$G\pi$ - Closed Sets in Bi *Cech Closure Spaces

S. Saranya* & A. Parvathi

Department of Mathematics, Avinashilingam University for Women, Coimbatore - 43, Tamil Nadu, India

E-mail: saranya.subbaiyan@gmail.com, aparvathi.s@gmail.com

(Received on: 12-10-11; Accepted on: 30-10-11)

ABSTRACT

In this paper, we introduce the concepts of $g\pi$ - closed and $g\pi$ - open sets in BiC ech closure space and study some of their properties.

Key words: BiC'ech closure operator, BiC'ech closure spaces, BiC'ech $g\pi$ closed sets.

2000 Mathematics subject classification: 54A05, 54E55.

1. INTRODUCTION:

Cech closure spaces were introduced by E. 'Cech [1]. In ' Cech's approach the operator satisfies idempotent condition among kuratowski axioms. This condition need not hold for every set A of X. When this condition is also true, the operator becomes topological closure operator. Thus the concept of closure space is the generalization of a topological space. In this paper, we introduce the concept of (k_1, k_2) - $g\pi$ closed sets, $_{g\pi}C_0$ bi- ' Cech space and study their basic properties.

2. PRELIMINARIES:

Definition: 2.1 [2] Two functions k_1 and k_2 from power set X to itself are called bi- $\dot{}$ Cech closure operators (simply biclosure operator) for X if they satisfy the following properties.

```
(i) k_1(\varphi) = \varphi and k_2(\varphi) = \varphi
```

(ii) $A \subset k_1(A)$ and $A \subset k_2(A)$ for any set $A \subset X$

(iii) k_1 ($A \cup B$)= k_1 ($A \cup B$)= k_1 ($A \cup B$)= k_2 ($A \cup B$)= k_2 ($A \cup B$)= k_2 ($A \cup B$)= for any $A,B \subset X$ ($A \cup B$) is called bi- Cech closure space.

Example: 2.2 Let $X = \{a, b, c\}$ and let k_1 and k_2 be defined as $k_1(\{a\}) = \{a\}$,

 $k_1\left(\{b\}\right) = k_1\left(\{c\}\right) = k_1\left(\{b,c\}\right) = \{b,c\}, \ k_1\left(\{a,b\}\right) = k_1\left(\{a,c\}\right) = k_1\left(\{X\}\right) = X, \ and \ k_1\left(\phi\right) = \phi.$

 $k_2(\{a\}) = \{a\}, k_2(\{b\}) = \{b, c\}, k_2(\{c\}) = k_2(\{a, c\}) = \{a, c\}, k_2(\{a, b\}) = k_2(\{b, c\}) = k_2\{X\}) = X, k_2(\phi) = \phi.$

Now, (X, k_1, k_2) is a bi- $\dot{}$ Cech closure space.

Definition: 2.3 [3] A subset A in a bi- $\dot{}$ Cech closure space (X, k_1, k_2) is said to be

- 1. k_i -regular open if $A = int_{ki}(k_i(A))$, i = 1, 2
- 2. k_i -regular closed if $A = k_i(int_{ki}(A))$, i = 1, 2
- 3. k_i -semi open if $A \subseteq k_i(int_{ki}(A))$, i = 1, 2
- 4. k_i -semi closed if $int_{k_i}(k_i(A)) \subseteq A$, i = 1, 2

The finite union of k_i regular open sets is said to be k_i π -open.

The complement of a k_i π -open set is said to be k_i π -closed. The smallest k_i π closed set containing A is called k_i – π closure of A and it is denoted by $k_{\pi \, \text{cli}}(A)$.

3. (k_1, k_2) - $g\pi$ closed sets:

Definition: 3.1 A subset A is a bi- Cech closure space (X, k_1, k_2) is said to be (k_1, k_2) - $g\pi$ closed if $k_{\pi \text{ cl2}}(A) \subseteq U$ whenever $A \subseteq U$ and U is k_1 - open set in X.

Example: 3.2 In example 2.2, the (k_1, k_2) - $g\pi$ closed sets are $X, \varphi, \{a\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}$.

Theorem: 3.3 If A and B are (k_1, k_2) - $g\pi$ closed sets and so is A \cup B.

Proof: Let A and B be two (k_1, k_2) - $g\pi$ closed sets. Let U be k_1 -open set in X. Let $(A \cup B) \subseteq U$, we have $A \subseteq U$ and $B \subseteq U$. Then $k_{\pi \operatorname{cl2}}(A) \subseteq U$ and $k_{\pi \operatorname{cl2}}(B) \subseteq U$ implies $(k_{\pi \operatorname{cl2}}(A) \cup k_{\pi \operatorname{cl2}}(B)) \subseteq U$. Hence $k_{\pi \operatorname{cl2}}(A \cup B) \subseteq U$.

Thus

A \bigcup B is (k_1, k_2) - $g\pi$ closed set.

Theorem: 3.4 If A is (k_1, k_2) - $g\pi$ closed set, then $k_{\pi cl2}$ (A)-A contains no nonempty k_1 - closed sets.

Proof: Let A be (k_1, k_2) - $g\pi$ closed. Let U be k_1 - closed contained in $k_{\pi \text{ cl}2}$ (A)-A.

Now, $U \subseteq k_{\pi \operatorname{cl2}}(A)$ and $U \subseteq A^c$. Now, $U \subseteq A^c$ then $A \subseteq U^c$. Since U is k_1 -closed. $k_{\pi \operatorname{cl2}}(A) \subseteq U^c$. Consequently $U \subseteq [k_{\pi \operatorname{cl2}}(A)]^c$. As $U \subseteq k_{\pi \operatorname{cl2}}(A) \cap [k_{\pi \operatorname{cl2}}(A)]^c = \varphi$. Hence $k_{\pi \operatorname{cl2}}(A)$ -A contains no non-empty k_1 -closed sets.

Theorem: 3.5 If A is (k_1, k_2) - $g\pi$ closed set, then $k_{\pi \text{ cll}}(x) \cap A \neq \phi$ holds for each $x \in k_{\pi \text{ cl2}}(A)$.

Proof: Let A be (k_1, k_2) - $g\pi$ closed set. Suppose $k_{\pi \in I}(x) \cap A = \emptyset$, for some $x \in k_{\pi \in I}(A)$, we have $A \subseteq [k_{\pi \in I}(x)]^c$.

Now, $k_{\pi \text{ cl1}}(x)$ is k_1 - π -closed. Therefore $[k_{\pi \text{ cl1}}(x)]^c$ is k_1 - π open. Thus $[k_{\pi \text{ cl1}}(x)]^c$ is k_1 - open. Since A is (k_1, k_2) - $g\pi$ closed set, we have $k_{\pi \text{ cl2}}(A) \subseteq [k_{\pi \text{ cl1}}(x)]^c$ implies $k_{\pi \text{ cl2}}(A) \cap k_{\pi \text{ cl1}}(x) = \varphi$. Then $x \notin k_{\pi \text{ cl2}}(A)$ is a contradiction.

Hence $k_{\pi \text{ cl1}}(x) \cap A \neq \phi$ holds for each $x \in k_{\pi \text{ cl2}}(A)$.

Theorem: 3.6 Let (X, k_1, k_2) be bi- `Cech closure space. For each x in X, $\{x\}$ is k_1 - closed or $\{x\}^c$ is (k_1, k_2) - $g\pi$ closed set.

Proof: Let (X, k_1, k_2) be bi- $\check{}$ Cech closure space. Suppose that $\{x\}$ is not k_1 - closed, $\{x\}^c$ is not k_1 - open. Therefore, the only k_1 - open set containing $\{x\}^c$ is X. Thus, $\{x\}^c \subseteq X$. Now, $k_{\pi \operatorname{cl2}}[\{x\}^c] \subseteq k_{\pi \operatorname{cl2}}(X) = X$.

Hence $\{x\}^c$ is (k_1, k_2) - $g\pi$ closed set.

Theorem: 3.7 Let A be (k_1, k_2) - $g\pi$ closed set and if A is k_1 - open then $A = k_{\pi \text{ el} 2}$ (A).

Proof: Let A be (k_1, k_2) - $g\pi$ closed subset of a bi C ech closure spaces (X, k_1, k_2) and let A be k_1 - open set. Then k_{π} cl2(A) \subseteq U whenever $A \subseteq U$ and U is k_1 - open set in X. Since A is k_1 - open and $A \subseteq A$, we have k_{π} cl2(A) \subseteq A. But always, $A \subseteq k_{\pi}$ cl2 (A). Thus, $A = k_{\pi}$ cl2 (A).

Theorem: 3.8 Let $A \subseteq Y \subseteq X$ and suppose that A is (k_1, k_2) - $g\pi$ closed in (X, k_1, k_2) . Then A is (k_1, k_2) - $g\pi$ closed relative to Y.

Proof: Let S be any k_1 - open set in Y such that $A \subseteq S$. Then $S = U \cap Y$ for some U is k_1 - open in X.. Therefore $A \subseteq U \cap Y$ implies $A \subseteq U$. Since A is (k_1, k_2) - $g\pi$ closed set in X, we have $k_{\pi cl2}(A) \subseteq U$. Hence $Y \cap k_{\pi cl2}(A) \subseteq Y \cap U = S$. Thus A is (k_1, k_2) - $g\pi$ closed set relative to Y.

