On ρ -regular and ρ -normal spaces

C. Devamanoharan*

Post Graduate and Research Department of Mathematics
V. O. Chidambaram College Tuticorin-628 008, TamilNadu, India
E-mail: kanchidev@gmail.com

S. Pious Missier

Post Graduate and Research Department of Mathematics V. O. Chidambaram College Tuticorin-628 008, TamilNadu, India. E-mail: spmissier@yahoo.com

(Received on: 17-10-11; Accepted on: 01-11-11)

,,

ABSTRACT

The concept of ρ -closed sets was introduced by jafari et al. The aim of this paper is to consider and characterize ρ -regular spaces and ρ -normal spaces via the concept of ρ -closed sets.

2000 AMS Classification: 54D10, 54D15, 54D08, 54C10.

Key words: ρ -closed set, ρ -open set, ρ -regular space, ρ -normal space, ρ -irresolute function.

1. INTRODUCTION AND PRELIMINARIES:

As a generalization of closed sets, ρ -closed sets were introduced and studied by jafari et al [4]. In this paper, we introduce ρ -regular spaces and ρ -normal spaces in topological spaces. We obtain several characterizations of ρ -regular and ρ -normal spaces and some preservation theorems for ρ -regular and ρ -normal spaces.

Throughout this paper (X, τ) and (Y, σ) represent topological spaces on which no separation axioms are assumed unless otherwise mentioned. For a subset A of a space (X,τ) , cl(A), int(A), and A^c denote the closure of A, the interior of A and the complement of A in X, respectively.

We recall the following definitions, which are useful in the sequel.

Definition: 1.1. Let (X, τ) be a topological space. A subset A of a space (X, τ) is called:

1. preopen [7] if $A \subseteq int(cl(A))$ and preclosed if $cl(int(A)) \subseteq A$.

Recall that the intersection of all preclosed sets containing A is called the preclosure of A and is denoted by pcl(A).

Definition: 1.2. Let (X, τ) be a topological space. A subset A of a space (X, τ) is called:

- 1. \hat{g} -closed [18] if $cl(A)\subseteq U$ whenever $A\subseteq U$ and U is semi open in X.
- 2. *g-closed [16] if cl(A)⊆U whenever A⊆U and U is ĝ-open in X.
- 3. #g-semi closed (briefly $\#g_s$ -closed) [17] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is #g-open in X.
- 4. \tilde{g} -closed set [3] if $cl(A)\subseteq U$ whenever $A\subseteq U$ and U is $\#g_s$ -open in X.
- 5. ρ -closed set [4] if $pcl(A)\subseteq Int(U)$ whenever $A\subseteq U$ and U is \tilde{g} -open in (X, τ) .

The complements of the above mentioned sets are called their respective open set.

Recall that the intersection of all ρ -closed sets containing A is called the ρ -closure of A and is denoted by $\rho cl(A)$.

Definition: 1.3 A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is called:

- 1. pre-continuous [7] if $f^{-1}(V)$ is preclosed in (X, τ) for every closed set V in (Y, σ) .
- 2. preirresolute [13] if $f^{-1}(V)$ is preclosed in (X, τ) for every preclosed set V in (Y, σ) .
- 3. \tilde{g} -irresolute [15] if $f^{-1}(V)$ is \tilde{g} -closed in (X, τ) for every \tilde{g} -closed set V in (Y, σ) .
- 4. M-Preopen [7] if f(V) is Preopen in (Y, σ) for every preopen set V in (X, τ) .
- 5. ρ -irresolute [4] if $f^{-1}(V)$ is ρ -closed in (X, τ) for every ρ -closed set V in (Y, σ) .
- 6. ρ -closed [12] if f(V) is ρ -closed in (Y, σ) for every closed set in (Y, σ) .
- 7. preclosed [7] if f(V) is preclosed in (Y, σ) for every closed set V in (X, τ) .
- 8. \tilde{g} *- open [2] if f (V) is \tilde{g} -open in (Y, σ) for every \tilde{g} -open set V in (X, τ).
- 9. weakly continuous [6] if for each point $x \in X$ and each open set $V \subseteq Y$ containing f(x), there exists an open set $U \subseteq X$ containing x such that $f(U) \subseteq cl(V)$.

