DECOMPOSITIONS OF $M^{(1,2)*}$ -CONTINUITY AND COMPLETE $M^{(1,2)*}$ -CONTINUITY IN BIMINIMAL SPACES

¹O. Ravi*, ²R. G. Balamurugan and ³M. Krishnamoorthy

¹Department of Mathematics, P. M. Thevar College, Usilampatti, Madurai-Dt., Tamil Nadu, India

E-mail: siingam@yahoo.com

²Department of Mathematics, Cauvery International School, Manaparai, Trichy-Dt, Tamil Nadu, India

E-mail: rgbala2010@yahoo.com

³Department of Mathematics, R. V. S. College of Engineering and Technology, Dindigul, Tamil Nadu, India

E-mail: moorthykumar1@rediffmail.com

(Received on: 11-10-11; Accepted on: 30-10-11)

ABSTRACT

The purpose of this paper is to introduce the concepts of $M^{(1,2)^*}$ -continuity and complete $M^{(1,2)^*}$ -continuity in biminimal spaces, and study some properties of the generalizations of $m_x^{(1,2)^*}$ -closed sets and $m_x^{(1,2)^*}$ -open sets in biminimal spaces.

2010 Mathematics Subject Classification: 54A05, 54C08

Keywords and phrases: minimal structure, biminimal space, $m_x^{(1,2)*}$ -closed set, $m_x^{(1,2)*}$ -open set, $M^{(1,2)*}$ -continuity, complete $M^{(1,2)*}$ -continuity.

1. INTRODUCTION:

Njastad [8] introduced the concepts of an α -sets and Mashhour et al [7] introduced α -continuous mappings in topological spaces. The topological notions of semi-open sets and semi-continuity, and preopen sets and precontinuity were introduced by Levine [5] and Mashhour et al [6], respectively. The concepts of minimal structures (briefly m-structures) were developed by Popa and Noiri [9] in 2000. Kelly [4] introduced the notions of bitopological spaces. Such spaces are equipped with two arbitrary topologies. Ravi and Lellis Thivagar [10] introduced weakly open sets called $\tau_{1,2}$ -open sets in bitopological spaces. In this paper, we introduce $M^{(1,2)*}$ -continuity and complete $M^{(1,2)*}$ -continuity, and obtain their decompositions in biminimal spaces. At every places the new notions have been substantiated with suitable examples.

2. PRELIMINARIES:

Definition: 2.1 [9] Let X be a nonempty set and $\wp(X)$ the power set of X. A subfamily m_x of $\wp(X)$ is called a minimal structure (briefly m-structure) on X if $\phi \in m_x$ and $X \in m_x$.

Definition: 2.2 [11] A set X together with two minimal structures m_x^1 and m_x^2 on X is called a biminimal space and is denoted by (X, m_x^1, m_x^2) .

¹O. Ravi*, ²R. G. Balamurugan and ³M. Krishnamoorthy/ DECOMPOSITIONS OF $M^{(1,2)*}$ -CONTINUITY AND COMPLETE $M^{(1,2)*}$ -CONTINUITY IN BIMINIMAL SPACES/ IJMA- 2(11), Nov.-2011, Page: 2299-2307 Throughout this paper, (X, m_x^1, m_x^2) (or X) denote biminimal space.

Definition: 2.3 [11] Let S be a subset of X. Then S is said to be $m_x^{(1,2)^*}$ -open if S = A \cup B where A \in m_x^1 and B \in m_x^2 . We call $m_x^{(1,2)^*}$ -closed set is the complement of $m_x^{(1,2)^*}$ -open.

The family of all $m_x^{(1,2)*}$ -open subsets of (X, m_x^1, m_x^2) is denoted by $m_x^{(1,2)*}$ -O(X).

