ON gπ US SPACES

S. Saranya* and A. Parvathi

Department of Mathematics, Avinashilingam University for Women, Coimbatore - 43, Tamil Nadu, India

E-mail: saranya.subbaiyan@gmail.com, aparvathi.s@gmail.com

(Received on: 13-10-11; Accepted on: 30-10-11)

Abstract

In this paper we introduce and study the notion of $g\pi$ –US spaces, $g\pi$ -convergency, sequentially $g\pi$ -compactness, sequentially $g\pi$ -continuity and sequentially $g\pi$ -sub-continuity by utilizing $g\pi$ -open sets.

Keywords and phrases: topological spaces, $g\pi$ – open sets, $g\pi$ US – spaces, $g\pi$ – convergence, sequentially $G\pi O$ –compactness.

(2000) Mathematics Subject Classification: 54C10, 54D10.

1. Introduction and Preliminaries:

In 1967, A. Wilansky [11] introduced and studied the concept of US -spaces. Levine [8] introduced the concept of generalized closed sets of a topological space. Since the advent of these notions, several research papers with interesting results in different respects came to existence (see, [1], [2], [3], [4], [5], [6], [9]). This paper is devoted to deal with the concepts of g π -US spaces, g π -convergence, sequentially G π O-compactness, sequentially g π -continuity and sequentially g π -sub-continuity.

Throughout the present paper (X, τ) and (Y, σ) (or simply X and Y) denote topological spaces. Let A be a subset of X. We denote the interior and the closure of a set A by Int(A) and Cl(A), respectively. A subset A is said to be regular open (resp. regular closed) if A = int(cl(A)) (resp. A = cl(int(A))). The finite union of regular open sets is said to be π -open. The complement of a π -open set is said to be π -closed. $A \subset X$ is called a generalized closed set (briefly g-closed set) of X [8] if Cl(A) \subset G holds whenever $A \subset G$ and G is open in X. A subset A of X is called a g-open set of X, if its complement A^c is g-closed in X. $A \subset X$ is called a g-open set of X, if its complement A^c is g-closed in X.

A space X is G Ocompact if every g-open cover of X has a finite subcover. A subset A of a space X is said to be GO-compact if A is GO-compact as a subspace of X. The product space of two non-empty spaces is GO-compact, if each factor space is GO compact [1]. If A is g-open in X and B is g-open in Y, then $A \times B$ is g-open in $X \times Y$ [8]. A function $f: X \to Y$ is said to be g-continuous (resp. $g\pi$ continuous) [1] ([10]) if the inverse image of every closed set in Y is g-closed (resp. $g\pi$ -closed) in X.

2. $g\pi$ –US spaces:

Definition: 1 A sequence $\{x_n\}$ in a space X $g\pi$ -converges to a point $x \cup X$ if $\{x_n\}$ is eventually in every $g\pi$ -open set containing x.

Definition: 2 A space X is said to be $g\pi$ -US if every sequence in X $g\pi$ –converges to a point of X.

Definition: 3 A space X is said to be:

- (1) $g\pi$ - T_1 if for each pair of distinct points x and y in X there exist a $g\pi$ -open set U in X such that $x \cup U$ and $y \notin U$ and a $g\pi$ -open set V in X such that $y \in V$ and $x \notin V$.
- (2) $g\pi$ - T_2 if for each pair of distinct points x and y in X there exist $g\pi$ -open sets U and V such that $U \cap V = \emptyset$ and $x \in U$, $y \in V$.

Theorem: 2.1 Every $g\pi$ -US space is $g\pi$ -T₁.

Proof: Let X be a g π -US space and x, y be two distinct points of X. Consider the sequence $\{x_n\}$, where $x_n = x$ for any $n \in \mathbb{N}$. Clearly, $\{x_n\}$ g π converges to x. Since $x \neq y$ and X is g π -US, $\{x_n\}$ does not g π -converge to y, i.e., there exists a g π -open set U containing x but not y. Similarly, we obtain a g π -open set V containing y but not x. Thus, X is g π -T₁.

Theorem: 2.2 Every $g\pi$ - T_2 space is $g\pi$ - US.