Definition: 1.4. A space (X, τ) is called:

- 1. a ρ -T_{1/2} space [5] if every ρ -closed set is preclosed.
- 2. a ρ -T_s space [5] if every ρ -closed set is closed.

Definition: 1.5 [5] Let x be a point of (X, τ) and V be a subset of X. Then V is called a ρ -neighbourhood of x in (X, τ) if there exists a ρ -open set U of (X, τ) such that $x \in U \subseteq V$.

Lemma: 1.6

(i) [7] Let A and Y be subsets of a space X. If A is preopen in X and Y is open in X, then A ∩Y is preopen in Y.
(ii) [10] If A is ρ-closed in (X,τ) then A = ρ-cl(A).

Definition: 1.7

- (i) [5] A topological space (X,τ) is ρ -compact if every ρ -open cover of X has a finite subcover.
- (ii) [4] A point x of X is called a pre- θ -cluster point of S if pcl(U) \cap A $\neq \varphi$ for every preopen set U of x. The set of all pre- θ -cluster points of S is called the pre θ -closure of S and is denoted by pcl $_{\theta}$ (S).

Theorem: 1.8 [4] Suppose that $B \subseteq A \subseteq X$, B is a ρ -closed set relative to A and that A is open and ρ -closed in (X, τ) . Then B is ρ -closed in (X, τ) .

Definition: 1.9

- (i) [9] A space (X, τ) is called locally indiscrete space if every open subset of X is closed.
- (ii) [1] A space (X, τ) is called Submaximal space if every dense subset of X is open, or, equivalently, if every preopen subset is open.
- (iii) [19] A space (X, τ) is called extremally disconnected space if the closure of every open subset of X is open.
- (iv) [8] A space (X, τ) is called strongly compact space if every preopen cover of X has a finite subcover.
- (v) [12] A space (X, τ) is called ρ -hausdorff space if for each pair x, y of distinct points of X, there exists ρ -neighbourhoods U_1 and U_2 of x and y, respectively, that are disjoint.
- (vi) [10] A space (X,τ) is called prenormal if for any pair of disjoint closed sets A, B of X, there exist disjoint preopen sets U,V such that $A\subseteq U$ and $B\subseteq V$.

Recall that a topological space (X, τ) is, 1. Compact if every open cover for X has a finite subcover. 2. Hausdorff space if for each pair of distinct points x and y in X there exist an open neighbourhood U of x and an open neighbourhood V of y such that $U \cap V = \varphi$. 3. Regular space if for each point $x \in X$ and for each closed set F in X not containing x, there exist an open neighbourhood U of x and an open neighbourhood V of F such that $U \cap V = \varphi$. 4. Normal space if for each pair of disjoint closed subsets F_1 and F_2 in X, there exist an open neighbourhood U_1 of F_1 and an open neighbourhood U_2 of F_2 such that $U_1 \cap U_2 = \varphi$. 5. The map $f: (X, \tau) \to (Y, \sigma)$ is open if f(V) is open in (Y, σ) for every open set V in (X, τ) .

Theorem: 1.10

- (i) Let X be a hausdorff space and F be a compact subset of X. Then for each x in X-F, There exists disjoint open sets of F and x.
- (ii) If F_1 and F_2 are disjoint compact subsets of a Hausdorff space X, then there are disjoint open sets of F_1 and F_2 . (iii)[5] Every ρ -closed subset of a ρ -compact space is ρ -compact.

2. ρ-regular and ρ-normal spaces:

We introduce the following definition.

Definition: 2.1 A space (X, τ) is said to be ρ -regular if for every ρ -closed set F and each point $x \notin F$, there exists disjoint preopen sets U and V such that $F \subseteq U$ and $x \in V$.

Theorem: 2.2 If (X, τ) is an ρ -regular space and Y is open and ρ -closed subset of (X, τ) , then the subspace Y is ρ -regular.

Proof: Let F be any ρ -closed subset of Y and $y \in F^c$. By Theorem 1.8, F is ρ -closed in (X, τ) . Since (X, τ) is ρ -regular, there exist disjoint preopen sets U and V of (X, τ) such that $y \in U$ and $F \subseteq V$. By lemma 1.6(i), we get $U \cap Y$ and $V \cap Y$ are disjoint preopen sets of the subspace Y such that $y \in U \cap Y$ and $F \subseteq V \cap Y$. Hence the subspace Y is ρ -regular.

