International Journal of Mathematical Archive-2(11), 2011, Page: 2157-2162

$G\pi$ Closed Sets in Biminimal Structure Spaces

S. Saranya* & A. Parvathi

Department of Mathematics, Avinashilingam University for Women, Coimbatore - 43, Tamil Nadu, India

E-mail: saranya.subbaiyan@gmail.com, aparvathi.s@gmail.com

(Received on: 20-10-11; Accepted on: 07-11-11)

ABSTRACT

The purpose of the present paper are to introduce the concept of $(i, j) - g\pi$ closed sets in biminimal structure spaces and study some of their properties. We introduce the concept of (i, j)-g π continuous function on biminimal structure spaces and investigate some of their characterizations.

Mathematics Subject Classification: 54A05, 54A10.

Keywords: biminimal structure space, $(i, j) - g\pi$ closed set, $(i, j) - g\pi$ continuous function.

1 INTRODUCTION:

V. Popa and T. Noiri[5] introduced the concept of minimal structure. Also they introduced the notion of m_X -open set and m_X -closed set and characterize those sets using m_X -closure and m_X -interior operators respectively. Further they introduced M-continuous functions and studied some of its basic properties. C. Boonpok [1] introduced the concept of biminmal structure spaces and studied some fundamental properties of $m_X^1 m_X^2$ -closed sets and $m_X^1 m_X^2$ -open sets in biminimal structure spaces. Moreover, C. Boonpok [2] introduced the notion of M-continuous functions on biminmal structure spaces and studied some characterizations and several properties of such functions. In this paper, we introduce the concept of (i, j)- $g\pi$ closed sets in biminimal structure spaces and study some of their properties. We introduce the concept of (i, j)- $g\pi$ continuous function on biminimal structure spaces and investigate some of their characterizations.

2 PRELIMINARIES:

Definition: 2.1 [5] Let X be a nonempty set and P(X) be the power set of X. A subfamily m_X of P(X) is called a minimal structure (briefly m-structure) if $\emptyset \in m_X$ and $X \in m_X$.

By (X, m_X) , we denote a nonempty set X with a m-structure on X and it is called a m-space. Each member of m_X is said to be a m_X -open set and the complement of a m_X -open set is said to be m_X -closed.

Definition: 2.2 [5] Let X be a nonempty set and m_X be m-structure on X.

For a subset A of X the m_x-closure of A and the m_x-interior of A are defined as follows:

(1) m_X -Cl(A) = \cap {F| A \subseteq F,X – F \in m_X }; (2) m_X -Int(A) = \cup {U| U \subseteq A, U \in m_X }.

Lemma: 2.3 [3] Let $X \neq \emptyset$ and m_X is a m-structure on X. For A, B \subseteq X the following properties hold:

 $\begin{array}{l} (1) \ m_X - Cl(X - A) = X - (m_X - Int(A)) \ and \ m_X - Int(X - A) = X - (m_X Cl(A)). \\ (2) \ If \ (X - A) \in m_X, \ then \ m_X - Cl(A) = A \ and \ if \ A \in m_X, \ then \ m_X Int(A) = A. \\ (3) \ m_X - Cl(\emptyset) = \emptyset, \ m_X - Cl(X) = X \ m_X - Int(\emptyset) = \emptyset, \ and \ m_X - Int(X) = X. \\ (4) \ If \ A \subseteq B, \ then \ m_X - Cl(A) \subseteq m_X - Cl(B) \ and \ m_X - Int(A) \subseteq m_X - Int(B). \\ (5) \ A \subseteq m_X - Cl(A) \ and \ m_X - Int(A) \subseteq A. \\ (6) \ m_X - Cl(m_X - Cl(A)) = m_X - Cl(A) \ and \ m_X - Int(m_X - Int(A)) = m_X - Int(A). \end{array}$

Corresponding author: S. Saranya, *E-mail: saranya.subbaiyan@gmail.com

Lemma: 2.4 [3] Let $X \neq \emptyset$ and m_X is a m-structure on X. For $A \subseteq X$ then $x \in m_X$ -Cl(A) if and only if $U \cap A \neq \emptyset$ for every $U \in m_X$ containing x.

Definition: 2.5 [3] A m-structure m_X on a nonempty set X is said to have property B if the union of any family of subsets belonging to m_X belongs to m_X .

Lemma: 2.6 [5] Let X be a nonempty set and m_X is a m-structure on X sastisfying property B. For $A \subseteq X$ the following properties hold:

(1) $A \in m_X$ if and only if m_X -Int(A) = A;

(2) A is m_X -closed if and only if m_X -Cl(A) = A;

(3) m_X -Int(A) $\in m_X$ and m_X -Cl(A) is m_X -closed.

Definition: 2.7 [1] Let X be a nonempty set and let $m_{X_1}^1 m_X^2$ be minimal structures on X. A triple $(X, m_{X_1}^1 m_X^2)$ is called a biminimal structure space (briefly bim-space).

Throughout the present paper, (X, m_X^1, m_X^2) denote a biminimal structure space and A is a subset of X. The m_X-closure and m_X-interior of A with respect to m_X^i are denoted by m_X^i -Cl(A) and m_X^i -Int(A), respectively, for i = 1, 2.

Definition: 2.8 [2] Let (X, m_X^1, m_X^2) and (Y, m_Y^1, m_Y^2) be biminimal structure spaces. A function f: $(X, m_X^1, m_X^2) \rightarrow (Y, m_Y^1, m_Y^2)$ is said to be (i, j)-M continuous at a point $x \in X$ if for each $V \in m_Y^i$ containing f(x), there exists $U \in m_X^i$ containing x such that $f(U) \subseteq V$, where i, j = 1, 2 and i \neq j.

A function f: $(X, m_X^1, m_X^2) \rightarrow (Y, m_Y^1, m_Y^2)$ is said to be (i, j)-M-continuous if it has this property at each point $x \in X$.

Theorem: 2.9 [2] For a f : $(X, m_X^1, m_X^2) \rightarrow (Y, m_Y^1, m_Y^2)$, the following properties are equivalent:

(1) f is (i, j)-M-continuous at a point x ∈ X;
(2) x ∈ m_X^j-Int((f⁻¹(V)) for every V ∈ m_Yⁱ containing f(x);
(3) x ∈ f⁻¹(m_Yⁱ -Cl(f(A))) for every subset A of X with x ∈ m_X^j-Cl(A);
(4) x ∈ f⁻¹(m_Yⁱ -Cl(B)) for every subset B of Y with x ∈ m_X^j-Cl(f⁻¹(B));
(5) x ∈ m_X^j-Int(f⁻¹(B)) for every subset B of Y with x ∈ f⁻¹(m_Yⁱ -Int(B));
(6) x ∈ f⁻¹(F) for every m_Yⁱ -closed set F of Y such that x ∈ m_X^j-Cl(f⁻¹(F)).

Theorem: 2.10 [2] For a function f: $(X, m_X^1, m_X^2) \rightarrow (Y, m_Y^1, m_Y^2)$, the following properties are equivalent:

(1) f is (i, j)-M-continuous; (2) $f^{-1}(V) = m_X^j$ -Int($f^{-1}(V)$ for every $V \in m_Y^i$; (3) f(m_X^j -Cl(A)) $\subseteq m_Y^i$ -Cl(f(A))) for every subset A of X; (4) m_X^j -Cl($f^{-1}(B)$) $\subseteq f^{-1}(m_Y^i$ -Cl(B)) for every subset B of Y; (5) $f^{-1}(m_Y^i$ -Int(B)) $\subseteq m_X^j$ -Int($f^{-1}(B)$) for every subset B of Y; (6) m_X^j -Cl($f^{-1}(F)$) = $f^{-1}(F)$ for every m_Y^i -closed set F of Y.

Definition: 2.11 [2] A subset A of biminimal structure space (X, m_X^1, m_X^2) is said to be:

(1) (i, j)-m_X-regular open if $A = m_X^i$ -Int(m_X^j -Cl(A)), where i, j = 1, 2 and i \neq j; (2) (i, j)-m_X-semi-open if $A \subseteq m_X^i$ -Cl(m_X^j -Int(A)), where i, j = 1, 2 and i \neq j; (3) (i, j)-m_X-preopen if $A \subseteq m_X^i$ -Int(m_X^j -Cl(A)), where i, j = 1, 2 and i \neq j; (4) (i, j)-m_X- α -open if $A \subseteq m_X^i$ -Int(m_X^j -Cl(m_X^i -Int(A))), where i, j = 1, 2 and i \neq j; (5) (i, j)-m_X- β -open if $A \subseteq m_X^i$ -Cl(m_X^j -Int(m_X^i -Cl(A))), where i, j = 1, 2 and i \neq j.

The complement of a (i, j)-m_X-regular open (resp. (i, j)-m_X-semi open, (i, j)-m_X-preopen, (i, j)-m_X- α -open, (i, j)-m_X- β -open) set is called a (i, j)-m_X-regular closed (resp. (i, j)-m_X-semi-closed, (i, j)-m_X-preclosed, (i, j)-m_X- α -closed, (i, j)-m_X- β -closed) set. The finite union of (i, j)-m_X regular open sets is said to be (i, j)-m_X π -open. The complement of a(i, j)-m_X π -open set is said to be (i, j)-m_X π -closed.

Definition: 2.12 [2] A subset A of a biminimal structure space (X, m_X^1, m_X^2) is said to be:

(1) m_X^i -regular open if A = m_X^i -Int(m_X^i -Cl(A)), for i = 1, 2;

- (2) m_X^i -semi-open if $A \subseteq m_X^i$ -Cl(m_X^i -Int(A)), for i = 1, 2;
- (3) m_X^i -preopen if $A \subseteq m_X^i$ -Int(m_X^i -Cl(A)), for i = 1, 2;
- (4) m_X^i - α -open if A $\subseteq m_X^i$ -Int(m_X^i -Cl(m_X^i -Int(A))), for i = 1, 2;
- (5) m_X^i - β -open if $A \subseteq m_X^i$ -Cl(m_X^i -Int(m_X^i -Cl(A))), for i = 1, 2.

The complement of a m_X^i -regular open (resp. m_X^i -semi open, m_X^i -preopen, m_X^i - α -open, m_X^i - β -open) set is called a m_X^i -regular closed (resp. m_X^i -semiclosed, m_X^i -preclosed, m_X^i - α -closed, m_X^i - β -closed) set. The finite union of m_X^i regular open sets is said to be $m_X^i \pi$ -open. The complement of a $m_X^i \pi$ -open set is said to be $m_X^i \pi$ -closed.

Definition: 2.13 [8] A subset A of biminimal structure space (X, m_X^1, m_X^2) is said to be $m_X^{(i,j)}$ -closed if m_X^i -Cl $(m_X^j$ -Cl(A)) = A, where i, j = 1, 2 and i \neq j.

The complement of a $m_X^{(i,j)}$ -closed set is said to be $m_X^{(i,j)}$ -open.

3. gπ CLOSED SETS:

In this section, we introduce the concept of (i, j)- $g\pi$ -closed sets in biminimal structure spaces and study some of their properties.

Definition: 3.1 A subset A of a biminimal structure space (X, m_X^1, m_X^2) is said to be (i, j)- $g\pi$ closed set if $m_X^1 \pi Cl(A) \subseteq U$, whenever $A \subseteq U$ and U is m_X^i - open in X, where i, j =1, 2 and i \neq j. The complement of (i, j) - $g\pi$ -closed is said to be (i, j)- $g\pi$ open. A subset A of a biminimal structure space (X, m_X^1, m_X^2) is called pairwise (i, j)- $g\pi$ -closed if A is (1, 2)- $g\pi$ -closed and (2, 1)- $g\pi$ -closed. The complement of pairwise (i, j)- $g\pi$ -closed is called pairwise (i, j)- $g\pi$ -open.

The family of all (i, j)- $g\pi$ -closed (resp. (i, j)- $g\pi$ -open) sets of (X, m_X^1, m_X^2) is denote by (i, j)- $g\pi$ -C(X) (resp. (i, j)- $g\pi$ -O(X)), i, j = 1, 2 and i \neq j.

Remark: 1 The union of two (i, j)- $g\pi$ -closed sets is a (i, j)- $g\pi$ -closed set. It can be seen from the following example.

Example: 3.2 Let X = {a, b, c, }. Consider two minimal structures $m_X^1 = \{X, \emptyset, \{a\}, \{b\}\}$ and $m_X^2 = \{X, \emptyset, \{a\}, \{b\}, \{a,c\}, \{b,c\}\}$. Then {a} and {b} are (1, 2)-g\pi-closed and {a} $\cup \{b\} = \{a, b\}$ is (1, 2)-g\pi-closed.

Remark: 2 The intersection of two (i, j)- $g\pi$ -closed sets is not a (i, j)- $g\pi$ -closed set in general as can be seen from the following example.

Example: 3.3 Let X = {a, b, c}. Consider two minimal structures $m_X^1 = \{X, \emptyset, \{a\}, \{b\}, \{a, c\}, \{b, c\}\}$ and $m_X^2 = \{X, \emptyset, \{a\}, \{b\}\}$. Then {a, b} and {b, c} are (1, 2)- $g\pi$ closed but {a, b} \cap {b, c} = {b} is not (1, 2)- $g\pi$ -closed.

Theorem: 3.4 If A is a (i, j)- $g\pi$ -closed set of (X, m_X^1, m_X^2) such that $A \subseteq B \subseteq m_X^j - \pi Cl(A)$, then B is (i, j)- $g\pi$ -closed set, where i, j = 1, 2 and i \neq j.

Proof: Let A be a (i, j)-g π -closed set and A \subseteq B $\subseteq m_X^j$ - π Cl(A). Let B \subseteq U and U is m_X^i -open. Then A \subseteq U. Since A is (i, j)-g π -closed, we have m_X^j - π Cl(A) \subseteq U. Since B $\subseteq m_X^j$ - π -Cl(A), then m_X^j - π -Cl(B) $\subseteq m_X^j$ - π -Cl(A) \subseteq U. Hence, B is (i, j)-g π -closed.

Theorem: 3.5 For a subset A of a biminimal structure space (X, m_X^1, m_X^2) . If A is both m_X^i -open and (i, j)-g π -closed, then A is $m_X^j - \pi$ closed, where i, j = 1, 2 and i \neq j.

Proof: Let A be m_X^i open and (i, j)- $g\pi$ -closed, we have m_X^j - π -Cl(A) = A. Hence, A is m_X^j - π -closed.

Remark: 5 (1, 2)- $g\pi$ -C(X) is generally not equal to (2, 1)- $g\pi$ -C(X) as can be seen from the following example.

Example: 3.6 X = {a, b, c}. Consider two minimal structures $m_X^1 = \{X, \emptyset, \{a\}, \{b\}, \{a, c\}, \{b, c\}\}$ and $m_X^2 = \{X, \emptyset, \{a\}, \{b\}\}$. Then (1, 2)- $g\pi$ -C(X) = {X, $\emptyset, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}\}$ and (2, 1)- $g\pi$ -C(X) = {X, $\emptyset, \{a\}, \{b\}, \{c\}, \{a, c\}, \{b, c\}\}$. Thus (1, 2)- $g\pi$ -C(X) \neq (2, 1) - $g\pi$ -C(X)

Remark: 6 Let m_X^1 and m_X^2 be m structures on X. If $m_X^1 \subseteq m_X^2$ then (1,2) $-g\pi \operatorname{Cl}(X) \subseteq (2,1) g\pi \operatorname{C}(X)$ © 2011, IJMA. All Rights Reserved

S. Saranya* & A. Parvathi/Gπ Closed Sets in Biminimal Structure Spaces/ IJMA- 2(11), Nov.-2011, Page: 2157-2162

Example: 3.7 X = {a, b, c}. Consider two minimal structures $m_X^1 = \{X, \emptyset, \{a\}, \{b\}, \{a,c\}, \{b,c\}\}$ and $m_X^2 = \{X, \emptyset, \{a\}, \{b\}\}$. Then (1, 2)- $g\pi$ X) (2, 1)- $g\pi$ (X) but m_X^1 contained in m_X^2

Theorem: 3.8 For each element x of a biminimal structure space (X, m_X^1, m_X^2) , $\{x\}$ is m_X^i closed or X – $\{x\}$ is (i, j)-g π -closed, where i, j = 1, 2 and i \neq j.

Proof: Let $x \in X$ and the singleton $\{x\}$ be not m_X^i -closed. Then $X - \{x\}$ is not m_X^i -open, and so X is only m_X^i -open set which contains $X - \{x\}$. Hence $X - \{x\}$ is (i, j)-g π -closed.

