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Abstract 

In this paper the effect of various flow entities which influences the flow rate has 

been discussed in detail. It is observed that, for a constant frequency of excitation, the flow 

rate increases as the angle of inclination of the fluid bed increases. However, as the 

frequency of excitation increases, the flow pattern is found to be sinusoidal. Further, as the 

visco elasticity of the fluid increases, the flow rate decreases. Also, as the porosity of the fluid 

bed increases, the flow rate also increases. It is noticed that, as the time increases, the flow 

rate is found to be decreasing. All such observations are illustrated graphically.  

 

Keywords: Second order fluid, Porous media, Visco elasticity, Angle of inclination, 

Frequency of excitation�and Flow rate. 
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Nomenclature  

i
A  : Acceleration component in i 

th    

                                
direction 

,i jA  : Acceleration tensor 

i
a  : Non dimensional acceleration in i 

th
   

                        direction 
( ) ( )1 2

,ij ijE E : Strain tensor in the dimensional   

                        form 
( ) ( )1 2

,ij ije e : Strain tensor in the non-dimensional    

                        form 

F  : Non dimensional flow rate 

, ,X Y ZF F F : External forces applied along    

                       ,X Y and Z directions 

-------------------------------------------------------------- 
 

*Corresponding author: K. Rama Krishnaiah, # 14-107, Near 

Indane gas godown, Varalakshmipuram, Ashok Nagar, Kanuru, 

Vijayawada – 07, PIN: 520 007. 

E-mail:kondraguntark@yahoo.com�

�

K  : Non dimensional permeability of the   

                        porous bed 

k  : Dimensionalised porosity factory 

L  : Characteristic length 

P  : Indeterminate hydrostatic pressure 

p  :           Non dimensional indeterminate    

                        Pressure 

r  : Polar coordinate 

ijS  : Dimensional stress tensor 

ij
s  : Non dimensional stress tensor 

T  : Dimensional time parameter 

t  : Non dimensional time parameter 

i
U  : Dimensional velocity component in i   

                        
th 

direction 

,i jU  : Dimensional velocity tensor 

u  : Non dimensional velocity  

i
u  : Non dimensional velocity    

                        component along the i
th

 coordinate 

,
i i

X Y  : Co-ordinate axes (dimensional form) 

 



1Ch. V. Ramana Murthy* and 2K. Rama Krishnaiah/ Effect of frequency of excitation on the flow*
IJMA-
�����
����������
 �!�"
����#



$
�����
�����
�		
%�!��&
%�&����'


















































































































































































��










































,
i i

x y  : Co-ordinate axes (non-dimensional     

                        form) 

 

Greek symbols 

 
α  : Angle of inclination with respect to      

                        horizontal line 

β  : Visco elasticity parameter 

ε  : Polar coordinate 

1φ  : Coefficient of viscosity 

2φ  : Coefficient of elastico viscosity 

3φ  : Coefficient of cross viscosity 

µ  : Viscosity of the fluid 

c
υ  : Non dimensionalised cross viscosity   

                        parameter 

ρ  : Density of the fluid 

σ  : Frequency of excitation 

 

1. Introduction 

 
Flow through porous media has been the 

subject of considerable research activity in recent 

years because of its several important applications 

notably in the flow of oil through porous rock, the 

extraction of geothermal energy from the deep 

interior of the earth to the shallow layers, the 

evaluation of the capability of heat removal from 

particulate nuclear fuel debris that may result from 

a hypothetical accident in a nuclear reactor, the 

filtration of solids from liquids, flow of liquids 

through ion-exchange beds, drug permeation 

through human skin, chemical reactor for 

economical separation or purification of mixtures 

and so on. 

 

In many chemical processing industries, 

slurry adheres to the reactor vessels and gets 

consolidated. As a result of this, the chemical 

compounds within the reactor vessel percolates 

through the boundaries causing loss of production 

and then consuming more reaction time. In view of 

such technological and industrial importance 

wherein the heat and mass transfer takes place in 

the chemical industry, the problem by considering 

the permeability of the bounding surfaces in the 

reactors attracted the attention of several 

investigators.  

An important application is in the petroleum 

industry, where crude oil is tapped from natural 

underground reservoirs in which oil is entrapped. 

Since the flow behaviour of fluids in petroleum 

reservoir rock depends, to a large extent, on the 

properties of the rock, techniques that yield new or 

additional information on the characteristics of the 

rock would enhance the performance of the 

petroleum reservoirs. A related biomechanical 

application is the flow of fluids in the lungs, blood 

vessels, arteries and so on, where the fluid is 

bounded by two layers which are held together by a 

set of fairly regularly spaced tissues. 

 

Viscous fluid flow over wavy wall had 

attracted the attention of relatively few researchers 

although the analysis of such flows finds 

application in different areas, such as transpiration 

cooling of re-entry vehicles and rocket boosters, 

cross hatching on ablative surfaces and film 

vaporization in combustion chambers. Especially, 

where the heat and mass transfer takes place in the 

chemical processing industry, the problem by 

considering the permeability of the bounding 

surface in the reactors assumes greater significance. 

 

Many materials such as drilling muds, clay 

coatings and other suspensions, certain oils and 

greases, polymer melts, elastomers and many 

emulsions have been treated as non-Newtonian 

fluids. Because of the difficulty to suggest a single 

model, which exhibits all properties of non-

Newtonian fluids, they cannot be described simply 

as Newtonian fluids and there has been much 

confusion over the classification of non-Newtonian 

fluids. However, non-Newtonian fluids may be 

classified as (i) fluids for which the shear stress 

depends only on the rate of shear; (ii) fluids for 

which the relation between shear stress and shear 

rate depends on time; (iii) the visco-elastic fluids, 

which possess both elastic and viscous properties. 

 

Because of the great diversity in the 

physical structure of non-Newtonian fluids, it is not 

possible to recommend a single constitutive 

equation as the equation for use in the cases 

described in (i)—(iii). For this reason, many non-

Newtonian models or constitutive equations have 

been proposed and most of them are empirical or 

semi-empirical. For more general three-dimensional 

representation, the method of continuum mechanics 

is needed [1]. Although many constitutive 

equations have been suggested, many questions are 

still unsolved. Some of the continuum models do 
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not give satisfactory results in accordance with the 

available experimental data. For this reason, in 

many practical applications, empirical or semi-

empirical equations have been used. 

 

It has been shown that, for many types of 

problems in which the flow is slow enough in the 

visco-elastic sense, the results given by Olroyd’s 

constitutive equations will be substantially equal to 

those of the second or third-order Rivlin–Ericksen 

constitutive equations [2]. Thus, if this is the sense 

in which the solutions to which problems are to be 

interpreted, it would seem reasonable to use the 

second- or third-order constitutive equations in 

carrying out the calculations. This is particularly so 

in view of the fact that, the calculation will 

generally be still simpler. For this reason, in this 

paper, the second-order fluid model is used. The 

constitutive equation for the fluids of second grade 

(or second-order fluids) is a linear relationship 

between the stress, the first Rivlin–Ericksen tensor, 

its square and the second Rivlin–Ericksen tensor 

[1]. The constitutive equation has three coefficients. 

There are some restrictions on these coefficients 

due to the Clausius–Duhem inequality and the 

assumption that the Helmholtz free energy is a 

minimum in equilibrium. A comprehensive 

discussion on the restrictions for these coefficients 

has been given in [3] and [4]. One of these 

coefficients represents the viscosity coefficient in a 

way similar to that of a Newtonian fluid and the 

constitutive equation reduces to that of a Newtonian 

fluid in the absence of the other two coefficients. 

The restrictions on these two coefficients have not 

been confirmed by experiments and the sign of 

these material moduli is the subject of much 

controversy [5].  

 

The equation of motion of incompressible 

second grade fluids, in general, is of higher order 

than the Navier–Stokes equation. The Navier–

Stokes equation is a second-order partial 

differential equation, but the equation of motion of 

a second-order fluid is a third-order partial 

differential equation. A marked difference between 

the case of the Navier–Stokes theory and that for 

fluids of second grade is that, ignoring the 

nonlinearity in the Navier–Stokes equation does not 

lower the order of the equation, however, ignoring 

the higher order non-linearities in the case of the 

second grade fluid, reduces the order of the 

equation. 

In view of several industrial and 

technological importances, Pattabhi Ramacharyulu 

[6] studied the problem of the exact solutions of 

two dimensional flows of a second order 

incompressible fluid by considering the rigid 

boundaries. Later, Lekoudis et.al [7] presented a 

linear analysis of the compressible boundary layer 

flow over a wall. Subsequently, Shankar and Sinha 

[8] studied the problem of Rayleigh for wavy wall. 

The effect of small amplitude wall waviness upon 

the stability of the laminar boundary layer had been 

studied by Lessen and Gangwani [9]. Ramana 

Murthy et.al [10] discussed the flow of an elastico 

viscous fluid past an infinite plate with variable 

suction wherein the effects of various flow entities 

have been discussed. Further, the problem of free 

convective heat transfer in a viscous incompressible 

fluid confined between vertical wavy wall and a 

vertical flat wall was examined by Vajravelu and 

Shastri [11] and thereafter by Das and Ahmed [12]. 

The free convective flow of a viscous 

incompressible fluid in porous medium between 

two long vertical wavy walls was investigated by 

Patidar and Purohit [13]. Rajeev Taneja and Jain 

[14] had examined the problem of MHD flow with 

slip effects and temperature dependent heat source 

in a viscous incompressible fluid confined between 

a long vertical wall and a parallel flat plate. 

Recently, Ramana Murthy et.al [15] studied on the 

class of exact solutions of an incompressible second 

order fluid flow by creating sinusoidal disturbances, 

where different situations and effects have been 

examined.  

 

In all of the above situations, the 

investigators main aim was to examine the 

parameters that influence the velocity component. 

Not much of attention has been paid on the flow 

rate and the factors influencing it. Therefore, an 

attempt has been made to study the influence of 

various critical parameters on the flow rate. In all 

above investigations, the fluid under consideration 

was viscous incompressible fluid of second order 

type. The aim of the present analysis is to examine 

the nature of the flow rate by considering an 

additional property namely elastico viscosity of the 

fluid and also by creating sinusoidal disturbance at 

the bottom while the fluid is resting on the plate. 

This paper is aimed to investigate flow rate of the 

fluid by also taking into account the porosity factor 

of the bounding surface. The results are expressed 

in terms of a non-dimensional parameter K , which 
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depends on the non-Newtonian coefficient 
2φ  and 

the frequency of excitationσ . It is noticed that, the 

flow properties are identical with those of in the 

Newtonian case ( K = ∞ ). 

 

2. Formulation of the problem 

 
Since the stress at any point in the fluid is an 

expression of the mutual reaction of adjacent points 

of fluid near that point, it is natural to consider the 

connection between the stress and the local 

properties of the fluid. In the fluid at rest, the stress 

is determined wholly by the static pressure. In the 

case of a fluid in relative motion, the connection 

between the stress and local properties of the fluid 

is more complicated. However, some modifications 

may be made such as allowing the stress to depend 

only on the instantaneous distribution of fluid 

velocity in the neighborhood of the element.  

 

Because of the difficulty to suggest a single 

model which exhibits all properties of non-

Newtonian fluids, they cannot simply be described 

as a Newtonian fluid. For this reason, many non-

Newtonian models or constitutive equations have 

been proposed and most of them are empirical or 

semi-empirical. For more general three-dimensional 

representation, the method of continuum mechanics 

is needed. One of the most popular models for non-

Newtonian fluids is the model that is called the 

second-order fluid (or fluid of second grade). The 

constitutive assumption for the fluid of second 

grade is in the following form [1]. 

 
( ) ( ) ( )

2
1 2 1

1 2 3ij ij ij ij
S PI E E Eφ φ φ= − + + +                         (1) 

 

where ( )1

, ,ij i j j i
E U U= +                                (2) 

 

and ( )2

, , , ,2
ij i j j i m i m j

E A A U U= + +         (3) 

 

where 1 2,φ φ  and 3φ  are material moduli.  

 

The Clausius–Duhem inequality and the 

assumption that the Helmholtz free energy is 

minimum in equilibrium provide the following 

restrictions [3]. 

1 2 2 30, 0, 0φ φ φ φ≥ ≥ + =        (4) 

 

The condition 
2 3 0φ φ+ =  is a consequence of the 

Clausius–Duhem inequality and the condition 

2 0φ ≥  follows the requirement that the Helmholtz 

free energy is a minimum in equilibrium. A 

comprehensive discussion on the restrictions for 

1 2,φ φ  and 3φ can be found in the work by Dunn and 

Rajagopal [4]. The sign of the material moduli 
1φ  

and 2φ  is the subject of much controversy [5]. In 

the experiments on several non-Newtonian fluids, 

the experimentalists have not confirmed these 

restrictions on 1φ  and 2φ .  

 

 
Figure 1: Geometry of the fluid over porous bed. 

In general, the equations (in the dimensional 

form) of motions in the X, Y and Z directions and 

when the bounding surface is porous are given by  

 

1
1

XX XY XZ
X

DU S S S
F U

DT X Y Z k

µ
ρ ρ

∂ ∂ ∂
= + + + −

∂ ∂ ∂
����������(5) 

 

2
2

YX YY YZ
Y

DU S S S
F U

DT X Y Z k

µ
ρ ρ

∂ ∂ ∂
= + + + −

∂ ∂ ∂
       (6) 

 

3
3

ZX ZY ZZ
Z

DU S S S
F U

DT X Y Z k

µ
ρ ρ

∂ ∂ ∂
= + + + −

∂ ∂ ∂
       (7) 

 

Introducing the following non-dimensional 

variables as: 

 
22

21 1
2 2

1

i
i

u pL t
U T L P

L L

φ φρ
φ ρ β

ρ φ ρ
= = = =

 
2

2 1
3 2 3

i i i

i i c i

X Y a
x y L A

L L L

φ
φ ρ υ

ρ
= = = =  



1Ch. V. Ramana Murthy* and 2K. Rama Krishnaiah/ Effect of frequency of excitation on the flow*
IJMA-
�����
����������
 �!�"
����#



$
�����
�����
�		
%�!��&
%�&����'


















































































































































































�(










































( )
( )

( )
( )1 22 2 3

1 1 1 2 1

2 2 2 4 2

1

ij ij ij

ij ij ij

s e e L
S E E k

L L L K

φ φ φ ρ

ρ ρ ρ φ
= = = =

 

where T is the (dimensional) time variable, ρ  is the 

mass density and L is a characteristic length. We 

consider a class of plane flows given by the 

velocity components 

 

1 ( , )u u y t= �and��� 2 0u = �while �� 3 0u = ���������������������(8) 

�

in the directions of rectangular Cartesian 

coordinates x and y. The velocity field given by 

Equation (8) identically satisfies the 

incompressibility condition. 

 

The stresses in the non dimensional form are 

 
2

xx c

u
S p

y
υ
� �∂

= − + � �
∂� �

                     (9) 

 

( )
2

2
yy c

u
S p

y
υ β

� �∂
= − + + � �

∂� �
                  (10) 

 

xy

u u
S

y y t
β

∂ ∂ ∂� �
= + � �

∂ ∂ ∂� �
                   (11) 

 

In view of the above, the equations of motion will 

be transformed to  

 
2 2

2 2

1u p u u
u

t x y t y K
β

� �∂ ∂ ∂ ∂ ∂
= − + + −� �

∂ ∂ ∂ ∂ ∂� �
                 (12) 

 

and ( )
2

0 2
c

p u

y y y
β υ

� �∂ ∂ ∂
= − + + � �

∂ ∂ ∂� �
     (13) 

 

Equation (12) shows that 
p

x

∂
−

∂
  must be 

independent of space variables and hence may be 

taken as ( )tς . Equation (13) now yields 

 

( ) ( ) ( )
2

0 2
c

u
p p t t x

y
ς υ β

� �∂
= − + + � �

∂� �
      (14) 

 

Considering ( ) 0tς =  , the flow characterized by 

the velocity is given by  

 

2 2

2 2

1u u u
u

t y t y K
β

� �∂ ∂ ∂ ∂
= + −� �

∂ ∂ ∂ ∂� �
                  (15) 

 

where K  is the non-dimensional porosity constant. 

It may be noted that, the presence of β  changes the 

order of differential from two to three. 