Theorem: 2.3 Let (X, τ) be a topological space. Then the following statements are equivalent:

- 1. (X, τ) is ρ -regular.
- 2. For each point *x*∈X and for each ρ-open neighbourhood W of *x*, there exists a preopen set V of *x* such that pcl(V)⊆W.
- 3. For each point $x \in X$ and for each ρ -closed set F not containing x, there exists a preopen set V of x such that $pcl(V) \cap F = \varphi$.

Proof: $(1) \rightarrow (2)$

Let W be any p-open neighbourhood of x. Then there exists an p-open set G such that $x \in G \subseteq W$. Since G^c is p-closed and $x \notin G^c$, by hypothesis there exist preopen sets U and V such that $G^c \subseteq U$, $x \in V$ and $U \cap V = \varphi$ and so $V \subseteq U^c$. Now, $pcl(V) \subseteq pcl(U^c) = U^c$ and $G^c \subseteq U$ implies $U^c \subseteq G \subseteq W$. Therefore $pcl(V) \subseteq W$.

$$(2) \rightarrow (1)$$

Let F be any ρ -closed set and $x \notin F$. Then $x \in F^c$ and F^c is ρ -open and so F^c is an ρ -open neighbourhood of x. By hypothesis, there exists a preopen set V of x such that $x \in V$ and $pcl(V) \subseteq F^c$, which implies $F \subseteq (pcl(V))^c$. Then $(pcl(V))^c$ is a preopen set containing F and $V \cap (pcl(V))^c = \varphi$. Therefore, X is ρ -regular.

$$(2) \rightarrow (3)$$

Let $x \in X$ and F be an ρ -closed set such that $x \notin F$. Then F^c is an ρ -open neighbourhood of x and by hypothesis, there exists a preopen set V of x such that $pcl(V) \subseteq F^c$ and hence $pcl(V) \cap F = \varphi$.

$$(3) \rightarrow (2)$$

Let $x \in X$ and W be an ρ -open neighbourhood of x. Then there exists an ρ -open set G such that $x \in G \subseteq W$. Since G c is ρ -closed and $x \notin G^c$, by hypothesis there exists a preopen set V of x such that $pcl(V) \cap G^c = \varphi$. Therefore, $pcl(V) \subseteq G \subseteq W$.

Theorem: 2.4 Assume that $\rho c(X, \tau)$ (the set of all ρ -closed sets of (X, τ)) be closed under any intersection. Then the following are equivalent:

- 1. (X, τ) is ρ -regular.
- 2. $pcl_{\theta}(A) = pcl(A)$ for every subset A of (X, τ) .
- 3. $pcl_{\theta}(A) = A$ for every ρ -closed set A.

Proof: $(1) \rightarrow (2)$

For any subset A of (X, τ) , we always have $A \subseteq pcl(A) \subseteq pcl_{\theta}(A)$. Let $x \in (pcl(A))^c$. Then there exists a p-closed set F such that $x \in F^c$ and $A \subseteq F$. By assumption, there exists disjoint preopen sets U and V such that $x \in U$ and $F \subseteq V$. Now, $x \in U \subseteq pcl(U) \subseteq F^c \subseteq A^c$ and therefore $pcl(U) \cap A = \varphi$. Thus, $x \in (pcl_{\theta}(A))^c$ and hence $pcl_{\theta}(A) = pcl(A)$.

$$(2) \rightarrow (3)$$

It is trivial follows by Lemma 1.6(ii) and by assumption.

$$(3) \rightarrow (1)$$

Let F be any ρ -closed set and $x \in F^c$. Since F is ρ -closed, by assumption $x \in (pcl_{\theta}(F))^c$ and so there exists an preopen set U such that $x \in U$ and $pcl(U) \cap F = \varphi$. Then $F \subseteq (pcl(U))^c$. Let $V = (pcl(U))^c$. Then V is a preopen such that $F \subseteq V$. Also the sets U and V are disjoint and hence (X, τ) are ρ -regular.

Theorem: 2.5 *If f*: $(X, \tau) \rightarrow (Y, \sigma)$ *is bijective,* \tilde{g} *-open and preirresolute, then f is ρ -irresolute.

Proof: Let A be any ρ -closed set in (Y, σ) . Let U be any \tilde{g} -open in (X, τ) such that $f^{-1}(A) \subseteq U$. Then $A \subseteq f(U)$.

