \) and \(\sigma = \{\emptyset, \{a\}, Y\} \). Define a function \(f : (X, \tau) \rightarrow (Y, \sigma) \) by \(f(a) = b, f(b) = a, f(c) = c \). Then \(f \) is \(\tilde{g}_\alpha \)-continuous but not \(\alpha \)-continuous.

Theorem 2.7: Every \(\alpha \)-continuous function is \(\tilde{g}_\alpha \)-continuous but not conversely.

Proof: Let \(V \) be a closed set in \((Y, \sigma) \). Since \(f \) is \(\alpha \)-continuous, then \(f^{-1}(V) \) is \(\alpha \)-closed in \((X, \tau) \). By theorem 3.11 of [13], every \(\alpha \)-closed set is \(\tilde{g}_\alpha \)-closed. Then \(f^{-1}(V) \) is \(\tilde{g}_\alpha \)-closed in \((X, \tau) \). Hence \(f \) is \(\tilde{g}_\alpha \)-continuous.
Theorem 2.11: Every completely continuous function is \tilde{g}_a mg-continuous but not conversely.

Proof: Let V be a closed set in (Y, σ). Since f is completely continuous function, then $f^{-1}(V)$ is regular closed in (X, τ). By Proposition 1.4, every regular closed set is \tilde{g}_a mg-closed. Then $f^{-1}(V)$ is \tilde{g}_a mg-closed in (X, τ). Hence f is \tilde{g}_a mg-continuous.

Example 2.12: Let $X = \{a, b, c\} = Y$, $\tau = \{\phi, \{a\}, \{b, c\}, X\}$ and $\sigma = \{\phi, \{a\}, Y\}$. Define a function $f : (X, \tau) \rightarrow (Y, \sigma)$ by $f(a) = b$, $f(b) = a$, $f(c) = c$. Then f is \tilde{g}_a mg-continuous but not regular continuous function.

Theorem 2.13: Every \tilde{g}_a mg-continuous is gsp-continuous but not conversely.

Proof: Let V be a closed set in (Y, σ). Since f is \tilde{g}_a mg-continuous function, then $f^{-1}(V)$ is \tilde{g}_a mg-closed in (X, τ). By Proposition 1.8, every \tilde{g}_a mg-closed set is gsp closed. Then $f^{-1}(V)$ is gsp closed in (X, τ). Hence f is gsp continuous.

Example 2.14: Let $X = \{a, b, c\} = Y$, $\tau = \{\phi, \{a\}, \{b, c\}, X\}$ and $\sigma = \{\phi, \{b, c\}, Y\}$. Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be the identity function. Then f is gsp continuous but not \tilde{g}_a mg-continuous.

Theorem 2.15: Every \tilde{g}_a mg-continuous is wg-continuous but not conversely.

Proof: Let V be a closed set in (Y, σ). Since f is \tilde{g}_a mg-continuous function, then $f^{-1}(V)$ is \tilde{g}_a mg-closed in (X, τ). By Theorem 3.9 of [13], every \tilde{g}_a mg-closed set is wg closed. Then $f^{-1}(V)$ is wg closed in (X, τ). Hence f is wg continuous.

Example 2.16: Let $X = \{a, b, c\} = Y$, $\tau = \{\phi, \{a\}, \{b, c\}, X\}$ and $\sigma = \{\phi, \{b, c\}, Y\}$. Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be the identity function. Then f is wg continuous but not \tilde{g}_a mg-continuous.

Remark 2.17: The following examples show that semi continuous and \tilde{g}_a mg-continuous functions are independent.

Example 2.18: Let $X = \{a, b, c\} = Y$, $\tau = \{\phi, \{a\}, \{b, c\}, X\}$ and $\sigma = \{\phi, \{a\}, Y\}$ defined $f : (X, \tau) \rightarrow (Y, \sigma)$ by $f(a) = c$, $f(b) = a$, $f(c) = b$. Then f is \tilde{g}_a mg-continuous but not semi continuous.

Example 2.19: Let $X = \{a, b, c\} = Y$, $\tau = \{\phi, \{a\}, \{b, c\}, X\}$ and $\sigma = \{\phi, \{b, c\}, Y\}$ defined $f : (X, \tau) \rightarrow (Y, \sigma)$ be the identity function. Then f is semi continuous but not \tilde{g}_a mg-continuous.

Remark 2.20: The following examples show that g-continuous and \tilde{g}_a mg-continuous functions are independent.

Example 2.21: Let $X = \{a, b, c\} = Y$, $\tau = \{\phi, \{a\}, X\}$ and $\sigma = \{\phi, \{a, b\}, Y\}$ defined $f : (X, \tau) \rightarrow (Y, \sigma)$ be the identity function. Then f is \tilde{g}_a mg-continuous but not g-continuous.

Example 2.22: Let $X = \{a, b, c\} = Y$, $\tau = \{\phi, \{b, c\}, \{c\}, X\}$ and $\sigma = \{\phi, \{b\}, Y\}$ defined $f : (X, \tau) \rightarrow (Y, \sigma)$ be the identity function. Then f is g-continuous but not \tilde{g}_a mg-continuous.