Example: 2.4 [11] Let X= {a, b, c}, $m_x^1 = \{\phi, X, \{a\}\}$ and $m_x^2 = \{\phi, X, \{b\}\}$. Then the sets in $\{\phi, X, \{a\}, \{b\}, \{a, b\}\}$ are called $m_x^{(1,2)^*}$ -open and the sets in $\{\phi, X, \{b, c\}, \{a, c\}, \{c\}\}$ are called $m_x^{(1,2)^*}$ -closed.

Definition: 2.5 [11] Let S be a subset of X. Then

- (i) the $m_x^{(1,2)^*}$ -interior of S, denoted by $m_x^{(1,2)^*}$ -int(S), is defined by \cup {F/F \subseteq S and F is $m_x^{(1,2)^*}$ -open};
- (ii) the $m_x^{(1,2)^*}$ -closure of S, denoted by $m_x^{(1,2)^*}$ -cl(S), is defined by $\cap \{F/S \subseteq F \text{ and } F \text{ is } m_x^{(1,2)^*}\text{-closed}\}$.

Definition: 2.6 [11] Let S be a subset of X. Then S is said to be

- (i) $m_x^{(1,2)^*}$ - α -open if $S \subseteq m_x^{(1,2)^*}$ -int $(m_x^{(1,2)^*}$ -cl $(m_x^{(1,2)^*}$ -int(S)));
- (ii) $m_x^{(1,2)*}$ -semi-open if $S \subseteq m_x^{(1,2)*}$ -cl $(m_x^{(1,2)*}$ -int(S));
- (iii) $m_x^{(1,2)*}$ -preopen if $S \subseteq m_x^{(1,2)*}$ -int $(m_x^{(1,2)*}$ -cl(S));
- (iv) $m_x^{(1,2)*}$ - α -closed if $m_x^{(1,2)*}$ -cl $(m_x^{(1,2)*}$ -int $(m_x^{(1,2)*}$ -cl $(S))) \subseteq S;$
- (v) $m_x^{(1,2)*}$ -preclosed if $m_x^{(1,2)*}$ -cl $(m_x^{(1,2)*}$ -int $(S)) \subseteq S$;
- (vi) $m_x^{(1,2)*}$ -Semi-closed if $m_x^{(1,2)*}$ -int $(m_x^{(1,2)*}$ -cl $(S)) \subseteq S$.

The family of all $m_x^{(1,2)*}$ - α -open [resp. $m_x^{(1,2)*}$ -Semi-open, $m_x^{(1,2)*}$ -preopen]

Example: 2.7 [11] Let $Y = \{p, q, r\}, m_y^1 = \{\phi, Y, \{p\}, \{p, q\}\}\}$ and $m_y^2 = \{\phi, Y, \{q\}\}.$

Then the sets in $\{\phi, Y, \{p\}, \{q\}, \{p, q\}\}$ are called $m_y^{(1,2)^*}$ -open and the sets in $\{\phi, Y, \{r\}, \{q, r\}, \{p, r\}\}\}$ are called $m_y^{(1,2)^*}$ -closed. We have

$$m_y^{(1,2)*}$$
 - α O(Y) = { ϕ , Y, {p}, {q}, {p, q}};

$$m_y^{(1,2)^*}$$
-SO(Y) = { ϕ , Y,{p},{q},{p, q},{p, r},{q, r}} and

$$m_y^{(1,2)*}$$
-PO(Y) = { ϕ , Y, { p }, { q }, { p , q }}.

Lemma: 2.8 [11] Let X be a non-empty set and m_x^1 , m_x^2 minimal structures on X. For subsets A and B of X, the following properties hold:

- (i) $A \subseteq m_x^{(1,2)^*}$ -cl(A) and $m_x^{(1,2)^*}$ -int(A) $\subseteq A$;
- (ii) If A is $m_x^{(1,2)*}$ -open then $A = m_x^{(1,2)*}$ -int(A);
- (iii) If A is $m_x^{(1,2)*}$ -closed then A = $m_x^{(1,2)*}$ -cl(A);
- (iv) If $A \subseteq B$ then $m_x^{(1,2)^*}$ -cl $(A) \subseteq m_x^{(1,2)^*}$ -cl(B);
- (v) If $A \subseteq B$ then $m_x^{(1,2)^*}$ -int $(A) \subseteq m_x^{(1,2)^*}$ -int(B);
- (vi) $m_x^{(1,2)*}$ -cl(X A) = X $m_x^{(1,2)*}$ -int(A) and $m_x^{(1,2)*}$ -int(X A) = X $m_x^{(1,2)*}$ -cl(A);
- $({\rm vii})\, m_{_X}^{(1,2)^*} {\rm cl}(\phi) = \phi = \, m_{_X}^{(1,2)^*} {\rm int}(\phi) \ \ {\rm and} \ \ m_{_X}^{(1,2)^*} {\rm cl}({\rm X}) = {\rm X} = \, m_{_X}^{(1,2)^*} {\rm int}({\rm X});$
- (viii) $m_x^{(1,2)*}$ -cl $(m_x^{(1,2)*}$ -cl(A)) = $m_x^{(1,2)*}$ -cl(A) and $m_x^{(1,2)*}$ -int $(m_x^{(1,2)*}$ -int(A)) = $m_x^{(1,2)*}$ -int(A).

¹O. Ravi*, ²R. G. Balamurugan and ³M. Krishnamoorthy/DECOMPOSITIONS OF $M^{(1,2)*}$ -CONTINUITY AND COMPLETE $M^{(1,2)*}$ -CONTINUITY IN BIMINIMAL SPACES/IJMA-2(11), Nov.-2011, Page: 2299-2307 **Definition: 2.9 [11]** A biminimal space (X, m_x^1, m_x^2) has the property $[\mathfrak{u}]$ if the arbitrary union of $m_x^{(1,2)*}$ -open sets is $m_x^{(1,2)*}$ -open.

A biminimal space (X, m_x^1, m_x^2) has the property [I] if the any finite intersection of $m_x^{(1,2)^*}$ -open sets is $m_x^{(1,2)^*}$ -open.

Lemma: 2.10 [11] The following are equivalent for the biminimal space (X, m_x^1, m_x^2) .

- (1) (X, m_x^1, m_x^2) have property [u];
- (2) If $m_x^{(1,2)*}$ -int(E) = E, then E $\in m_x^{(1,2)*}$ -O(X).
- (3) If $m_x^{(1,2)*}$ -cl(F) = F, then $F^c \in m_x^{(1,2)*}$ -O(X).

3. CHARACTERIZATIONS:

Definition: 3.1 Let S be a subset of X. Then S is said to be

- (i) regular $m_x^{(1,2)*}$ -open if $S = m_x^{(1,2)*}$ -int $(m_x^{(1,2)*}$ -cl(S)),
- (ii) $m_x^{(1,2)*}$ -Semi-regular if it is both

The family of all $m_x^{(1,2)*}$ -semi-closed [resp. regular $m_x^{(1,2)*}$ -open] sets of X is denoted by $m_x^{(1,2)*}$ -SC(X) [resp. $m_x^{(1,2)*}$ -RO(X)].

The intersection of all $m_x^{(1,2)*}$ -semi-closed sets of X containing a subset S of X is called the $m_x^{(1,2)*}$ -semi-closure of S and is denoted by $m_x^{(1,2)*}$ -scl(S).

Remark: 3.2 A subset S of X is $m_x^{(1,2)*}$ -semi-closed if and only if $m_x^{(1,2)*}$ -scl(S) = S.

Definition: 3.3 [12] A subset S of X is said to be $m_x^{(1,2)^*}$ -semi-generalized closed (briefly $m_x^{(1,2)^*}$ -sg-closed) if and only if $m_x^{(1,2)^*}$ -scl(S) \subseteq F whenever S \subseteq F and F is $m_x^{(1,2)^*}$ -semi-open set.