Since f is \tilde{g} *-open and A is ρ -closed in (Y, σ) , $pcl(A) \subseteq int(f(U))$.

Since f is bijective and preirresolute, $f^{-1}(pcl(A)) \subseteq f^{-1}(int(f(U))) \subseteq int(U)$ and $f^{-1}(pcl(A))$ is a preclosed set in (X, τ) . Now, $pcl(f^{-1}(A)) \subseteq pcl(f^{-1}(pcl(A))) = f^{-1}(pcl(A)) \subseteq int(U)$.

Therfore, $f^{-1}(A)$ is ρ -closed in (X,τ) and hence f is ρ -irresolute.

Theorem: 2.6 If (X, τ) is a ρ -regular space and $f:(X, \tau) \to (Y, \sigma)$ is bijective, \tilde{g} *-open, preirresolute and M-preopen then (Y, σ) is ρ -regular.

Proof: Let F be any ρ -closed subset of (Y, σ) and $y \notin F$. Since by Theorem 2.5, the map f is ρ -irresolute, thus we have $f^{-1}(F)$ is ρ -closed in (X,τ) . Since f is bijective, let f(x) = y, then $x \notin f^{-1}(F)$. By hypothesis, there exists disjoint preopen sets U and V such that $x \in U$ and $f^{-1}(F) \subseteq V$. Since f is M-preopen and bijective, we have $y \in f(U)$, $F \subseteq f(V)$ and $f(U) \cap f(V) = \varphi$. This shows that the space (Y, σ) is also ρ -regular.

Theorem: 2.7

- (i)[9] If $f: (X, \tau) \to (Y, \sigma)$ is \tilde{g} -irresolute, open, preclosed and A is a ρ -closed subset of (X, τ) then f(A) is ρ -closed in (Y, σ) .
- (ii) If $f: (X, \tau) \to (Y, \sigma)$ is \tilde{g} -irresolute, open, preclosed, preirresolute injecton and (Y, σ) is ρ -regular, then (X, τ) is ρ -regular.

Proof: Let F be any ρ -closed set of (X, τ) and $x \notin F$. Since f is \tilde{g} -irresolute, open, preclosed, by (i), f (F) is ρ -closed in (Y, σ) and $f(x) \notin f(F)$. Since (Y, σ) is ρ -regular and so there exists disjoint preopen sets U and V in (Y, σ) such that $f(x) \in U$ and $f(F) \subseteq V$. By hypothesis, $f^{-1}(U)$ and $f^{-1}(V)$ are preopen sets of (X, τ) such that $x \in f^{-1}(U)$ and $f \subseteq f^{-1}(V)$ and $f^{-1}(U) \cap f^{-1}(V) = \varphi$. Therefore, (X, τ) is ρ -regular.

Lemma: 2.8 If Y is a ρ -compact subspace of the ρ - $T_{1/2}$ ρ -hausdorff space X and x_0 is not in Y, then there exists disjoint preopen sets U and V of X containing x_0 and Y respectively. Assume that ρ o(X) (the set of all ρ -open sets of (X, τ)) be closed under any union and ρ o(X) be also closed under finite intersection.

Proof: Since X is ρ -hausdorff and $x_0 \notin Y$, for each $x \in Y$ there exists disjoint ρ -open sets U_x and V_x such that $x_0 \in U_x$ and $x \in V_x$. The collection $\{V_x \mid x \in Y\}$ is evidently an ρ -open cover of Y. Since Y is ρ -compact subspace of X, there exists finitely many points $x_1, x_2, ..., x_n$ of Y such that $Y \subset U$ $\{V_{xi} : i = 1, 2, ..., n\}$. Let $U = \bigcap \{U_{xi} : i = 1, 2, ..., n\}$ and $V = \bigcup \{V_{xi} : i = 1, 2, ..., n\}$. Then, by assumption U and V are disjoint ρ -open sets of X such that $x_0 \in U$ and $Y \subset V$. Since X is ρ -T_{1/2}, then the sets U and V are disjoint preopen sets of X containing x_0 and Y respectively.

Theorem: 2.9 Every ρ -compact ρ - $T_{1/2}$ ρ -hausdorff space is regular.