Remark 2.23: The following examples show that sg-continuous and \tilde{g}_a mg-continuous functions are independent.

Example 2.24: Let $X = \{a, b, c\} = Y$, $\tau = \{\phi, \{a, c\}, X\}$ and $\sigma = \{\phi, \{a\}, \{b, c\}, Y\}$ defined $f : (X, \tau) \rightarrow (Y, \sigma)$ by $f(a) = c$, $f(b) = b$, $f(c) = a$. Then f is \tilde{g}_a mg-continuous but not sg-continuous.
Example 2.25: Let \(X = \{a, b, c\} = Y, \quad \tau = \{\phi, [a], [a, c]\}, X \) and \(\sigma = \{\phi, [a, b]\}, Y \) defined \(f: (X, \tau) \rightarrow (Y, \sigma) \) by \(f(a) = b, f(b) = a, f(c) = c \). Then \(f \) is \(\sigma \)-continuous but not \(\bar{g}_a \)-\(\sigma \)-continuous functions are independent.

Remark 2.26: The following examples show that \(\sigma \)-continuous and \(\bar{g}_a \)-\(\sigma \)-continuous functions are independent.

Example 2.27: Let \(X = \{a, b, c\} = Y, \quad \tau = \{\phi, [a], [a, b]\}, X \) and \(\sigma = \{\phi, [a, b]\}, Y \) define \(f: (X, \tau) \rightarrow (Y, \sigma) \) be the identity function. Then \(f \) is \(\sigma \)-continuous function but not \(\bar{g}_a \)-\(\sigma \)-continuous function;

Example 2.28: Let \(X = \{a, b, c, d\} = Y, \quad \tau = \{\phi, [b, c], [a, b, c]\}, X \) and \(\sigma = \{\phi, [a, c, d]\}, Y \) define \(f: (X, \tau) \rightarrow (Y, \sigma) \) be the identity function. Then \(f \) is \(\bar{g}_a \)-\(\sigma \)-continuous but not \(\sigma \)-continuous.

Remark 2.29: The following examples show that \(\sigma \)-continuous and \(\bar{g}_a \)-\(\sigma \)-continuous functions are independent.

Example 2.30: Let \(X = \{a, b, c\} = Y, \quad \tau = \{\phi, [a], [a, c]\}, X \) and \(\sigma = \{\phi, [a, b]\}, Y \) define \(f: (X, \tau) \rightarrow (Y, \sigma) \) by \(f(a) = a, f(b) = c, f(c) = b \). Then \(f \) is \(\sigma \)-continuous but not \(\bar{g}_a \)-\(\sigma \)-continuous.

Example 2.31: Let \(X = \{a, b, c, d\} = Y, \quad \tau = \{\phi, [b, c], [b, c, d]\}, [a, b, c]\}, X \) and \(\sigma = \{\phi, [a, c, d]\}, Y \) define \(f: (X, \tau) \rightarrow (Y, \sigma) \) be the identity function. Then \(f \) is \(\bar{g}_a \)-\(\sigma \)-continuous but not \(\sigma \)-continuous.

Remark 2.32: The composition of two \(\bar{g}_a \)-\(\sigma \)-continuous map need not be \(\bar{g}_a \)-\(\sigma \)-continuous.

Example 2.33: Let \(X = Y = Z = \{a, b, c\}, \quad \tau = \{\phi, [a, b]\}, X \), \(\sigma = \{\phi, [a, b]\}, Z \) defined \(\phi: (X, \tau) \rightarrow (Y, \sigma) \) by \(\phi(a) = a, \phi(b) = b \) and Define \(\psi: (Y, \sigma) \rightarrow (Z, \eta) \) by \(\psi(a) = b, \psi(b) = a, \psi(c) = c \). Then \(\phi, \psi \) are \(\bar{g}_a \)-\(\sigma \)-continuous. But \(\phi \circ \psi: (X, \tau) \rightarrow (Z, \eta) \) is not \(\bar{g}_a \)-\(\sigma \)-continuous.

3. \(\bar{g}_a \)-\(\sigma \)-IRRESOLUTE FUNCTIONS

Definition 3.1: A function \(f: (X, \tau) \rightarrow (Y, \sigma) \) is said to be \(\bar{g}_a \)-irresolute if \(f^{-1}(V) \) is \(\bar{g}_a \)-\(\sigma \)-closed in \((X, \tau) \) for every \(\bar{g}_a \)-\(\sigma \)-closed set \(V \) of \((Y, \sigma) \).

Theorem 3.2: Every \(\bar{g}_a \)-\(\sigma \)-irresolute map is \(\bar{g}_a \)-\(\sigma \)-continuous.

Proof: Let \(f: (X, \tau) \rightarrow (Y, \sigma) \) be a \(\bar{g}_a \)-\(\sigma \)-irresolute map and \(V \) be a closed set of \((Y, \sigma) \).