The complement of $m_x^{(1,2)*}$ -sg-closed set is $m_x^{(1,2)*}$ -sg-open.

Example: 3.4 Let X = {a, b, c}, $m_x^1 = \{\phi, X, \{a\}\}\$ and $m_x^2 = \{\phi, X\}$. Then the sets in $\{\phi, X, \{a\}\}\$ are called $m_x^{(1,2)^*}$ -open and the sets in $\{\phi, X, \{b, c\}\}\$ are called $m_x^{(1,2)^*}$ -closed. Also, the sets in $\{\phi, X, \{b\}, \{c\}, \{b, c\}\}\$ are called $m_x^{(1,2)^*}$ -sg-closed.

Definition: 3.5 A subset S of X is said to be locally $m_x^{(1,2)^*}$ -closed if $S = M \cap N$, where M is $m_x^{(1,2)^*}$ -open and N is $m_x^{(1,2)^*}$ -closed.

Remark: 3.6 [11] Every $m_x^{(1,2)^*}$ -closed set is $m_x^{(1,2)^*}$ - α -closed but not conversely.

Example: 3.7 Let $X = \{a, b, c, d\}$, $m_x^1 = \{\phi, X, \{a\}, \{a, b\}\}$ and $m_x^2 = \{\phi, X, \{a, c\}\}\}$. Then the sets in $\{\phi, X, \{a\}, \{a, b\}, \{a, c\}, \{a, b, c\}\}$ are called $m_x^{(1,2)*}$ -open and the sets in $\{\phi, X, \{d\}, \{b, d\}, \{c, d\}, \{b, c, d\}\}$ are called $m_x^{(1,2)*}$ -closed. We have $\{c\}$ is $m_x^{(1,2)*}$ - α -closed set but not $m_x^{(1,2)*}$ -closed.

Also, the sets in $\{\phi, X, \{a\}, \{b\}, \{c\}, \{d\}, \{a, b\}, \{a, c\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, b, c\}, \{b, c, d\}\}$ are called locally $m_x^{(1,2)^*}$ -closed.

¹O. Ravi*, ²R. G. Balamurugan and ³M. Krishnamoorthy/ DECOMPOSITIONS OF $M^{(1,2)*}$ -CONTINUITY AND COMPLETE $M^{(1,2)*}$ -CONTINUITY IN BIMINIMAL SPACES/IJMA-2(11), Nov.-2011, Page: 2299-2307 **Proposition: 3.8** Every $m_x^{(1,2)*}$ -closed set is locally $m_x^{(1,2)*}$ -closed.

Proof: S = X \cap S where X is $m_x^{(1,2)*}$ -open and S is $m_x^{(1,2)*}$ -closed. Thus S is locally $m_x^{(1,2)*}$ -closed.

Example: 3.9 The converse of Proposition 3.8 is not true in general.

Consider the Example 3.7. We have {a} is locally $m_x^{(1,2)*}$ -closed but not $m_x^{(1,2)*}$ -closed.

Proposition: 3.10 Asubset S of X is $m_x^{(1,2)^*}$ - α -closed if and only if S is $m_x^{(1,2)^*}$ -semi-closed and $m_x^{(1,2)^*}$ -preclosed.