Theorem: 3.9 Let A be a subset of a biminimal structure space (X, m_X^1, m_X^2) . If A is (i, j)-g π - closed, then

 m_X^j - π -Cl(A) – A contains no nonempty m_X^i -closed set, where i, j = 1, 2 and i \neq j.

Proof: Let A be a (i, j)-g π -closed set and $F \neq \emptyset$ is m_X^i closed set such that $F \subseteq m_X^j - \pi \operatorname{Cl}(A) - A$. Since $A \in (i, j)$ -g π -C(X), we have $m_X^j - \pi$ -Cl(A) $\subseteq X - F$. Thus $F \subseteq m_X^j - \pi \operatorname{Cl}(A) \cap (X - m_X^j - \pi \operatorname{Cl}(A)) = \emptyset$, this is a contradiction. Then $m_X^j - \pi$ -Cl(A) – A contains no nonempty m_X^i -closed set.

Corollary: 3.10 Let m_X^1 and m_X^2 be minimal structure on X satisfying property **B**. If A is (i, j)-g π -closed in (X, m_X^1, m_X^2) , then A is m_X^j - π -closed if and only if m_X^j - π -Cl(A) – A is m_X^i closed, where i, j = 1, 2 and i \neq j.

Proof: If A is $m_X^j - \pi$ -closed, then $m_X^j - \pi$ -Cl(A) = A. i.e. $m_X^j - \pi$ -Cl(A) - A = \emptyset and hence $m_X^j - \pi$ -Cl(A) - A is $m_X^j - \pi$ -closed.

Conversely, if $m_X^j - \pi - Cl(A) - A$ is $m_X^i - closed$, then by Theorem 3.9 $m_X^j - \pi - Cl(A) - A = \emptyset$, since A is (i, j)- $g\pi$ -closed. Therefore, A is $m_X^j - \pi$ -closed.

Theorem: 3.11 For a biminimal structure space (X, m_X^1, m_X^2) satisfying property **B**. If every subset of X is (i, j)- $g\pi$ - closed set, then m_X^i -O(X) $\subseteq m_X^j$ - π -C(X) whenever m_X^i O(X) is a family of all m_X^i open and m_X^j - π -C(X) is a family of all m_X^j - π -closed, where i, j = 1, 2 and i \neq j.

Proof: suppose that every subset of X is (i, j)- $g\pi$ -closed. Let $U \in m_X^i O(X)$.Since U is (i, j)- $g\pi$ -closed, we have $m_X^j - \pi$ -Cl(U) $\subseteq U$. Therefore, $U \in m_X^j - \pi$ -C(X) and hence $m_X^i O(X) \subseteq m_X^j - \pi$ -C(X).

Theorem: 3.12 A subset A of a biminimal structure space (X, m_X^1, m_X^2) is (i, j)- $g\pi$ -open if and only if every subset F of X, $F \subseteq m_X^j - \pi$ Int(A) whenever F is m_X^i closed and $F \subseteq A$, where i, j = 1, 2 and i \neq j.

Proof: Suppose that A is (i, j) - $g\pi$ -open. We shall show that $F \subseteq m_X^j - \pi$ -Int(A) whenever F is m_X^i closed and $F \subseteq A$. Let $F \subseteq A$ and F is m_X^i closed. Then X-A \subseteq X-F and X-F is m_X^i open, we have X-A is (i, j) - $g\pi$ -closed, then $m_X^j \pi$ -Cl(X-A) \subseteq X-F. Thus X-($m_X^j - \pi$ -Int(A)) \subseteq X-F and hence $F \subseteq m_X^j - \pi$ -Int(A).

Conversely, suppose that $F \subseteq m_X^j \pi$ -Int(A) whenever F is m_X^i - closed and $F \subseteq A$. Let $X - A \subseteq U$ and U is m_X^i - open.

Then X – U \subseteq A and X – U is m_X^i -closed. By assumption, we have X – U $\subseteq m_X^j$ – π -Int(A), then X – ($m_X^j \pi$ -Int(A)) \subseteq U. Therefore, $m_X^j \pi$ -Cl(X – A) \subseteq U. Thus X – A is (i, j)- $g\pi$ -closed. Hence, A is (i, j) – $g\pi$ -open.

Theorem: 3.13 Let A and B be subsets of a biminimal structure space (X, m_X^1, m_X^2) such that $m_X^j - \pi$ -Int(A) $\subseteq B \subseteq A$. If A is (i, j)-g π -open, then B is (i, j)-g π -open, where i, j = 1, 2 and i \neq j.