Since every closed set is \(\bar{g}_a \)-\(\sigma \)-closed set by theorem 3.2 of [13], \(V \) is \(\bar{g}_a \)-\(\sigma \)-closed. Since \(f \) is a \(\bar{g}_a \)-\(\sigma \)-irresolute, \(f^{-1}(V) \) is a \(\bar{g}_a \)-\(\sigma \)-closed set of \((X, \tau) \). Hence \(f \) is \(\bar{g}_a \)-\(\sigma \)-continuous.

Remark 3.3: \(\bar{g}_a \)-\(\sigma \)-continuous map need not be \(\bar{g}_a \)-\(\sigma \)-irresolute map.

Example 3.4: Let \(X = \{a, b, c\} = Y, \quad \tau = \{\phi, [a, b], [a, c]\}, X \) and \(\sigma = \{\phi, [a, c]\}, Y \) define \(f: (X, \tau) \rightarrow (Y, \sigma) \) be the identity function. Then \(f \) is \(\bar{g}_a \)-\(\sigma \)-continuous but not \(\bar{g}_a \)-\(\sigma \)-irresolute map.

Theorem 3.5: Let \(f: (X, \tau) \rightarrow (Y, \sigma) \) be an \(\bar{g}_a \)-irresolute and closed map. Then \(f(A) \) is \(\bar{g}_a \)-\(\sigma \)-closed of \((Y, \sigma) \) for every \(\bar{g}_a \)-\(\sigma \)-closed set \(A \) of \((X, \tau) \).

Proof: Let \(A \) be a \(\bar{g}_a \)-\(\sigma \)-closed in \((X, \tau) \).Let \(U \) be any \(\bar{g}_a \)-\(\sigma \)-open set of \((Y, \sigma) \) such that \(f(A) \subseteq U \) then \(A \subseteq f^{-1}(U) \).Since \(f \) is \(\bar{g}_a \)-irresolute then \(f^{-1}(U) \) is \(\bar{g}_a \)-\(\sigma \)-open set of \((X, \tau) \).
By hypothesis, A is \tilde{g}_a-wg-closed and $f^{-1}(U)$ is \tilde{g}_a-open set containing A.

then $\text{cl}(\text{int}(A)) \subseteq f^{-1}(U)$ which implies $f(\text{cl}(\text{int}(A))) \subseteq U$.

Now, $\text{cl}(\text{int}(f(A))) \subseteq \text{cl}(f(\text{cl}(\text{int}(A)))) \subseteq f(\text{cl}(\text{int}(A))) \subseteq U$.

Hence $\text{cl}(\text{int}(f(A))) \subseteq U$. Hence f(A) is \tilde{g}_a-wg-closed in (Y, σ).

Theorem 3.6: If a function $f: (X, \tau) \rightarrow (Y, \sigma)$ is \tilde{g}_a-irresolute and \tilde{g}_a-wg-closed and A is a \tilde{g}_a-wg-closed set of (X, τ), then A is \tilde{g}_a-wg-closed in (Y, σ).

Proof: Let F be closed subset of A. Then F is \tilde{g}_a-wg-closed. By theorem 3.5 $f_A(F) = f(F)$ is \tilde{g}_a-wg-closed in (Y, σ). Hence $f_A: A \rightarrow Y$ is \tilde{g}_a-wg-closed function.

Theorem 3.7: Let $f: (X, \tau) \rightarrow (Y, \sigma)$ and $g: (Y, \sigma) \rightarrow (z, \eta)$ be such that $g \circ f : (X, \tau) \rightarrow (z, \eta)$ is \tilde{g}_a-wg-closed function.

(i) If f is continuous and injective then g is \tilde{g}_a-wg-closed.

(ii) If g is \tilde{g}_a-wg-irresolute and injective then f is \tilde{g}_a-wg-closed.

Proof: Let F be closed set of (Y, σ). Since f is continuous, $f^{-1}(F)$ is closed in X. $g \circ f(F)$ is \tilde{g}_a-wg-closed in (z, η). Hence $g(F)$ is \tilde{g}_a-wg-closed in (z, η). Thus g is \tilde{g}_a-wg-closed.

Proof of (ii) is similar to proof (i).

Theorem 3.8: Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be a bijection function such that the image of every \tilde{g}_a-open in (X, τ) is \tilde{g}_a open in (Y, σ) and \tilde{g}_a-continuous then f is \tilde{g}_a-wg-irresolute.

Proof: Let F be a \tilde{g}_a-wg-closed set in (Y, σ). Let $f^{-1}(F) \subseteq U$ where U is \tilde{g}_a-open set in (X, τ). Since f is \tilde{g}_a-continuous and $\text{cl}(\text{int}(F))$ is closed in (Y, σ) then $f^{-1}(\text{cl}(\text{int}(F)))$ is \tilde{g}_a-wg closed in (X, τ). Since $f^{-1}(\text{cl}(\text{int}(F))) \subseteq U$ and $f^{-1}(\text{cl}(\text{int}(F)))$ is \tilde{g}_a-wg closed. We have $\text{cl}(\text{int}(f^{-1}(\text{cl}(\text{int}(F)))) \subseteq U$ and so $\text{cl}(\text{int}(f^{-1}(\text{cl}(\text{int}(F)))) \subseteq U$. Hence f is \tilde{g}_a-wg-irresolute.

REFERENCES:
