R-CLOSED SETS IN TOPOLOGICAL SPACES

¹P. Krishna* & ²Dr. J. Antony Rex Rodrigo

¹Department of Mathematics, Cape Institute of Technology, Levengipuram, Tirunelveli District, Tamil Nadu, India

E-mail: krishnanagalingam@gmail.com

²Department of Mathematics, V. O. Chidambaram College, Thoothukudi, Tamil Nadu, India E-mail: antonyrexrodrigo@yahoo.co.in

(Received on: 18-10-11; Accepted on: 01-11-11)

ABSTRACT

New classes of sets called R-closed sets and R_s -closed sets; R-open and R_s -open sets are introduced and study some of their properties. Moreover the notions of R-Continuity and R_s -continuity are introduced and study some of their properties.

2000 Mathematics Subject Classification: 54C10, 54C08, 54C05.

Keywords and phrases: Topological space, R-closed, R_s -closed, R-open, R-continuity and R_s -continuity.

1. INTRODUCTION:

The study of generalized closed sets in a topological space was initiated by Levine [5] and the concept of $T_{1/2}$ space was introduced. In 1996, H. Maki, J. Umehara and T. Noiri[8] introduced the class of pregeneralized closed sets and used them to obtain properties of pre- $T_{1/2}$ spaces. The modified forms of generalized closed sets and generalized continuity were studied by K. Balachandran, P. Sundaram and H.Maki[2]. M.Sheik john introduced ω -closed sets and ω -open sets [12]. In this paper we introduced a new classes of sets called R-closed sets for topological spaces.

2. PRELIMINARIES:

Throughout this paper(X, τ),(Y, σ) and (Z, η) will always denote topological spaces on which no separation axioms are assumed, unless otherwise mentioned. When A is a subset of (X, τ), cl(A), Int(A) denote the closure, the interior of A. We recall some known definitions needed in this paper.

Definition: 2.1 Let (X, τ) be a topological space. A subset A of the space X is said to be

- (1) Pre open [9] if $A \subseteq Int(cl(A))$ and preclosed if $cl(Int(A)) \subseteq A$.
- (2) Semi open [6] if $A \subseteq cl(Int(A))$ and semiclosed if $Int(cl(A)) \subseteq A$.
- (3) α -open [10] if $A \subseteq Int(cl(Int(A)))$ and α -closed if $cl(Int(cl(A)) \subseteq A$.
- (4) Semi preopen [1] if $A \subseteq cl((Int(cl(A))))$ and semi preclosed if $Int(cl(Int(A))) \subseteq A$.
- (5) Regular open [4] if A =Int (cl(A)) and regular closed if A = cl(Int(A)).

Lemma: 2.2 [1] For any subset A of X, the following relations hold.

- 1. Scl(A) = AU(Int(cl(A)))
- 2. α cl(A) = AUcl(Int(cl(A)))
- 3. Pcl(A) = AUcl(Int(A))
- 4. Spcl (A) = AU Int (cl(Int(A)))

Definition: 2.3 Let (X, τ) be a topological space. A subset $A \subseteq X$ is said to be

(i) a generalized closed set [5] (briefly g-closed) if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X,τ) ; the complement of a g- closed set is called a g-open set.

Corresponding author: ¹P. Krishna, *E-mail: krishnanagalingam@gmail.com

¹P. Krishna* & ²J. Antony Rex Rodrigo/ R-closed sets in Topological spaces / IJMA- 2(11), Nov.-2011, Page: 2166-2176

- (ii) an α -generalized closed set [7] (briefly αg -closed) if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) ; the complement of a αg closed set is called a αg -open set.
- (iii) a generalized semi preclosed set [3] (briefly gsp-closed) if $spcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X,τ) ; the complement of a gsp-closed set is called a gsp-open set.
- (iv) an ω -closed set [12] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi open in (X, τ) ; the complement of a ω -closed set is called an ω -open set.
- (v) a generalized preclosed set [11] (briefly gp-closed) if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) ; the complement of a gp-closed set is called a gp-open set.
- (vi) a $g\alpha^*$ closed set [13] if $\alpha cl(A) \subseteq IntU$ whenever $A \subseteq U$ and U is α -open in (X,τ) ; the complement of a $g\alpha^*$ closed set is called a $g\alpha^*$ open set.
- (vii) a generalized pre regular closed set [4] (briefly gpR-closed) if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open in (X, τ) ; the complement of a gpr-closed set is called a gpr-open set.

Definition: 2.4 A function $f:(X, \tau) \rightarrow (Y, \sigma)$ is said to be g-continuous[2] if $f^{-1}(V)$ is g-closed in (X, τ) for every closed set V of (Y, σ) .

3. BASIC PROPERTIES OF R-CLOSED SETS:

We introduce the following definition.

Definition: 3.1 A subset A of a topological space (X, τ) is said to be R-closed in (X, τ) if $\alpha cl(A) \subseteq Int(U)$ whenever $A \subseteq U$ and U is ω -open in (X, τ) .

Theorem: 3.2 Every open and α closed subset of (X, τ) is R-closed but not conversely.

Proof: Let A be open and α -closed subset of (X, τ) .

Let $A \subset U$ and U be ω -open in x.

Since A is α -closed, α cl(A)=A.

$$\therefore \alpha cl(A) = A = Int(A) (: A \text{ is open})$$

$$\subseteq Int(U) (: A \subseteq U)$$

 $\therefore \alpha cl(A) \subseteq Int(U)$

∴ A is R-closed.

Conversely,

R-closed sets need not be open and α -closed.

(i) Let
$$X = \{a, b, c, d\}, \tau = \{X, \emptyset, \{a, b\}\}\$$

Here $A = \{a\}$ is R-closed and α -closed but A is not open.

ii)Let $X=\{a, b, c\}$ $\tau=\{X, \emptyset, \{c\}\}$.Here $A=\{a, c\}$ is not open and not α -closed But $A=\{a, c\}$ is R-closed.

Theorem: 3.3 Every R-closed set is ag closed but not conversely.

Proof: Let A is R-closed.

Let $A \subseteq U$, U is open $\Rightarrow U$ is ω -open.

(ie) $A \subseteq U,U$ is ω -open. \therefore A is R-closed $\alpha cl(A) \subseteq Int(U)$

 $\therefore \alpha \operatorname{cl}(A) \subset U$. $\therefore A$ is $\alpha \operatorname{g-closed}$.

The converse is not true.

(ie) every αg-closed set need not be R-closed.

Let
$$X = \{a, b, c\} \tau = \{X, \emptyset, \{a\}, \{b, c\}\}$$

Here $A = \{b\}$ is αg -closed.but it is not R-closed.

Theorem: 3.4 Every R-closed set is $g\alpha^*$ closed but not conversely.

Proof: Let $A \subseteq U$, U is α -open \Rightarrow U is ω -open

$$\therefore \alpha cl(A) \subseteq Int(U)$$

 \therefore A is $g\alpha^*$ closed.

Conversly, every ga* closed set need not be R-closed.

Let
$$X = \{a, b, c\}, \tau = \{X, \emptyset, \{c\}, \{a, b\}\}\$$

Let $A = \{a, c\}$. A is $g\alpha^*$ closed but not R-closed

Theorem: 3.5 Every R-closed set is gsp closed but not conversely.

Proof: Every R-closed set is αg-closed and every αg-closed set is gsp closed.

⇒ Every R-closed set is gsp closed.

Since every ag-closed set is not R-closed, we conclude the converse part is not true.

For eg Let
$$X = \{a, b, c\} \tau = \{X, \emptyset, \{a, c\}\}\$$

Let
$$A = \{a\}$$
. Spcl $\{a\} = \{a\} \subseteq \{a, c\}$

$$A \subset U \implies \operatorname{spcl}(A) \subset U$$

:. A is gsp closed but not R-closed.

Theorem: 3.6 Every R-closed set is gp closed but not conversely.

Proof:

Let A be R-closed.

Let $A \subseteq U$, U is open \Rightarrow U is ω -open.

$$\dot{\cdot}\cdot\alpha cl(A)\subseteq Int(U)\subseteq U$$

$$\cdot$$
 pcl(A) \subseteq U \Rightarrow A is gp closed.

Conversely every gp closed set need not be R-closed

Let
$$X = \{a, b, c\}$$
. $\tau = \{X, \emptyset, \{a, b\}\}$

Let $A = \{a\}$ Here A is gp closed but not R-closed.

Theorem: 3.7 Every R-closed set is gpr closed.

Proof: Let A be R-closed

Let
$$A \subseteq U$$
, U is regular open $\Rightarrow U$ is open $\Rightarrow U$ is ω -open.

¹P. Krishna* & ²J. Antony Rex Rodrigo/R-closed sets in Topological spaces / IJMA- 2(11), Nov.-2011, Page: 2166-2176

 $\cdot \cdot \alpha cl(A) \subset Int(U) \subset U$

 $\cdot \cdot Pcl(A) \subseteq U$

 \Rightarrow A is gpr closed.

Conversely every gpr closed sets need not be R-closed.

Let $X = \{a, b, c\}$, $\tau = \{X, \emptyset, \{a, b\}\}$ clearly $\{a, b\}$ is regular open. Let $A = \{a\}$ Here A is gpr closed but A is not R-closed.

Theorem: 3.8 Every R-closed set is gp closed but not conversely

Proof: Let $A \subseteq U$, U is open \Rightarrow U is ω -open

 $\cdot \cdot \alpha cl(A) \subset Int(U) \subset U$

 $\cdot \cdot Pcl(A) \subset U$.

Converse need not be true.

Let $X = \{a, b, c\} \tau = \{X, \emptyset, \{a, \}\}$. Let $A = \{a\}$.

Here {a} is gp closed but not R-closed.

Theorem: 3.9 A subset A of a topological space(X, τ) is R-closed then α cl(A) contains no non \emptyset ω -closed set.

Proof: Let F be a non \emptyset ω -closed set such that $F \subseteq \alpha cl(A)$ -A

Then $F \subseteq \alpha cl(A)$ and $A \subseteq x-F$, is ω -open.

Since A is R closed, $\alpha cl(A) \implies Int(X-F) = X-cl(F)$

 \Rightarrow cl(F) \subseteq X- α cl(A).

(ie) $F \subseteq \alpha cl(A)$ and $cl(F) \subseteq X - \alpha cl(A)$.

(ie) $F \subseteq \alpha cl(A)$ and $F \subseteq X$ - $\alpha cl(A)$.

(ie) $F \subseteq \alpha cl(A) \cap (X - \alpha cl(A)) = \emptyset$

 $\implies \alpha cl(A)$ –A contains no non ø $\,\omega\text{-closed}$ set.

Conversely if $\alpha cl(A)$ –A contains no non \emptyset ω -closed set, then A need not be R-closed.

Let $X = \{a, b, c\} \tau = \{X, \emptyset, \{a, b\}\}.$ Let $A = \{a\}$

Here $A = \{a\}$ is not R-closed. But $\alpha cl(A) - A = X - \{a\} = \{b, c\}$

Theorem: 3.10 If A and B are R-closed then AUB is R-closed

Proof: Let A and B are R-closed sets.

Let AUB \subseteq U, U be ω -open.

 $\therefore \alpha cl(A) \subseteq Int(U), \alpha cl(B) \subseteq Int(U)(\because A \text{ and } B \text{ are } \alpha \text{ closed})$

 $\therefore \alpha cl(AUB) = \alpha cl(A) \ U \ \alpha cl(B) \subseteq Int(U).$

 \Rightarrow AUB is R-closed.

Remark: 3.11 The intersection of two R- closed sets need not be R closed.

Let
$$X = \{a, b, c\} \tau = \{X, \emptyset, \{a, \}\}$$

Here $\{a, b\}$ and $\{a, c\}$ are R-closed, but $\{a, b\} \cap \{a, c\} = \{a\}$ is not R-closed.

Theorem: 3.12 If A is R-closed and $A \subseteq B \subseteq \alpha cl(A)$ then B is R-closed.

Proof: Let U be ω -open set of X s.t B \subseteq U. Let A \subseteq B $\subseteq \alpha$ cl(A)

 $\cdot \cdot A \subseteq U$ and U is ω -open.

 $\dot{\cdot} \alpha cl(A) \subseteq Int(U).$

Also $B \subseteq \alpha cl(A) \implies \alpha cl(B) \subseteq \alpha cl(\alpha cl(A)) = \alpha cl(A) \subseteq Int(U)$

 $\therefore \alpha cl(B) \subseteq Int(U)$. $\therefore B$ is R-closed.

Theorem: 3.13 If a subset A of (X, τ) is ω -open and R-closed then A is α -closed in (X, τ)

Proof: Let A be ω -open and R-closed.

Then $\alpha cl(A) \subseteq Int(A) \subseteq A$

 $\dot{\cdot}\cdot\alpha cl(A)\subseteq A$

 \therefore A is α -closed.

Theorem: 3.14 Let A be R-closed in (X, τ) then A is α -closed in (X, τ) iff $\alpha cl(A)$ -A is ω -closed.

Proof: Given A is R-closed.

 (\Rightarrow)

Let A be α -closed. $\therefore \alpha cl(A)=A$

(ie) α cl(A)-A= \emptyset which is ω -closed.

 (\Leftarrow)

If $\alpha cl(A)$ -A is ω -closed, since A is R-closed, $\alpha cl(A)$ -A does not contain any non \emptyset ω -closed set.

- $\alpha \operatorname{cl}(A)-A=\emptyset$
- $\mathbf{\dot{\cdot }}\alpha cl(A)\subseteq A$
- (ie) A is α-closed.

Theorem: 3.15 An open set A of (X, τ) is αg -closed iff A is R-closed.

Proof:

 (\Rightarrow)

Let A be an open and ag closed set.

Let $A \subseteq U,U$ is ω -open

Since $A \subseteq U$, $Int(A) \subseteq Int(U)$

 $\cdot \cdot A \subseteq Int(U)$ which is open.

¹P. Krishna* & ²J. Antony Rex Rodrigo/R-closed sets in Topological spaces / IJMA- 2(11), Nov.-2011, Page: 2166-2176

 $\cdot \cdot \alpha \operatorname{cl}(A) \subseteq \operatorname{Int}(U)(\cdot \cdot A \text{ is } \alpha g \operatorname{cld})$

 \Rightarrow A is R-closed.

(⇐)

Let A be R-closed.

Let $A \subseteq U$, U is open \Rightarrow U is ω -open.

 $\cdot \cdot \alpha cl(A) \subseteq Int(U) \subseteq U$

 $\dot{\cdot} \alpha cl(A) \subseteq U$

 \Rightarrow A is αg –closed.

Theorem: 3.16 In a topological space X, for each $x \in X$, $\{x\}$ is ω -closed or its complement $X - \{x\}$ is R-closed in (X, τ)

Proof: Let (X, τ) be a topology.

To prove $\{x\}$ is ω -closed or X- $\{x\}$ is R-closed in (x, τ) .

If $\{x\}$ is not ω -closed in (X, τ) then $X-\{x\}$ is not ω -open and the only ω -open set containing $X-\{x\}$ is X.

 $\cdot \cdot \alpha \operatorname{cl}\{X - \{x\}\} \subseteq X = \operatorname{Int}(X)$

 $:: \alpha \operatorname{cl}\{X - \{x\}\} \subseteq \operatorname{Int}(X) \Rightarrow X - \{x\} \text{ is R-closed.}$

Remark: 3.17 Closedness and R-closedness are independent.

Let $X = \{a, b, c\}, \tau = \{X, \emptyset, \{b\}, \{a, b\}\}\$

 $A = \{b, c\}$ is R-closed but not closed.

Let $X = \{a, b, c\}, \tau = \{X, \emptyset, \{b\}, \{c\}, \{b, c\}\}\$

 $A = \{a\}$ is closed but not R-closed.

Remark: 3.18 R-closedness and g-closedness are independent.

Let $X = \{a, b, c\} \tau = \{X, \emptyset, \{a\}, \{a, b\}\}\$

 $A = \{b\}$ is R-closed but not g-closed.

Let $X = \{a, b, c\} \tau = \{X, \emptyset, \{a\}, \{a, c\}\}\$

 $A = \{b\}$ is g-closed but not R-closed.

Remark: 3.19 R-closedness and preclosedness are independent

Let $X = \{a, b, c\} \tau = \{X, \emptyset, \{a\}\}\$

Here $A = \{a, b\}$ is R-closed but not preclosed.

Let $X = \{a, b, c\} \tau = \{X, \emptyset, \{a, b\}\}\$

Here $A = \{a\}$ is preclosed but not R-closed.

:. R-closedness and preclosedness are independent.

Remark: 3.20 R-closedness and α closedness are independent.

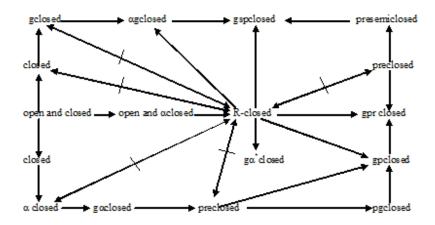
Let
$$X = \{a, b, c\}, \tau = \{X, \emptyset, \{a\}\}\$$

Here $A = \{a, b\}$ is R-closed but not α -closed.