Proof: Suppose that $m_X^j - \pi - \text{Int}(A) \subseteq B \subseteq A$. Let F be $m_X^i - \text{closed}$ such that $F \subseteq B$. Since A is (i, j)-g π -open, $F \subseteq m_X^j - \pi$ -Int(A). Since $m_X^j - \pi$ -Int(A) $\subseteq B$, we have $m_X^j - \pi$ -Int($m_X^j - \pi$ -Int(A)) $m_X^j - \pi$ -Int(B). Consequently, $m_X^j - \pi$ -Int(A) $m_X^j - \pi$ -Int(B). Hence, $F = m_X^j - \pi$ -Int(B). Therefore, B is (i, j)-g π open.

Theorem: 3.14 Let A be a subset of a biminimal structure space (X, m_X^1, m_X^2) . If A is (i, j)-g π -closed, then $m_X^j \pi$ -Cl(A) – A is (i, j)-g π -open, where i, j = 1, 2 and i \neq j.

Proof: Suppose that A is (i, j)- $g\pi$ -closed. We shall show that $m_X^j \pi$ -Cl(A) – A is (i, j)- $g\pi$ -open. Let $F \subseteq m_X^j \pi$ -Cl(A) – A and F is m_X^i closed. Since A is (i, j)- $g\pi$ -closed, we have $m_X^j \pi$ -Cl(A) – A does not contain nonempty m_X^i closed by Theorem 3.9. Consequently, $F = \emptyset$, Therefore, $\emptyset \subseteq m_X^j \pi$ -Cl(A) – A. Hence, $m_X^j \pi$ -Cl(A) – A is (i, j)- $g\pi$ -open. © 2011, IJMA. All Rights Reserved 2160

4. $G\pi$ CONTINUOUS FUNCTIONS:

In this section, we introduce the concept of (i, j)- $g\pi$ continuous function on biminimal structure spaces and investigate some of their characterizations.

Definition: 4.1. Let (X, m_X^1, m_X^2) and $(Y, m_{Y_i}^1, m_Y^2)$ be biminimal structure space. A function $f: (X, m_{X_i}^1, m_X^2) \rightarrow (Y, m_{Y_i}^1, m_Y^2)$ is said to be (i, j)- $g\pi$ continuous function if $f^{-1}(F)$ is (i, j)- $g\pi$ -closed in X for every $m_V^{(i,j)}$ -closed F of Y, where i, j = 1, 2 and i \neq j.

A function $f: (X, m_{X_i}^1, m_X^2) \rightarrow (Y, m_{Y_i}^1, m_Y^2)$ is (i, j)- $g\pi$ continuous if and only if $f^{-1}(U)$ is (i, j)- $g\pi$ -open in X for every $m_Y^{(i,j)}$ -open U of Y, where i, j = 1, 2 and i \neq j.

Definition: 4.2 A biminimal structure space $(X, m_{X_i}^1, m_X^2)$ is said to be $m^{(i,j)}$ -T_{1/2} space if for every (i, j)-g π -closed set is $m_X^{(i,j)}$ -closed set, where i, j = 1, 2 and i \neq j.

Theorem: 4.3 Let $(X, m_{X_i}^1, m_X^2)$ be a m^(i,j) -T_{1/2} space and let $(Y, m_{Y_i}^1, m_Y^2)$ be a biminimal structure space, where $m_{Y_i}^1$, m_Y^2 have property **B**. For an injective function f: $(X, m_X^1, m_X^2) \rightarrow (Y, m_Y^1, m_Y^2)$, the following properties are equivalent:

(1) f is (i, j)- $g\pi$ -continuous.

(2) For each $x \in X$ and for every $m_Y^{(i,j)}$ -open set V containing f(x), there exists a (i, j)-g π -open set U containing x such that $f(U) \subseteq V$.

(3) $f(m_X^j - \pi - Cl(A)) \subseteq m_Y^j - \pi - Cl(f(A))$ for every subset A of X. (4) $m_X^j - \pi - Cl(f^{-1}(B)) \subseteq f^{-1}(m_Y^j - \pi - Cl(B))$ for every subset B of Y.