Proof: Let X be a ρ -compact ρ -T_{1/2} ρ -hausdorff space. Let x be a point of X and B be a ρ -closed set in X not containing x, then by Theorem 1.12(iii), B is ρ -compact. Thus B is a ρ -compact subspace of the ρ -T_{1/2} ρ -hausdorff space X. Let us assume that the set of all ρ -open sets be closed under any union and be also closed under finite intersection. Then, by Lemma 2.8, there exists disjoint preopen sets about x and B respectively. Hence X is regular.

Theorem: 2.10 *Let* (X, τ) *be a* ρ - T_s *locally indiscrete space. Then the following are equivalent:* 1. (X, τ) is regular.

- 2. For every closed set A and each $x \in X$ -A, there exist disjoint ρ -open sets U and V such that $x \in U$ and A $\subseteq V$.
- **Proof:** (1) \rightarrow (2) Let (X, τ) be a locally indiscrete space. Let A be a closed set and x be a point of X-A. Then by hypothesis, there exist disjoint open sets (and hence preopen sets) U and V such that $x \in U$ and $A \subseteq V$. Since the space (X, τ) is locally indiscrete space, then U and V are closed sets. Hence U and V are ρ -open sets. Therefore, for every closed set A and each $x \in X$ -A, there exist disjoint ρ -open sets U and V such that $x \in U$ and $A \subseteq V$.
- (2) \rightarrow (1) Let (X, τ) be a ρ - T_s space. Let the point x and the closed set A not containing x be given. Then by hypothesis, there exist disjoint ρ -open sets U and V such that $x \in U$ and $A \subseteq V$. Since the space is ρ - T_s , then there exist disjoint open sets U and V such that $x \in U$ and $A \subseteq V$.

Theorem: 2.11 The closure of a compact open subset of a compact hausdorff ρ - T_s space is ρ -regular.

Proof: Let X be a compact hausdorff ρ -T_s space and A be a compact open subset of X. Then A is closed in X because compact subset of a hausdorff space is closed. Hence A is preclosed in X. Also A is open in X. By Theorem 3.1[4], A is ρ -closed in X.

Now to prove $\bar{A} = A$ is ρ -regular. Suppose the point x and the ρ -closed set F of A not containing x are given. By Theorem 1.8, F is ρ -closed in X. Since X is ρ -T_s, then F is closed in X. Hence F is compact in X because closed subset of a compact hausdorff space is compact. By Theorem 1.12[i], there exists disjoint open sets U and V of F and x respectively. Since every open set is preopen, then there exists disjoint preopen sets U and V of F and x respectively.

Therefore, X is ρ-regular.

Theorem: 2.12 Let (X, τ) be a locally indiscrete submaximal space. Then the closure of a strongly compact subset of a ρ -regular space is compact.

Proof: Let (X, τ) be a locally indiscrete ρ -regular space. Let A be a strongly compact subset of X. To prove: \bar{A} is compact. Let ξ be an open covering of \bar{A} . Then for each $x \in A \subseteq \bar{A}$ there exists an open set (and hence preopen set and by the definition 1.11(i), it is ρ -open set) W_x in ξ such that $x \in W_x$. Since X is ρ -regular and by Theorem 2.3, there exist a preopen set V_x of x such that $pcl(V_x) \subseteq W_x$ for each x. Now the family $\{V_x : x \in A\}$ is a preopen covering of A. Since A is strongly compact, then there exist finitely many points $x_1, x_2, ..., x_n$ such that $A \subseteq \bigcup_{i=1}^n V_{xi}$, since X is submaximal and $pcl(V_{xi}) = cl(V_{xi})$ for every open set V_{xi} , $A \subseteq \bigcup_{i=1}^n V_{xi}$

implies $cl(A) \subseteq cl(\bigcup_{i=1}^n V_{xi}) \subseteq \bigcup_{i=1}^n cl(V_{xi}) = \bigcup_{i=1}^n pcl(V_{xi}) \subseteq \bigcup_{i=1}^n W_{xi}$.

This shows that every open covering of \bar{A} is reducible to a finite covering. Therefore, \bar{A} is compact.

We conclude this section with the introduction of ρ -normal space in topological space.

Definition: 2.13 A topological space (X, τ) is said to be ρ -normal if for any pair of disjoint ρ -closed sets A and B, there exist disjoint preopen sets U and V such that $A \subseteq U$ and $B \subseteq V$.

Theorem: 2.14 If (X, τ) is a ρ -normal space and Y is an open and ρ -closed subset of (X, τ) , then the subspace Y is ρ -normal.