Proof: Let S be $m_x^{(1,2)^*}$ - α -closed. Then $m_x^{(1,2)^*}$ -cl($m_x^{(1,2)^*}$ -int($m_x^{(1,2)^*}$ -cl(S))) \subseteq S. Hence $m_x^{(1,2)^*}$ -int($m_x^{(1,2)^*}$ -cl(S))) \subseteq S. Hence $m_x^{(1,2)^*}$ -int($m_x^{(1,2)^*}$ -cl(S))) \subseteq S. Thus S is $m_x^{(1,2)^*}$ -semi-closed. Also $m_x^{(1,2)^*}$ -cl($m_x^{(1,2)^*}$ -int(S)) \subseteq Mark $m_x^{(1,2)^*}$ -cl(Mark $m_x^{(1,2)^*}$ -cl(S))) \subseteq S. Thus S is $m_x^{(1,2)^*}$ -preclosed. Conversely, let S be $m_x^{(1,2)^*}$ -semi-closed and $m_x^{(1,2)^*}$ -preclosed. Since S is $m_x^{(1,2)^*}$ -semi-closed, $m_x^{(1,2)^*}$ -int($m_x^{(1,2)^*}$ -cl(S)) \subseteq S implies $m_x^{(1,2)^*}$ -int($m_x^{(1,2)^*}$ -int($m_x^{(1,2)^*}$ -cl(S))) \subseteq Mark $m_x^{(1,2)^*}$ -int(Mark $m_x^{(1,2)^*}$ -cl(S)) \subseteq S int(S). We have $m_x^{(1,2)^*}$ -int(Mark $m_x^{(1,2)^*}$ -cl(S)) \subseteq S, as S is $m_x^{(1,2)^*}$ -preclosed. Hence S is $m_x^{(1,2)^*}$ - α -closed.

Example: 3.11 A $m_x^{(1,2)*}$ -semi-closed or $m_x^{(1,2)*}$ -preclosed set need not be $m_x^{(1,2)*}$ - α -closed.

- (i) Let $X = \{a, b, c\}$, $m_x^1 = \{\phi, X, \{a\}\}$ and $m_x^2 = \{\phi, X, \{b\}\}$. Then the sets in $\{\phi, X, \{a\}, \{b\}, \{a, b\}\}$ are called $m_x^{(1,2)*}$ -open and the sets in $\{\phi, X, \{b, c\}, \{a, c\}, \{c\}\}\}$ are called $m_x^{(1,2)*}$ -closed. We have
- (1) $m_r^{(1,2)^*}$ - $\alpha O(X) = \{\phi, X, \{a\}, \{b\}, \{a, b\}\};$
- (2) $m_x^{(1,2)^*}$ -SO(X) = { ϕ , X, {a}, {b}, {a, b}, {a, c}, {b, c}}.

Therefore {b} is $m_x^{(1,2)*}$ -semi-closed but not $m_x^{(1,2)*}$ - α -closed.

- (ii) Let $X = \{a, b, c\}$, $m_x^1 = \{\phi, X, \{b, c\}\}$ and $m_x^2 = \{\phi, X, \{a, b\}\}$. Then the sets in $\{\phi, X, \{b, c\}, \{a, b\}\}$ are called $m_x^{(1,2)^*}$ -closed. We have
- (1) $m_x^{(1,2)^*}$ - $\alpha O(X) = m_x^{(1,2)^*}$ - $SO(X) = \{\phi, X, \{a, b\}, \{b, c\}\};$
- (2) $m_x^{(1,2)*}$ -PO(X) = { ϕ , X, {b}, {a, b}, {b, c}, {a, c}}.

Therefore {b} is $m_x^{(1,2)*}$ -preclosed but not $m_x^{(1,2)*}$ - α -closed.

Proposition: 3.12 A $m_x^{(1,2)*}$ -semi-closed set is $m_x^{(1,2)*}$ -sg-closed.

Proof: Let **S** be $m_x^{(1,2)^*}$ -semi-closed. Then $m_x^{(1,2)^*}$ -scl(S) = S \subseteq G where S \subseteq G and G is $m_x^{(1,2)^*}$ -semi-open. Thus S is $m_x^{(1,2)^*}$ -sg-closed.

Remark: 3.13 A $m_x^{(1,2)*}$ -sg-closed set need not be $m_x^{(1,2)*}$ -semi-closed.

Consider the Example 3.11 (ii). We have $\{a, c\}$ is $m_x^{(1,2)^*}$ -sg-closed but not $m_x^{(1,2)^*}$ -semi-closed.

Proposition: 3.14 A $m_x^{(1,2)*}$ -closed set is $m_x^{(1,2)*}$ -sg-closed.

¹O. Ravi*, ²R. G. Balamurugan and ³M. Krishnamoorthy/DECOMPOSITIONS OF $M^{(1,2)*}$ -CONTINUITY AND COMPLETE $M^{(1,2)*}$ -CONTINUITY IN BIMINIMAL SPACES/IJMA-2(11), Nov.-2011, Page: 2299-2307 **Proof:** Let S be $m_x^{(1,2)*}$ -closed. Then S is $m_x^{(1,2)*}$ - α -closed and also by Proposition 3.10., S is $m_x^{(1,2)*}$ -semi-closed. Moreover, by Proposition 3.12., S is $m_x^{(1,2)*}$ -sg-closed.

Remark: 3.15 The converse of Proposition 3.14 is not true in general.

Consider the Example 3.4., {c} is $m_x^{(1,2)*}$ -sg-closed but not $m_x^{(1,2)*}$ -closed.

Proposition: 3.16 Let (X, m_x^1, m_x^2) have property [u]. Then any regular $m_x^{(1,2)*}$ -open set is $m_x^{(1,2)*}$ -open.

Proof: Let S be regular $m_x^{(1,2)*}$ -open. Since $S = m_x^{(1,2)*}$ -int $(m_x^{(1,2)*}$ -cl(S)), $m_x^{(1,2)*}$ -int $(S) = m_x^{(1,2)*}$ -int $(m_x^{(1,2)*}$ -cl(S)). We have $S = m_x^{(1,2)*}$ -int(S). Thus, by Lemma 2.10, S is $m_x^{(1,2)*}$ -open.

Remark: 3.17 The converse of Proposition 3.16 is not true in general.

Consider the Example 3.4., {a} is $m_x^{(1,2)*}$ -open but not regular $m_x^{(1,2)*}$ -open.

Proposition: 3.18 Every regular $m_x^{(1,2)*}$ -open set is $m_x^{(1,2)*}$ -semi-closed.

Proof: Let S be regular $m_x^{(1,2)*}$ -open. Then $S = m_x^{(1,2)*}$ -int $(m_x^{(1,2)*}$ -cl(S)). We have $m_x^{(1,2)*}$ -int $(m_x^{(1,2)*}$ -cl(S)) \subseteq S. Thus S is $m_x^{(1,2)*}$ -semi-closed.

Proposition: 3.19 Let (X, m_x^1, m_x^2) have property [u]. Then every regular $m_x^{(1,2)*}$ -open set is $m_x^{(1,2)*}$ -semi-regular.

Proof: Let S be regular $m_x^{(1,2)*}$ -open. Then by Proposition 3.18., S is $m_x^{(1,2)*}$ -semi-closed and also by Proposition 3.16., S is $m_x^{(1,2)*}$ -open (and so S is $m_x^{(1,2)*}$ -semi-open). Hence S is both $m_x^{(1,2)*}$ -semi-open and $m_x^{(1,2)*}$ -semi-closed. Thus S is $m_x^{(1,2)*}$ -semi-regular.

Remark: 3.20 Every $m_x^{(1,2)*}$ -semi-regular set is $m_x^{(1,2)*}$ -semi-closed but not conversely.

Example: 3.21 Let X = {a, b, c}, $m_x^1 = \{\phi, X, \{a\}\}$ and $m_x^2 = \{\phi, X, \{b\}\}$. Then the sets in $\{\phi, X, \{a\}\}$, $\{b\}$, $\{a, b\}$ are called $m_x^{(1,2)^*}$ -open and the sets in $\{\phi, X, \{b, c\}, \{a, c\}, \{c\}\}$ are called $m_x^{(1,2)^*}$ -closed.