4. g_{π} C₀ bi- C ech spaces:

Definition: 4.1 A bi- Cech closure space (X, k_1, k_2) is said to be a $_{g\pi}C_0$ bi- Cech space if for every $g\pi$ -open subset U of (X, k_1) , $x \in U$ implies $k_2(\{x\}) \subseteq U$.

Theorem: 4.2 A bi- Čech closure space (X, k_1, k_2) is a $_{g\pi}C_0$ bi- Čech space if and only if for every $g\pi$ -closed subset F of (X, k_1) such that $x \notin F$, $k_2(\{x\}) \cap F = \varphi$.

M. A. Fariborzi Araghi* and B. Rezapour / APPLICATION OF HOMOTOPY PERTURBATION METHOD TO SOLVE MULTIDIMENSIONAL SCHRODINGER'S EQUATIONS/ IJMA- 2(11), Nov.-2011, Page: 2163-2165

Proof: Let F be a $g\pi$ -closed subset of (X, k_1) and let $x \notin F$. Since $x \in X - F$ and X - F is a $g\pi$ -open subset of $(X, k_1), k_2(\{x\}) \subseteq X - F$. Consequently $k_2(\{x\}) \cap F = \varphi$.

Conversely, let U be a $g\pi$ -open subset of (X, k_1) and let $x \in U$. Since X - U is a $g\pi$ -closed subset of (X, k_1) and $x \notin X - U, k_2(\{x\}) \cap (X - U) = \emptyset$. Consequently $k_2(\{x\}) \subseteq U$.

Hence, (X, k_1, k_2) is a $g_{\pi} C_0$ bi- Cech space.

 $\textbf{Theorem: 4.3} \ \text{Let} \ \{(\ X_{i,}\ k_{i}^{\ l},\ k_{i}^{\ 2}) : i \in I \ \ \} \ \text{be a family of bi-\'C ech closure spaces. If} \ \prod_{i \in I} \ \ (X_{i,}\ k_{i}^{\ l},\ k_{i}^{\ 2}) \ \text{is an}$ $_{g\pi}$ C_0 bi- $\dot{}$ Cech space , then (X_i , k_i^1 , k_i^2) is an $_{g\pi}$ C_0 bi- $\dot{}$ Cech space for each i \in I.

 $\textbf{Proof:} \ \text{Suppose that} \ \prod_{i \in I} \quad (X_i, k_i^{\ 1}, k_i^{\ 2}) \ \text{is an} \ _{g\pi} \ C_0 \ \ \text{bi-} \ \check{} \ \text{Cech space} \ . \ \text{Let} \ j \\ \in I \ \text{and let} \ G \ \text{be an} \quad g\pi \ \text{-open subset of}$

$$(X_{j},k_{j}^{-1}) \text{ such that } x_{j} \in G. \text{ Then } G \times \prod_{i\neq j,i\in I} X_{i} \text{ is an } g\pi \text{ -open subset of } \prod_{i\in I} (X,k_{i}^{-1}) \text{ such that } (x_{i})_{i} \subset_{I} \in G \times \prod_{i\neq j,i\in I} X_{i}$$
 Since
$$\prod_{i\subset I} (X_{i},k_{i}^{-1},k_{i}^{-2}) \text{ is an } \ _{g\pi}C_{0} \text{ bi-} \text{`Cech space, } \prod_{i\subset I} k_{i}^{-2}\pi_{i}(\{(x_{i})_{i}\subset_{I}\}) \subseteq G \times \prod_{i\neq j,i\in I} X_{i} \text{ .}$$

Since
$$\prod_{i \subset I} (X_i, k_i^1, k_i^2)$$
 is an $g_{\pi} C_0$ bi- `Cech space, $\prod_{i \subset I} k_i^2 \pi_i(\{(x_i)_i \subset_I\}) \subseteq G \times \prod_{i \neq j, i \in I} X_i$

Consequently, $k_i^2 \{x_i\} \subseteq G$.

Hence (X_i, k_i^1, k_i^2) is an g_{π} C_0 bi- Cech space.

REFERENCES:

- [1] Cech, E (1966), "Topological Spaces", Inter Science Publishers, john Wiley nd Sons, New York,
- [2] Chandrasekhara Rao, K and Gowri, R (2006), "On biclosure spaces", Bulletine of pure and applied sciences, 25E: p.p171-175.
- [3] Chandrasekhara Rao, K and Gowri, R (2006), "Regular generalised closed sets in biclosure spaces", Jr. of institute of mathematics and computer science, 19(3): p.p 283-286.
- [4] Chvalina, J., (1976) "On homeomorphic topologies and equivalent set-systems", Arch. Math. (Brno), 12(2): 107-115.