Let
$$X = \{a, b, c\}, \tau = \{X, \emptyset, \{b, c\}\}$$

Here $A = \{a\}$ is α -closed but not R-closed.

Remark: 3.21 From the above discussions and known results we have the following implications. $A \rightarrow B$ ($A \nleftrightarrow B$) reperesents A implies B but not conversely (A and B are independent of each other).



4. PROPERTIES OF R-CLOSED SETS:

Definition: 4.1 The Intersection of all ω -open Subsets of (X, τ) containing A is called the ω -Kernal of A and denoted by ω -Ker (A)

Theorem: 4.2 If a subset A of (X, τ) is R-closed then $\alpha cl(A) \subseteq \omega$ -Ker(A).

Proof: Let A be R-closed. Let $A \subseteq U$ and U is ω -open.

 $\therefore \alpha cl(A) \subseteq Int(U)$ Whenever $A \subseteq U$, U is ω -open.

Let $x \in \alpha cl(A)$

If $x \notin \omega$ -Ker(A), then there exists a ω -open set containing A subset $x \notin U$.

$$\therefore x \notin A \Rightarrow x \notin \alpha cl(A)$$

$$\Rightarrow \leftarrow$$
 to $x \in acl(A)$

$$\cdot \cdot \alpha \operatorname{cl}(A) \subseteq \omega - \operatorname{Ker}(A)$$

Definition: 4.3 A subset A of (X, τ) is said to be R_s -closed in (X, τ) if $\alpha cl\ (A) \subseteq Int\ (cl(U))$ Whenever $A \subseteq U$ and U is ω -open in (X, τ)

Theorem: 4.4 Every R-closed set is R_s-closed.

Proof: Let A be any R-closed set.

Let $A \subseteq U$ and U be ω -open in X.

$$\Rightarrow \alpha cl(A) \subseteq Int\ U \subseteq Int\ (cl(U))$$

 \Rightarrow A is R_s-closed.

5. R-OPEN AND R_S OPEN SETS:

Definition: 5.1 A subset A of (X, τ) is said to be R-open in (X, τ) if its complement X-A is R-closed in (X, τ) .

Definition 5.2: A subset A of (X, τ) is said to be R_s -open in (X, τ) if its complment X-A is R_s -closed in (X, τ)

Theorem: 5.3 Let (X, τ) be a topological space and $A \subseteq X$.

- (i) A is a R-open set iff cl (U) $\subseteq \alpha$ int(A) whenever U \subseteq A and U is ω -closed.
- (ii) A is R_s-open set iff $cl(Int(U)) \subseteq \alpha int$ (A) whenever $U \subseteq A$ and U is ω -closed.
- (iii) If A is R-open then A is R_s-open.

Proof: (\Rightarrow) Let A be an R-open set in (X, τ)

Let $U \subseteq A$ and U is ω -closed.

Then X-A is R-closed and X-A \subseteq X-U and X-U is ω -open.

$$\therefore \alpha cl(X-A) \subset Int(X-U)$$

$$x-aint(A) \subseteq X-cl(U)$$

$$: cl(U) \subseteq \alpha int(A)$$

(←) whenever U ⊆ A and U is ω -closed then cl(Int(U)) ⊆ $\alpha int(A)$

(i) Let $A \subseteq V$ and V is ω -closed

 $A \subseteq V \Rightarrow X-A \supseteq X-V$ which is ω -open.

$$:cl(X-V) \subseteq \alpha int(X-A)$$

$$X-int(V) \subseteq X-acl(A)$$

$$\dot{\cdot} \alpha cl(A) \subseteq Int(V)$$

∴ A is R-closed.

(ii) Let A be an R_s open set.

Let $F \subseteq A$ and F is ω -closed

∴ X-A is R_s-closed and X-F is ω -open subset such that X-A \subseteq X-F

$$\dot{\cdot} \cdot \alpha cl(X-A) \subseteq Int(cl(X-F))$$

$$(ie)X$$
- $\alpha int(A) \subseteq Int(X-int(F))$

$$\Rightarrow$$
 X- α int(A) \subset X-cl(Int(F))

(ie)
$$cl(Int(F)) \subseteq \alpha int(A)$$

(iii)Let A be R open.

To prove A is R_s open.