Proof: Let A and B be any disjoint ρ -closed sets of Y. By Theorem 1.8, A and B be are ρ -closed in (X, τ) . Since (X, τ) is ρ -normal, there exist disjoint preopen sets U and V of (X, τ) such that $A \subseteq U$ and $B \subseteq V$. By Lemma 1.6(i), $U \cap Y$ and $V \cap Y$ are disjoint preopen sets in Y and also $A \subseteq U \cap Y$ and $A \subseteq V \cap Y$ and so the subspace Y is ρ -normal. In the next theorem we characterize ρ -normal space.

Theorem: 2.15 *Let* (X, τ) *be a topological space. Then the following statements are equivalent:*

- 1. (X, τ) is ρ -normal.
- 2. For each ρ -closed set F and for each ρ -open set U containing F, there exist an preopen set V containing F such that $pcl(V) \subseteq U$.
- 3. For each pair of disjoint ρ -closed sets A and B in (X,τ) , there exists an preopen set U containing A such that $pcl(U) \cap B = \phi$.

Proof: (1) \rightarrow (2): Let F be a ρ -closed set and U be a ρ -open set such that $F \subseteq U$. Then $F \cap U^c = \phi$. By assumption, there exist preopen sets V and W such that $F \subseteq V$, $U^c \subseteq W$ and $V \cap W = \phi$, which implies pcl $(V) \cap W = \phi$. Now, $pcl(V) \cap U^c \subseteq pcl(V) \cap W = \phi$ and so $pcl(V) \subseteq U$.

- (2) \rightarrow (3): Let A and B be disjoint ρ -closed sets of (X, τ) . Since $A \cap B = \phi$, $A \subseteq B^c$ and B^c is ρ -open. By assumption, there exists an preopen set U containing A such that $pcl(U) \subseteq B^c$ and so $pcl(U) \cap B = \phi$.
- (3) \rightarrow (1): Let A and B be any two disjoint ρ -closed sets of (X,τ) . Then by assumption, there exists a preopen set U containing A such that $pcl(U) \cap B = \phi$. Again by assumption, there exists an preopen set V containing B such that $pcl(V) \cap A = \phi$. Also $pcl(U) \cap pcl(V) = \phi$. Thus we have $U \cap V = \phi$.

Theorem: 2.16 *Let* (X, τ) *be a submaximal extremally disconnected space. Then the following are equivalent.*

- 1. (X, τ) is ρ -normal.
- 2. For each pair of disjoint ρ -closed sets A and B in (X, τ) , there exists a preopen set U containing A and V containing B such that $pcl(U) \cap pcl(V) = \varphi$.

Proof: (1) \rightarrow (2) Let A and B be any two disjoint ρ -closed sets of (X,τ) . Then, by Theorem 2.15, there exists a preopen set U containing A such that pcl(U) \cap B = φ . Since pcl(U) is preclosed and since (X,τ) is submaximal and extremally

disconnected, then, pcl(U) = cl(U) and pcl(U) is open and hence by Theorem 3.1 [4], pcl(U) is ρ -closed and so B and pcl(U) are disjoint ρ -closed sets in (X,τ) . Therefore, again by Theorem 2.15, there exists a preopen set V containing B such that $pcl(U) \cap pcl(V) = \varphi$.

(2) → (1) $pcl(U) \cap pcl(V) = \varphi$ implies $U \cap V = \varphi$ and by assumption (X, τ) is φ -normal.

Theorem: 2.17 If (X, τ) is a ρ -normal space and $f: (X, \tau) \to (Y, \sigma)$ is bijective, \tilde{g} *-open, preirresolute and M-preopen then (Y, σ) is ρ -normal.

Proof: Let A and B be any disjoint ρ -closed sets of (Y,σ) . Since by Theorem 2.5, the map f is ρ -irresolute then we have $f^{-1}(A)$ and $f^{-1}(B)$ are disjoint ρ -closed sets of (X,τ) . Since (X,τ) is normal, there exists disjoint preopen sets U and V such that $f^{-1}(A) \subseteq U$ and $f^{-1}(B) \subseteq V$. Since f is M-preopen and bijective, we have $A \subseteq f(U)$, $B \subseteq f(V)$ and $f(U) \cap f(V) = \varphi$. This shows that the space (Y,σ) is also ρ -normal.