Proof: Let X be a $g\pi$ -T₂ space and $\{x_n\}$ a sequence in X. Assume that $\{x_n\}$ $g\pi$ -converges to two distinct points x and y. Then $\{x_n\}$ is eventually in every $g\pi$ -open set containing x and also in every $g\pi$ -open set containing y. Since X is $g\pi$ -T₂ then $\{x_n\}$ is eventually in two disjoint $g\pi$ -open sets. This is a contradiction. Therefore, X is $g\pi$ -US.

Definition: 4 A subset A of a space X is said to be:

- (1) Sequentially g π -closed if every sequence in A g π -converges to a point in A,
- (2) Sequentially $G\pi O$ -compact if every sequence in A has a subsequence which $g\pi$ converges to a point in A.

Theorem: 2.3 A space is $g\pi$ -US if and only if the diagonal set Δ is a sequentially $g\pi$ -closed subset of the product space $X \times X$.

Proof: Suppose that X is a $g\pi$ -US space and $\{(x_n, x_n)\}$ is a sequence in the diagonal Δ . If follows that $\{x_n\}$ is a sequence in X. Since X is $g\pi$ -US, the sequence $\{x_n\}$ $g\pi$ -converges to a unique point, say $x \in X$. This implies that the sequence $\{(x_n, x_n)\}$ $g\pi$ -converges to (x, x) which clearly belongs to Δ . Therefore, Δ is a sequentially $g\pi$ -closed subset of $X \times X$.

Conversely, suppose that the diagonal Δ is a sequentially $g\pi$ -closed subset of $X \times X$. Assume that a sequence $\{x_n\}$ is $g\pi$ -converging to x and y. Then it follows that $\{(x_n, x_n)\}$ $g\pi$ -converges to (x, y). By hypothesis, since Δ is sequentially $g\pi$ -closed, we have $(x, y) \in \Delta$. Thus, x = y. Therefore, X is $g\pi$ -US.

Theorem: 2.4 If a space X is $g\pi$ -US and a subset M of X is sequentially $G\pi$ O compact, then M is sequentially $g\pi$ -closed.

Proof: Assume that $\{x_n\}$ is any sequence in M which $g\pi$ -converges to a point $x \in X$. Since M is sequentially $G\pi$ O-compact, there exists a subsequence $\{x_{nk}\}$ of $\{x_n\}$ such that $\{x_{nk}\}$ $g\pi$ -converges to $m \in M$. Since X is $g\pi$ -US, we have x = m. This shows that M is sequentially $g\pi$ -closed.

Theorem: 2.5 The product space of an arbitrary family of $g\pi$ -US topological spaces is a $g\pi$ -US topological space.

Proof: Let $\{X_{\lambda}: \lambda \in \Delta\}$ be a family of $g\pi$ -US topological spaces with the index set Δ . The product space of $\{X_{\lambda}: \lambda \in \Delta\}$ is denoted by Π X_{λ} . Let $\{x_n(\lambda)\}$ be a sequence in Π X_{λ} . Suppose that $\{x_n(\lambda)\}$ $g\pi$ -converges to two distinct points x and y in Π X_{λ} . Then there exists a $\lambda_0 \in \Delta$ such that $x(\lambda_0) \neq y(\lambda_0)$. Then $\{x_n(\lambda_0)\}$ is a sequence in $X_{\lambda 0}$. Let $V_{\lambda 0}$ be any $g\pi$ -open set in $X_{\lambda 0}$ containing $x(\lambda_0)$. Then $V = V_{\lambda 0} \times \Pi_{\lambda \neq \lambda 0} X_{\lambda}$ is a $g\pi$ -open set of Π X_{λ} containing x. Therefore, $\{x_n(\lambda)\}$ is eventually in V. Thus, $\{x_n(\lambda_0)\}$ is eventually in V λ_0 and it $g\pi$ -converges to $x(\lambda_0)$. Similarly, the sequence $\{x_n(\lambda_0)\}$ $g\pi$ -converges to $y(\lambda_0)$. This is a contradiction as $X_{\lambda 0}$ is a $g\pi$ -US space. Therefore, the product space Π X_{λ} is $g\pi$ -US.