Let $K \subseteq A$ and K is ω -closed.

$$\Rightarrow$$
 cl(K) \subset α int(A)

$$(ie) \operatorname{cl}(\operatorname{int}(K)) \subseteq \operatorname{cl}(K) \subseteq \operatorname{\alphaint}(A)$$

$$\Rightarrow$$
 A is R_s-open.

6. R-CONTINUITY AND R_S-CONTINUITY:

Let $f: (X, \tau) \to (Y, \sigma)$ be a function from a topological space (X, τ) into a topological space (Y, σ) .

Definition: 6.1 A function $f: (X, \tau) \to (Y, \sigma)$ is said to be R-Continuous (respectively R_s -Continuous) if $f^1(V)$ is R-closed (respectively R_s -closed) in (X, τ) for every closed set V of (Y, σ) .

Definition: 6.2 A function $f: (X, \tau) \to (Y, \sigma)$ is said to be R-irresolute (respectively R_s irresolute) if $f^{-1}(v)$ is R-closed (respectively R_s -closed)set V of (Y, σ)

Example for R-continuous mapping.

Let
$$x = \{a, b, c\}, \tau = \{X, \emptyset, \{a\}, \{a, b\}\}, \sigma = \{X, \emptyset, \{a\}, \{a, c\}\}\$$

Let
$$f:(X, \tau) \to (X, \sigma)$$
 is defined by $f(a) = a$, $f(b) = c$, $f(c) = b$.

Then 'f' is R-continuous.

Example for R-irresolute mapping.

Let
$$X = \{a, b, c\} \tau = \{X, \emptyset, \{a\}, \{a, b\}, \{a, c\}\}, \sigma = \{X, \emptyset, \{b\}, \{a, b\}, \{b, c\}\}\}$$

Let
$$f:(X, \tau) \to (X, \sigma)$$
 defined by, $f(a) = b$, $f(b) = c$, $f(c) = a$

Then 'f' is R-irresolute.

Remark: 6.3 The composition of two R-continuous functions need not be R-continuous.

Let
$$X = \{a, b, c\}$$
 $\tau = \{X, \emptyset, \{a\}, \{a, b\}, \{a, c\}\}, \sigma = \{X, \emptyset, \{a\}, \{a, b\}\}, \eta = \{x, \emptyset, \{a, b\}\}\}$

Let
$$f: (X, \tau) \to (X, \sigma)$$
 defined by $f(a) = b$, $f(b) = c$, $f(c) = a$.

Let g:
$$(x, \sigma) \rightarrow (x, \eta)$$
 defined by g(a)=b, g(b) = c, g(c) = a.

clearly f and g are R-continuous.

But $(fog)^{-1}(c) = f^{-1}(b) = a$ which is not R-closed.

∴ fog is not R-continuous.

Theorem: 6.4 Let $f:(X, \tau) \to (Y, \sigma)$ and $g:(Y, \sigma) \to (Z, \eta)$ be two functions. Then

- (i) gof is R-continuous if g is continuous and f is R-continuous
- (ii) gof is R-irresolute if g is R-irresolute and f is R-irresolute
- (iii) gof is R-continuous if g is R-continuous and f is R-irresolute

Proof: (i) Let V be closed in(\mathbb{Z} , η)

$$\Rightarrow$$
 g⁻¹(v) is closed in(Y, σ)

$$\Rightarrow$$
 f⁻¹(g⁻¹(v)=(gof)⁻¹(v) is R-closed in(X, τ)

(ii)Let v be R-closed in (Z, η)

$$\Rightarrow$$
 g⁻¹(v) is R-closed in (Y, σ)

¹P. Krishna* & ²J. Antony Rex Rodrigo/ R-closed sets in Topological spaces / IJMA- 2(11), Nov.-2011, Page: 2166-2176

$$\Rightarrow$$
 f⁻¹(g⁻¹(v))=(gof)⁻¹(v) is R-closed in (X, τ)

(iii)Let V be closed in (Z, η)

Since g is R-continuous, $g^{-1}(v)$ is R-closed in (Y, σ)

$$\Rightarrow$$
 f⁻¹(g⁻¹(v))=(gof)⁻¹(v) is R-closed in (X, τ)

Definition: 6.5 A space x is called an $\alpha\omega$ space if the intersection of α closed set with a ω -closed set is ω -closed.

Theorem: 6.6 For a subset A of an $\alpha\omega$ -space (X, τ) the following are equivalent.

- (1) A is R-closed
- (2) $cl\{x\} \cap A \neq \emptyset$ for each $x \notin acl(A)$
- (3) α cl(A)-A contains no non \emptyset ω -closed set.