Theorem: 2.18 *If f:* $(X, \tau) \rightarrow (Y, \sigma)$ *is* \tilde{g} *-irresolute, open, preclosed, preirresolute injecton and* (Y, σ) *is* ρ -normal, then (X, τ) *is* ρ -normal.

Proof: Let A and B be any disjoint ρ -closed subsets of (X, τ) . Since f is \tilde{g} -irresolute, open, preclosed, by Theorem 2.7 (i), f(A) and f(B) are disjoint ρ -closed sets of (Y, σ) . Since (Y, σ) is ρ -normal and so there exists disjoint preopen sets U and V in (Y, σ) such that $f(A) \subseteq U$ and $f(B) \subseteq V$. By hypothesis, $f^{-1}(U)$ and $f^{-1}(V)$ are preopen sets of (X, τ) such that $A \subseteq f^{-1}(U)$ and $B \subseteq f^{-1}(V)$ and $f^{-1}(U) \cap f^{-1}(V) = \varphi$. Therefore, (X, τ) is ρ -normal.

Theorem: 2.19 *Let* (X, τ) *be a* ρ - T_s *locally indiscrete space. Then the following are equivalent:*

- 1. (X, τ) is normal.
- 2. For every disjoint closed sets A and B, there exist disjoint ρ -open sets U and V such that $A \subseteq U$ and $B \subseteq V$.

Proof: (1) \rightarrow (2) Let (X, τ) be a locally indiscrete space. Let A and B be disjoint closed subsets of (X, τ) . Then by hypothesis, there exist disjoint open sets (and hence preopen sets) U and V such that $A \subseteq U$ and $B \subseteq V$. Since the space (X, τ) is locally indiscrete space, then U and V are closed sets. Hence U and V are ρ -open sets. Therefore, for every disjoint closed sets A and B, there exist disjoint ρ -open sets U and V such that $A \subseteq U$ and $B \subseteq V$.

(2) \rightarrow (1) Let (X, τ) be a ρ - T_s space. Let A and B be disjoint closed subsets of (X, τ) . Then by assumption, there exist disjoint ρ -open sets U and V such that $A \subseteq U$ and $B \subseteq V$. Since U and V are ρ -open sets of X and X is a ρ - T_s space, then U and V are disjoint open sets of X. Therefore, for any pair of disjoint closed sets A and B, there exist disjoint open set U and V such that $A \subseteq U$ and $B \subseteq V$.

Theorem: 2.20 The closure of a compact open subset of a compact Hausdorff ρ - T_s space is ρ -normal.

Proof: Let X be a compact Hausdorff ρ -T_s space and A be a compact open subset of X. Then A is closed in X because compact subset of a Hausdorff space is closed. Hence A is preclosed in X. Also A is open in X. By Theorem 3.1[4], A is ρ -closed in X.

Now to prove $\bar{A}=A$ is ρ -normal. Suppose for any pair of disjoint ρ -closed sets F_1 and F_2 of A are given. By Theorem 1.8, F_1 and F_2 are ρ -closed sets in X. Since X is ρ - T_s , then F_1 and F_2 are closed sets in X. Hence F_1 and F_2 are compact sets in X because closed subset of a compact Hausdorff space is compact. By Theorem 1.12[ii], there exists disjoint open sets U and V of F_1 and F_2 respectively. Since every open set is preopen, then there exists disjoint preopen sets U and V of F_1 and F_2 respectively. Therefore, X is ρ -normal.

Theorem: 2.21 Let (Y, σ) be a submaximal extremally disconnected space. If $f: (X, \tau) \to (Y, \sigma)$ is weakly continuous ρ -closed injection and (Y, σ) is ρ -normal, then (X, τ) is normal.

Proof: Let A and B be any two disjoint closed sets of (X, τ) . Since f is injective and ρ -closed, f(A) and f(B) are disjoint ρ -closed sets of (Y, σ) . Since (Y, σ) is ρ -normal, by Theorem 2.16, there exist preopen sets U and V such that $f(A) \subseteq U$ and $f(B) \subseteq V$ and $pcl(U) \cap pcl(V) = \varphi$. Since the space (Y, σ) is submaximal, then there exist open sets U and V such that $f(A) \subseteq U$ and $f(B) \subseteq V$ and $cl(U) \cap cl(V) = \varphi$. Since f is weakly continuous, it follows that [19, Theorem 1], $A \subseteq f^{-1}(U) \subseteq int(f^{-1}(cl(U)))$, $B \subseteq f^{-1}(V) \subseteq int(f^{-1}(cl(V)))$ and $int(f^{-1}(cl(U))) \cap int(f^{-1}(cl(V))) = \varphi$. Therefore, (X, τ) is normal.

