ANNIHILATOR INJECTIVE MODULES

Himanshu Ranjan*, B. M. Pandeya and A. J. Gupta

Department of Applied Mathematics, Institute of Technology, Banaras Hindu University, Varanasi-221005 (India)

E-mail: hranjan.rs.apm@itbhu.ac.in

(Received on: 18-10-11; Accepted on: 03-11-11)

ABSTRACT

Annihilator Injective Module is a generalization of Injective Modules, in this paper we give several properties of Annihilator Injective Modules and discus the question when Annihilator Injective is Injective Module.

Key words: Simple Module, Semi simple, Injective Module, Annihilator injective Modules, $l_M(R)$ and $r_R(X)$.

(2000)AMS Mathematics subject classification: 16D50, 16D60, 16D80

INTRODUCTION:

Throughout this paper R represent an associative ring with identity $1 \neq 0$ and all modules are unitary R-module we write M_R (res, $_RM$) to indicate that M is a right (res, left) R-module, we also write J, Z_r, S_r for the Jacobson radical, the right singular ideal and the right socal respectively of R and $E(M_R)$ the injective hull of M_R , If X is a subset of M then the right annihilator of X in R denoted by $r_R(X)$ and if A is subset of R then the set $l_M(A)$ is called left annihilator of A, If N is a submodule of M (res, proper submodule) we denoted by $N \leq M$ (res, $N \prec M$) moreover we write $N \leq^e M, N \ll M, N \leq^{\oplus} M$, and $N \leq^{\max} M$ to indicate that N is an essential

submodule, a small submodule, a direct summand and a maximal submodule of M respectively, A module M is called uniform if $M \neq 0$ and every non zero submodule of M is essential in M, Let M and N be R-Modules N is called M-Injective Module if for every submodule A of M and the inclusion map $i: A \rightarrow M$ any homomorphism $\alpha: A \rightarrow N$ can be extended to a homomorphism $\beta: M \rightarrow N$ such that the diagram is commutative.

1. PRELIMINARIES:

Definition: 1.1 Let M be an R-Module and $X \subseteq M$ then set $r_R(X) = \{r \in R : xr = 0 \forall x \in X\}$ is called the right annihilator of X in R.

Definition: 1.2 For each $A \subseteq R$ the set $l_M(A) = \{m \in M : ma = 0 \forall a \in A\}$ called left annihilator of A in M, for a singleton set $\{x\}$ and $\{a\}$ we denote the annihilator as $r_{R}(x)$ and $l_{M}(a)$ respectively.

Proposition: 1.3 Let M be an R-Module and $X \subseteq M$ and $A \subseteq R$ then,

- 1. $r_R(X)$ is a right ideal of R
- 2. $l_M(A)$ is a submodule of M

Definition: 1.4 R modules N are called injective if it is M injective for every R-Module.

Definition: 1.5 R modules N is called quasi injective if N is N injective.

Definition: 1.6 M and N be R - modules, then N is called M **Annihilator Injective Module** if the inclusion map $i: l_M(R) \to M$ and any homomorphism $\alpha: l_M(R) \to N$ can be extended to a homomorphism $\beta: M \to N$ such that the diagram is commutative i.e. $\alpha = \beta i$.

Definition: 1.7 N is called **Annihilator Injective Module** if for all R-Module M the inclusion map $i: l_M(R) \to M$ and any homomorphism $\alpha: l_M(R) \to N$ can be extended to a homomorphism $\beta: M \to N$ such that the diagram is commutative i.e. $\alpha = \beta i$.

1. ANNIHILATOR INJECTIVE MODULS:

Proposition: 2.1 Let N and N' be R - Modules if $N \cong N'$ and N is Annihilator Injective then N' is also Annihilator Injective.

Proof: Since N is annihilator Injective then for any R - module M $i:l_M(R) \to M$ be an injective map and $\alpha:l_M(R) \to N$ be a homomorphism then there exist a homomorphism $\beta: M \to N$ the map is commute i.e $\alpha = \beta i$, let $f: N \to N'$ be an isomorphism now define a homomorphism $\alpha':l_M(R) \to N'$ and $\beta': M \to N'$ where $\alpha' = f \alpha$ and $\beta' = f \beta$ then $\alpha' = f \alpha = f \beta i = \beta' i$ therefore N' is annihilator injective module.