Proof: (1) Let A be R-closed.

Let
$$x \in \alpha cl(A)$$
. If $cl\{x\} \cap A = \emptyset$ then $A \subseteq X - cl\{x\}$, $X - cl\{x\}$ is open and hence $X - cl\{x\}$ is ω -open

Let $U=X-cl\{x\}$

(ie)
$$A \subseteq U$$
, U is ω open $\Rightarrow \alpha cl(A) \subseteq Int(U)$

(ie)
$$\alpha cl(A) \subseteq Int(X-cl\{x\}) = X-cl(cl\{x\}) = X-cl\{x\}$$

(ie)
$$\alpha \operatorname{cl}(A) \subseteq X \operatorname{-cl}\{x\}$$

Since $x \in \alpha cl(A), x \in X - cl\{x\}$ which is not possible

$$::$$
cl $\{x\} \cap A \neq \emptyset$

(2) If $cl\{x\} \cap A \neq \emptyset$ for $x \in \alpha cl(A)$, to prove $\alpha cl(A)$ -A contains no non \emptyset ω -closed set.

Let us assume $\alpha cl(A)$ -A contains no non \emptyset ω -closed set.

Let $K \subseteq \alpha cl(A)$ -A is a non \emptyset ω -closed set

Then $K \subseteq \alpha cl(A)$ and $A \subseteq X-K$

Let $x \in K$ then $x \in \alpha cl(A)$ then by (ii), $cl\{x\} \cap A \neq \emptyset$

$$cl\{x\} \cap A \subseteq K \cap A \subseteq (\alpha cl(A) - A) \cap A$$

Which is a $\Rightarrow \Leftarrow$

Hence $\alpha cl(A)$ -Acontains no non \emptyset ω -closed sets.

(3) If $\alpha cl(A)$ -A contains no non \emptyset ω -closed set.

Le $A \subseteq U$, Uis ω -open.

If
$$\alpha cl(A) \nsubseteq Int(U)$$
 then $\alpha cl(A) \cap (int(U))^c = \emptyset$

Since the space is a $\alpha\omega$ space,

$$\alpha cl(A) \cap (int(U))^c$$
 is a non \emptyset ω -closed subset of $\alpha cl(A)$ -Awhich is a $\Rightarrow \Leftarrow$

∴ A is R-closed

[∴]gof is R-continuous.

REFERENCES:

- [1] Andrijevic, D., Semi pre open sets, Mat. Vesnik, 38(1), (1986)24-32.
- [2] Balachandran, K., Sundaram , P. and Maki, H., On generalized continuous maps in topological spaces, Mem Fac. Sci. Kochi Univ. ser. A. Math 12(1991) 5-13.
- [3] Dontchev, J., On generalizing Semi pre open sets, Mem. Fac. Sci. Kochi Univ (Math), 16(1995), 35-48, 70(1963)36-41.
- [4] Gnanambal, Y., Generalized Pre-regular closed sets in topological spaces, Indian J. Pure ppl.Maths., 28(3)(1997), 351-360.
- [5] Levine, N., Generalized closed sets in topology, Rend. circl, Mat. Palermo (3)19(1970), 89-96.
- [6] Levine, N., Semi open sets and semi continuity in topological spaces, Amer. Math. Monthly. 70(1963)36-41.
- [7] Maki, H., Devi, R., Balachandran, K., Associated topologies of generalized closed sets, Mem. Fac. sci. Kochi Univ (Math) 15 (1994),51-63.
- [8] Maki, H., Umehara, Noiri, Every topological space is pre $T_{\frac{1}{2}}$ Mem. Fac. sci. Kochi Univ (Math) 17(1996), 33-42.
- [9] Mashhour, Abd-El-Monsef, Deep E.L., On pre continuous and weak pre continuous mappings, Pro. Math and Phys.soc. Egypt, 53(1982), 47-53.
- [10] Njasted, J., On some classes of nearly open sets, Pacific. J. Math, 15(1965), 961-970.
- [11] Noiri, T., Maki, H., Umehara, J., Mem. Fac. sci. Kohci Univ (math), 19(1998), 13-20.
- [12] Sheik John, M., Ph. D Thesis Bharathiar University sep 2002.
- [13] Veerakumar, M. K. R. S., µP-closed sets in topological spaces. Antartica J. Math 2(1) (2005) 31-52.