 

3. Solution of the problem 

 
The oscillations of a classical viscous liquid 

on the upper half of the plane 0y ≥  with the 

bottom oscillating with a velocity i t
e

σα  then 

 

( )0, i t
u t e

σα=  while  ( ), 0u t∞ =                  (16) 

 

Assuming the trial solution as   

 

( ) ( ), i tu y t e f yσα= , then  ( ) ( )'' 2f y p f y=      (17) 

 

where 
( )

2

2

2 2

11

1 1

ii
K KKp

i

βσ
βσ σσ

βσ β σ

� � � �
+ + −+ � � � �

� � � �= =
+ +

                                                      (18)  

 

When expressed in the polar form  

 

cos sin
4 2 4 2

p r i
π ε π ε� �� � � �

= − + −� � � �� �
� � � �� �

                 (19) 

 

where  

 

( )
( )

1
2 2 4

2
2

1

2 2

1 1

, tan
1

K K K
r Q and Q

K

βσ
βσ σ βσ

ε
βσβ σ σ

−

� �� � � � � �+ + −	 
� � � � +� �� � � �	 
� � � �= = =
� �+ −� �
� �

  

Also the conditions satisfied are: 

( ) ( )0 1, 0f f= ∞ =                 (20) 

 

This yields the solution  

( )
cos sin

4 2 4 2
,

i t yr i

u y t e

π ε π ε
σ

α

� �� �� � � �
− − + −� �� �� � � �

� � � �� �� �=                  (21) 

 

 The flow is thus represented by standing 

transverse wave with its amplitude rapidly 

diminishing with increasing distance from the 

plane. The flow rate F  is given by 
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( )1 1

1 1

10 0

1
i t

i t yr re
F udy e dy e

r

σ
σ α αα

α
α

− −= = = −
 
 ��

where �� 1 cos sin
4 2 4 2

i
π ε π ε

α
� � � �

= − + −� � � �
� � � �

�

 

4. Results and Discussions 

 
1. Figure 2 shows the nature of flow rate 

( )F as the angle of inclination ( )α of the 

fluid bed is varied. It is noticed that, as the 

angle of inclination ( )α is increased, the 

flow rate ( )F decreases initially and then 

the effect is found to be reverse in the 

second segment. However, the phenomenon 

is found to be periodic as the frequency of 

excitation ( )σ is increased further. 

 

 
 

Figure 2: Effect of angle of inclination ( )α on the 

flow rate ( )F . 

 

2. The contribution of the visco elasticity 

parameter ( )β is studied in Figure 3. It is 

seen that, as the concentration of the fluid is 

increased, the flow rate ( )F decreases. 

However, even when the frequency of 

excitation ( )σ is held constant and the fluid 

concentration is increased, the effect seems 

to be same and not much of effect is 

observed. 

 
 

Figure 3: Effect of visco elasticity ( )β on the 

flow rate ( )F . 

2. Figure 4 illustrates the effect of porosity 

( )K on the flow rate ( )F . In general it is 

seen that, as the porosity ( )K of the fluid 

increases, the flow rate ( )F  increases while 

all other flow entities are held constant. 

Further, it is noticed that, when the 

frequency of excitation ( )σ is held constant, 

increase in the fluid concentration increases 

the flow rate ( )F .    

 
 

Figure 4: Effect of porosity ( )K on the flow 

rate ( )F . 

3. Figure 5 shows the effect of time  ( )t  on the 

flow rate ( )F . In general, it is noticed that, 

as the time ( )t  increases, the flow rate ( )F  
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decreases. Also, when the frequency of 

excitation ( )σ is held constant, and fluid 

density increases, the flow rate 

( )F decreases. Further, when the time 

( )t increases, the flow rate ( )F  decreases.  

 
Figure 5: Effect of time  ( )t  on the flow rate ( )F . 

4. Conclusions 

The behaviour of the flow rate ( )F  is found 

to be sinusoidal as the frequency of excitation ( )σ  

increases. The flow rate ( )F  is even found to have 

a backward flow at times. As the visco elasticity 

( )β  of the fluid increases, the flow rate ( )F  is 

found to be decreasing. Also, as the porosity ( )K of 

the fluid bed is increased, the flow rate ( )F  is 

found to be increasing. Further, as the time 

( )t increases, the flow rate ( )F decreases. 
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