Proposition: 2.2 If $N_1 \oplus N_2$ is Annihilator Injective module then N_1 and N_2 is relatively Annihilator Injective Modules.

Proof: Let $N_1 \oplus N_2$ be Annihilator Injective Module then we have to show that N_1 is N_2 Annihilator Injective Modue,

Let $i: l_{N_2}(R) \to N_2$ be the inclusion map and $\alpha: l_{N_2}(R) \to N_1 \oplus N_2$ be a homomorphism where $\alpha(n) = (\alpha'(n), n)$ so α is monomorphism since $N_1 \oplus N_2$ is Annihilator Injective Module then there exist a homomorphism $\beta: N_2 \to N_1 \oplus N_2$ such that $\alpha = \beta i$, Let π_1 be natural projection from $\pi_1: N_1 \oplus N_2 \to N_1$ and let $\beta': N_2 \to N_1$ be a homomorphism where $\beta' = \pi_1 \beta$ now define a homomorphism $\alpha': l_{N_2}(R) \to N_1$ where $\alpha' = \pi_1 \alpha = \pi_1 \beta i = \beta' i$ therefore N_1 is N_2 Annihilator Injective Modules similarly we can show that N_2 is N_1 Annihilator Injective Module.

Proposition: 2.3 Let $\{N_{\lambda}\}_{\lambda \in \wedge}$ be a family of Annihilator Injective modules, then $\prod_{\lambda \in \wedge} N_{\lambda}$ is Annihilator Injective Module if and only if each N_{λ} is Annihilator Injective Modules.

Proof: Let *M* be an *R*-Module and put $N = \prod_{\lambda \in \wedge} N_{\lambda}$ Let $\phi_{\lambda} : N_{\lambda} \to N$ and $\pi_{\lambda} : N \to N_{\lambda}$ be injection and projection respectively.

Let each N_{λ} be M Annihilator Injective Module, let $\alpha : l_{M}(R) \to N$ be a homomorphism and $i : l_{M}(R) \to M$ be an injection map then for each λ there exist $\beta_{\lambda} : M \to N_{\lambda}$ such that the diagram is commutative, therefore $\pi_{\lambda} \alpha = \beta_{\lambda} i$ now define $\beta : M \to N$ where $\beta(m) = \{\beta_{\lambda}(m)\}_{\lambda \in \Lambda} (m \in M)$ then β is an R-homomorphism and if $x \in l_{M}(R)$ then $\beta i(x) = \{\beta_{\lambda} i(x)\} = \{\pi_{\lambda} \alpha(x)\} = \alpha(x)$ which shows that N is Annihilator Injective.

Conversely:

Suppose that N is Annihilator Injective Module.

Consider $i: l_M(R) \to M$ and $\gamma: l_M(R) \to N$ be a homomorphism since N is Annihilator Injective then for any Hom $(l_M(R), N)$ there exist a homomorphism $\mu: M \to N$ and the map commute i.e $\mu i = \phi_{\lambda} \gamma$ now define a map

 $\mu': M \to N_{\lambda}$ where $\mu'(m) = \pi_{\lambda}\mu(m)$ then μ' is an R homomorphism and if $a \in l_M(R)$ then $\mu'i(a) = \pi_{\lambda}\mu i(a) = \pi_{\lambda}\phi_{\lambda}\gamma(a) = \gamma(a)$ this shows that each N_{λ} is Annihilator Injective Module.

Proposition: 2.4 let N_{λ} be a family of *R* -modules.

- 1. If $\bigoplus N_{\lambda}$ is Annihilator Injective then each N_{λ} is Annihilator Injective.
- 2. If the Index set \wedge is finite and each N_{λ} is Annihilator Injective then $\bigoplus_{\lambda \in \wedge} N_{\lambda}$ is Annihilator Injective.

Proof: Proof is similar for the proposition (2.3).

Note: 2.5 Every Injective Modules is Annihilator Injective Modules but converse is nee not true.

Example: 2.6 Z(Z) is Annihilator Injective Module but it is not Injective Module.

Proposition: 2.7 If N is Annihilator Injective Module then any monomorphism $f: N \to M$ split.

Proof: Let $f: N \to M$ be a monomorphism then $f^{-1}: f(N) \to N$ be inverse of f since N is Annihilator Injective then there exist a homomorphism $\beta: M \to N$ that extends f^{-1} set $g = \beta f$ then g is clearly an identity map of N hence f splits in M.

Proposition: 2.8 If N is Annihilator Injective module then N is Annihilator K-Injective module for any submodule K of M.

Proof: Let X be submodule of K and $f: X \to N$ be a homomorphism then X be also a submodule of M and by Annihilator M -Injective module of N, f extends to a homomorphism $f^*: M \to N$ the restriction f^*/K of f^* on K is a homomorphism $K \to N$ which extends f hence N is Annihilator K -Injective module.

Proposition: 2.9 Every direct summand of Annihilator Injective Modules is also Annihilator Injective Modules.

Proof: Assume N is Annihilator Injective module and $N = K \oplus K'$ let $l_M(R)$ be a submodule of M and $f: l_M(R) \to K$ be a homomorphism define $g: l_M(R) \to N = K \oplus K'$ by g(m) = (f(m), 0) thus g is monomorphism and by Annihilator Injective Module of N, g extends to a homomorphism $\beta: M \to N$, let π_K be the natural projection of $N = K \oplus K'$ in to K then $\pi_K \beta: M \to K$ is a homomorphism which extends f, therefore K is Annihilator Injective.

Definition: - let M be an R-Module an element m of M is said to be divisible if for every r of R which is not a right zero divisor there exist $m' \in M$ such that m = rm', if every element of M is divisible then M is said to be a divisible module. An abelian group is said to be divisible if it is divisible as a Z-module. Alternatively M is divisible if M = rM whenever r is an element of R which is not a right zero divisor.

Note 2.10 Every Injective module is divisible but every Annihilator Injective modules need not be divisible.

Lemma 2.11 Let M be an R-Module such that every submodule of M and let M' be a submodule of M then every submodule of M' is a direct summand of M.

Proof: Let A be a submodule of M' then A is also a submodule of M so there is a submodule B of M such that $M = A + (M \cap B)$ (d. s) it follows that $M' = A + (M' \cap B) = A \cap B = 0$.

Proposition: 2.12 Let M be an R-module then the following statements are equivalent.

1. *M* has a family $\{S_i\}_{i \in I}$ of simple submodule such that $M = \sum_{i=1}^{n} S_i$ (d. s)

Himanshu Ranjan*, B. M. Pandeya and A. J. Gupta/Annihilator Injective Modules/IJMA-2(11), Nov.-2011, Page: 2281-2284

- 2. M has a family of simple submodules whose sum is M itself.
- 3. Every submodule of M is a direct summand of M.

Proof: [5, Proposition 3.2]

Proposition: 2.13 Every simple Annihilator Injective modules is Injective Modules.

Proof: Simple

ACKNOWLEDGEMENT:

The first author would like to thank for the AICTE – India to provide the national doctoral fellowship.

REFERENCE:

- [1] Anderson, F. W., Filler, K. R., Rings and Categories of Modules, Springer- Verlag New York, 1974.
- [2] Chaturvedi, A. K., Thesis subtitle (Variants of quasi-Injective Modules and there endomorphism Rings) 2008.
- [3] Dung, N. V., Hugnh, D. V., Smith, P. F., Wisbauer, R., Extending Module, London: Pitman, 1994.

[4] Pandeya, B. M., Koirala, S. P. (2001), Pseudo M-Injective Modules, In: Rizvi, S. T., Quadri, M. A., Ashraf, M., eds, Algebra and its Application, Narosa publishing House, p.p. 201-207.

[5] Sharp, D. W., Vamos, P., Injective Module, Cambridge University Press, 1972.