3. Sequentially $G\pi O$ -compact preserving functions:

Definition: 5 A function f: $X \rightarrow Y$ is said to be:

- (1) Sequentially $g\pi$ -continuous at $x \in X$ if the sequence $\{f(x_n)\}\ g\pi$ -converges to f(x) whenever a sequence $\{x_n\}\ g\pi$ -converges to x. If f is sequentially $g\pi$ -continuous at each $x \in X$, then it is said to be sequentially $g\pi$ -continuous.
- (2) Sequentially nearly $g\pi$ -continuous, if for each sequence $\{x_n\}$ in X that $g\pi$ -converges to $x \in X$, there exists subsequence $\{x_n\}$ of $\{x_n\}$ such that the sequence $\{f(x_n)\}$ g π -converges to $\{(x_n)\}$.
- (3) Sequentially sub $g\pi$ -continuous if for each point $x \in X$ and each sequence $\{x_n\}$ in X $g\pi$ -converging to x, there exists a subsequence $\{x_n\}$ of $\{x_n\}$ and a point $y \in Y$ such that the sequence $\{f(x_n)\}$ $g\pi$ -converge to y.
- (4) Sequentially $G\pi O$ -compact preserving if the image f(M) of every sequentially $G\pi O$ -compact set M of X is a sequentially $G\pi O$ -compact subset of Y.

Theorem: 3.1 Let $f_1: X \to Y$ and $f_2: X \to Y$ be two sequentially $g\pi$ - continuous functions. If Y is $g\pi$ -US, then the set $E = \{x \in X: f_1(x) = f_2(x)\}$ is sequentially $g\pi$ -closed.

Proof: Suppose that Y is $g\pi$ -US and $\{x_n\}$ is any sequence in E that f_1 -converges to $x \in X$. Since f_1 and f_2 are sequentially $g\pi$ -continuous functions, the sequence $\{f_1(x_n)\}$ (respectively, $\{f_n(x_n)\}$) converges to $f_1(x)$ respectively, $\{f_2(x_n)\}$. Since $x_n \in E$ for each $n \in N$ and Y is $g\pi$ -US, $f_1(x) = f_2(x)$ and hence $x \in E$. This shows that E is sequentially $g\pi$ -closed.

Lemma: 3.2 Every function f: $X \rightarrow Y$ is sequentially sub-g π -continuous if Y is sequentially $G\pi O$ -compact.

Proof: Let $\{x_n\}$ be a sequence in X that $g\pi$ converges to $x \in X$. It follows that $\{f(x_n)\}$ is a sequence in Y. Since Y is sequentially $G\pi O$ compact, there exists a subsequence $\{(x_{nk})\}$ of $\{f(x_n)\}$ that $g\pi$ -converges to a point $y \in Y$.

Therefore, f: $X \rightarrow Y$ is sequentially sub-g π -continuous.

Theorem 3.3 Every sequentially nearly $g\pi$ -continuous function is sequentially $G\pi$ O-compact preserving.

Proof: Let $f: X \to Y$ be a sequentially nearly $g\pi$ -continuous function and M be any sequentially $G\pi O$ -compact subset of X. We will show that f(M) is a sequentially $G\pi O$ -compact subset of Y. So, assume that $\{y_n\}$ is any sequence in f(M). Then for each $n \in N$, there exists a point $x_n \in M$ such that $f(x_n) = y_n$. Now M is sequentially $G\pi O$ -compact, so there exist a subsequence $\{x_{nk}\}$ of $\{x_n\}$ that $g\pi$ -converges to a point $x \in M$. Since f is sequentially nearly $g\pi$ -continuous, there exists a subsequence $\{x_{nk} (i)\}$ of $\{x_n\}$ such that $\{f(x_{nk} (i))\}$ $g\pi$ -converges to f(x). Therefore, there exists a subsequence $\{y_{nk} (i)\}$ of $\{y_n\}$ that $g\pi$ -converges to f(x). This implies that f(M) is a sequentially $G\pi O$ -compact set of Y.

Theorem: 3.4 Every sequentially $G\pi O$ -compact preserving function is sequentially sub- $g\pi$ -continuous.

Proof: Suppose that $f: X \to Y$ is a sequentially $G\pi O$ -compact preserving function. Let x be any point of X and $\{x_n\}$ a sequence that $g\pi$ converges to x. We denote the set $\{x_n: n \in N\}$ by A and put $M = A \cup \{x\}$. Since $\{x_n\}$ $g\pi$ -converges to x, M is sequentially $G\pi O$ -compact. By hypothesis, f is sequentially $G\pi O$ -compact preserving and hence f(M) is a sequentially $G\pi O$ -compact subset of Y. Now in f(M) there exists a subsequence $\{f(x_{nk})\}$ of $\{f(x_n)\}$ that $g\pi$ -converges to a point $y \in f(M)$. This implies that f sequentially sub- $g\pi$ -continuous.