Proof: (1) \Rightarrow (2): Let $x \in X$ and V be a $m_Y^{(i,j)}$ -open subset of Y containing f(x). Then by (1), $f^{-1}(V)$ is (i, j)-g π -open of X containing x. If $U = f^{-1}(V)$, then $f(U) \subseteq V$.

(2) \Rightarrow (3): Let A be a subset of X and f(x) $\notin m_Y^j \pi$ -Cl(f(A)). Then, there exists a $m_Y^{(i,j)}$ -open subset V of Y containing f(x) such that V \cap f (A) = Ø. Then by (2), there exists a (i, j)-g\pi-open set U such that f(x) \in f (U) \subseteq V.

Hence, f (U) \cap f (A) = \emptyset implies U \cap A = \emptyset . Consequently, x $\notin m_Y^j \pi$ -Cl(A) and f(x) \notin f($m_X^j - \pi$ -Cl(A)).

(3) \Rightarrow (4): Let B be a subset of Y. By (3), we obtain $f(m_X^j \pi - Cl(f^{-1}(B))) \subseteq m_Y^j \pi - Cl(f(f^{-1}(B)))$.

Thus $m_{Y}^{j} \pi$ -Cl(f⁻¹(B)) \subseteq f-1($m_{Y}^{j} \pi$ -Cl(B)).

(4) \Rightarrow (1): Let F be a $m_Y^{(i,j)}$ -closed subset of Y. Let U be a m_X^i X-open subset of X such that $f^{-1}(F) \subseteq U$. Since $m_Y^j \pi$ -Cl(F) = F and by (4), $m_X^j \pi$ -Cl($f^{-1}(F)$) \subseteq U. Hence, f is (i, j)-g π -continuous.

Theorem: 4.4 Let $(Y, m_{Y_i}^1, m_Y^2)$ be a m^(i,j)-T_{1/2} space and let f: $(X, m_{X_i}^1, m_X^2) \rightarrow (Y, m_{Y_i}^1, m_Y^2)$ and f: $(Y, m_{Y_i}^1, m_Y^2) \rightarrow (Z, m_{Z_i}^2, m_Z^2)$ be functions. If f and g are (i, j)-g π -continuous, then g \circ f is (i, j)-g π -continuous.

Proof: Let F be a $m_{Z}^{(i,j)}$ -closed subset of Z. Since g is (i, j)-g π -continuous, then $g^{-1}(F)$ is (i, j)-g π -closed subset of Y. Since $(Y, m_{Y_i}^1, m_Y^2)$ be a $m^{(i,j)}$ -T_{1/2} space, then $g^{-1}(F)$ is $m_Y^{(i,j)}$ -closed subset of Y. Since f is (i, j)-g π -continuous, then $(g \circ f)^{-1}(F) = f^{-1}(g^{-1}(F))$ is (i, j)-g π -closed subset of X. Hence, $g \circ f$ is (i, j)-g π -continuous

REFERENCES:

[1] C. Boonpok, Biminimal structure spaces, International Mathematical Forum, 15 (5)(2010), 703–707.

[2] C. Boonpok, M-continuous function on biminimal structure spaces, Far East J. of Math. Sci., 43 (2010), 41-58.

[3] H. Maki, K. C. Rao and A. Nagoor Gani, em On generalized semi-open and preopen sets, Pure Appl. Math. Sci., **49** (1999), 17–29.

[4] T. Noiri, A unified theory for modifications of g-closed sets, delcircolo mathematico di Palermo, 56 (2) (2007), 171–184.

S. Saranya* & A. Parvathi/ Gn Closed Sets in Biminimal Structure Spaces/ IJMA- 2(11), Nov.-2011, Page: 2157-2162

[5] T. Noiri and V. Popa, A generalized of some forms of g-irresolute functions, European J. of Pure and Appl. Math., **2** (4)(2009), 473–493.

[6] T. Noiri and J. Dontchev, Quasi-normal spaces and $g\pi$ -closed sets, Acta Math Hungar., 89 (2000) 211-219.

[7] S. Saranya, A. Parvathi, $G\pi$ -closed sets in topological spaces (Submitted).

[8] C. Viriyapong, M. Tunapan, W. Rattanametawee and C. Boonpok, Generalized m-closed sets in biminimal structure spaces, Int. J. of Math. Analysis, **5** (7) (2011), 333–346.