Theorem: 2.22 Let (Y, σ) be a submaximal extremally disconnected space. If $f: (X, \tau) \to (Y, \sigma)$ is preirresolute ρ -closed injection and (Y, σ) is ρ -normal, then (X, τ) is prenormal.

Proof: Let A and B be any two disjoint closed sets of (X, τ) , Since f is injective and ρ -closed, f(A) and f(B) are disjoint ρ -closed sets of (Y, σ) . Since (Y, σ) is ρ -normal, by Theorem 2.16, there exist preopen sets U and V such that

 $f(A) \subseteq U$ and $f(B) \subseteq V$ and $pcl(U) \cap pcl(V) = \varphi$.

Since f is preirresolute, $A \subseteq f^{-1}(U) \subseteq pint(f^{-1}(pcl(U)))$, $B \subseteq f^{-1}(V) \subseteq pint(f^{-1}(pcl(V)))$,

Thus $pint(f^{-1}(pcl(U))) \cap pint(f^{-1}(pcl(V))) = \varphi$.

Therefore, (X, τ) is prenormal.

REFERENCES:

- [1] Bourbaki.N, General topology, Addisen-Wesley Mass, 1966.
- [2] Caldas.M, Jafari.S, Rajesh.N and Thivagar.M.L, On \tilde{g} -Homeomorphisms in topological spaces. Proyecciones, Vol 28.No 1, pp 1-19, May 2009.
- [3] Jafari.S, Noiri.T, Rajesh.N and Thivagar.M.L, Another generalization of closed sets, Kochi J.Math, 3(2008), 25-38.
- [4] Jafari.S, Pious Missier. S and Devamanoharan. C, ρ-closed sets in topological spaces(communicated).
- [5] Jafari. S, Pious Missier. S and Devamanoharan. C, ρ -continuous functions in topological spaces (Communicated).
- [6] Levine. N, A decomposition of continuity in topological spaces, Amer. Math. Monthly, 68(1961), 44-46.
- [7] Mashour. A. S, Abd El-Monsef.M.E and El-Deep. S. N, On precontinuous and weak precontinuous mappings, Proc, Math, Phys.Soc.Egypt. 53(1982), 47-53.
- [8] Mashour. A. S, Abd El-Monsef. M. E, Hasanein. I. A and Noiri. T, Strongly compact spaces, Delta J.Sci., 8 (1984), 30-46.
- [9] Nieminen.T, On ultrapseudocompact and related spaces, Ann. Acad. Sci. Fenn. Ser. A I Math. 3(1977), 185-205.
- [10] Nour. T. M, Contributions to the Theory of Bitopological spaces, Ph. D Thesis, Delhi Univ., 1989.
- [11] Pal. M. C and Bhattacharyya. P, Feeble and strong forms of preirresolute functions, Bull. Malaysian Math. Soc. (2)19 (1996), no.2, 63-75.CMP 1 464 562.zbl 885.54010.
- [12] Pious Missier. S, Devamanoharan. C, Caldas. M and Jafari. S, On ρ -Homeomorphisms in topological spaces (communicated).
- [13] Reilly I.L and Vamanamurthy M. K, On α-continuity in topological spaces, Acta Math. Hungar. 45(1985), 27-32.
- [14] Rajesh. N and Ekici. E, On a decomposition of T_{1/2} -spaces, Math. maced.(to appear).
- [15] Rajesh. N and Ekici. E, On a new form of irresoluteness and weak forms of strong continuity (submitted).
- [16] Veerakumar. M. K. R. S, Between g*-closed and g-closed sets Antarctica J. Maths (to appear).
- [17] Veerakumar, M. K. R. S., #g-semi-closed sets in topological spaces, Antarctica J. Maths 2 (2) (2005) 201-202.
- [18] Veerakumar, M. K. R. S, \hat{g} -closed sets in topological spaces Bull Allahabad. Soc.18(2003), 99-112.
- [19] Willard, Addisen-Wesley, 1970, 106-107.