Theorem 3.5 A function $f: X \to Y$ is sequentially $G\pi O$ -compact preserving if and only if $f|_M: M \to f(M)$ is sequentially sub $g\pi$ -continuous for each sequentially $G\pi O$ -compact set M of X.

Proof: Necessity: suppose that $f: X \to Y$ is a sequentially $G\pi O$ -compact preserving function. Then f(M) is sequentially $G\pi O$ -compact in Y for each sequentially $G\pi O$ -compact subset M of X. Therefore, by Theorem 3.4 $f|_M: M \to f(M)$ is sequentially sub- $g\pi$ -continuous.

Sufficiency: Let M be any sequentially $G\pi O$ -compact set of X. We will show that f(M) is sequentially $G\pi O$ -compact subset of Y. Let $\{y_n\}$ be any sequence in f(M). Then for each $n \in N$, there exists a point $x_n \in M$ such that $f(x_n) = y_n$

Since $\{x_n\}$ is a sequence in the sequentially $G\pi O$ -compact set M there exists a subsequence $\{x_{nk}\}$ of $\{x_n\}$ that $g\pi$ -converges to a point in M. By hypothesis $f|_M$: $M \to f(M)$ is sequentially sub- $g\pi$ -continuous hence there exists a subsequence $\{y_{nk}\}$ of $\{y_n\}$ that $g\pi$ -converges to $y \in f(M)$. This implies that f(M) is sequentially $G\pi O$ -compact in Y.

Corollary: 3.6 If a function $f: X \to Y$ is sequentially sub-g π -continuous and f(M) is sequentially $g\pi$ -closed in Y for each sequentially $G\pi$ O-compact set M of X, then f is sequentially $G\pi$ O-compact preserving.

Proof: It will suffice to show that is sequentially sub-g π -continuous for each sequentially G π O-compact set M of X, and by Lemma 3.2 we are done. So, let $\{x_n\}$ be any sequence in M that g π -converges to a point $x \in M$. Then, since f is sequentially sub-g π -continuous there exists a subsequence $\{x_n\}$ of $\{x_n\}$ and a point $y \in Y$ such that $\{f(x_{nk})\}$ g π converges to y.

Since $\{f(x_{nk})\}\$ is a sequence in the sequentially $g\pi$ -closed set f(M) of Y, we obtain $y \in f(K)$. This implies that $f|_M: M \to f(M)$ is sequentially sub- $g\pi$ -continuous.

REFERENCES:

[1] K. Balachandran, P. Sundaram and H. Maki, On generalized continuous maps in topological spaces, Mem. Fac. Sci. Kochi Univ (Math.), 12 (1991), 5-13.

S. Saranya* and A. Parvathi / ON $g\pi$ US SPACES/ IJMA- 2(11), Nov.-2011, Page: 2247-2250

- [2] M. Caldas, On g-closed sets and g-continuous mappings, Kyungpook Math. J., 33(1993), 205-209.
- [3] M. Caldas, Further results on generalized open mappings in topological spaces, Bull. Cal. Math. Soc. 88(1996), 37-42.
- [4] W. Dunham and N. Levine, Further results on generalized closed sets in topology, Kyungpook Math. J., 20(1980), 169-175.
- [5] W. Dunham, 1/2 T-spaces, Kyungpook Math. J., 17(1977), 161-169.
- [6] W. Dunham, A new closure operator for non- 1 T topologies, Kyungpook Math. J., 22(1982), 55-60.
- [7] J. Dontchev and T. Noiri. Quasi-normal spaces and gπ-closed sets, Acta Math Hungar., 89 (2000) 211-219.
- [8] N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo (2), 19(1970), 89-96.
- [9] S. R. Malghan, Generalized closed sets maps, J. Karnatak Univ. Sci., 27(1982), 82-88.
- [10] S. Saranya, A.Parvathi, $G\pi$ -closed sets in topological spaces (Submitted).
- [11] A. Wilanski, Between 1 T and 2 T, Amer. Math. Monthly Vol. (1967), 261-266.