We have

$$m_x^{(1,2)*}$$
- $\alpha O(X) = m_x^{(1,2)*}$ - $PO(X) = \{\phi, X, \{a\}, \{b\}, \{a, b\}\};$
 $m_x^{(1,2)*}$ - $SO(X) = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}\};$
 $m_x^{(1,2)*}$ - $SC(X) = \{\phi, X, \{a\}, \{b\}, \{c\}, \{a, c\}, \{b, c\}\}$ and
 $m_x^{(1,2)*}$ - $RO(X) = \{\phi, X, \{a\}, \{b\}\}.$

We have {c} is $m_x^{(1,2)*}$ -semi-closed but not $m_x^{(1,2)*}$ -semi-regular.

Remark: 3.22 $m_x^{(1,2)*}$ - α -closed sets and regular $m_x^{(1,2)*}$ -open sets are independent of each other.

Consider the Example 3.4. We have {c} is $m_x^{(1,2)^*}$ - α -closed but not regular $m_x^{(1,2)^*}$ -open and Consider the Example 3.21. We have {a} is regular $m_x^{(1,2)^*}$ -open but not $m_x^{(1,2)^*}$ - α -closed.

 ^{1}O . Ravi*, ^{2}R . G. Balamurugan and ^{3}M . Krishnamoorthy/ DECOMPOSITIONS OF $M^{(1,2)*}$ -CONTINUITY AND COMPLETE $M^{(1,2)*}$ -CONTINUITY IN BIMINIMAL SPACES/IJMA- 2(11), Nov.-2011, Page: 2299-2307

Remark: 3.23 $m_x^{(1,2)^*}$ -preclosed sets and $m_x^{(1,2)^*}$ -open sets are independent of each other. Consider the Example 3.21. We have {c} is $m_x^{(1,2)^*}$ -preclosed but not $m_x^{(1,2)^*}$ -open and {a} is $m_x^{(1,2)^*}$ -open but not $m_x^{(1,2)^*}$ -preclosed.

Remark: 3.24 locally $m_x^{(1,2)^*}$ -closed sets and $m_x^{(1,2)^*}$ -preclosed sets are independent of each other.

Consider the Example 3.21. We have {a} is locally $m_x^{(1,2)*}$ -closed but not $m_x^{(1,2)*}$ -preclosed and Consider the Example 3.11 (ii). We have {b} is $m_x^{(1,2)*}$ -preclosed but not locally $m_x^{(1,2)*}$ -closed.

Remark: 3.25 By the previous Propositions, Examples and Remarks, we obtain the following diagram where $A \rightarrow B$ means A implies B but B does not imply A and A \leftrightarrow B means A and B are independent

4. DECOMPOSITION OF $M^{(1,2)*}$ -CONTINUITY:

Proposition: 4.1Let (X, m_x^1, m_x^2) have property [I]. Let S be a subset of X such that $m_x^{(1,2)^*}$ -cl(S) $\in m_x^{(1,2)^*}$ -O(X). Then the following are equivalent.

- (i) S is $m_x^{(1,2)*}$ -open.
- (ii) S is an $m_x^{(1,2)^*}$ - α -open and locally $m_x^{(1,2)^*}$ -closed.

Proof: (i) \Rightarrow (ii): Let S be an $m_x^{(1,2)*}$ -open. Then S is $m_x^{(1,2)*}$ - α -open. Also S = X \cap S where S is $m_x^{(1,2)*}$ -open and X is $m_x^{(1,2)*}$ -closed. Thus S is locally $m_x^{(1,2)*}$ -closed.

(ii) \Rightarrow (i): Let S be $m_x^{(1,2)*}$ - α -open and locally $m_x^{(1,2)*}$ -closed.

Since S is $m_x^{(1,2)*}$ -preopen, $S \subseteq m_x^{(1,2)*}$ -int $(m_x^{(1,2)*}$ -cl(S)). Since S is locally $m_x^{(1,2)*}$ -closed,

 $S = U \cap m_r^{(1,2)^*}$ -cl(S) where U is $m_r^{(1,2)^*}$ -open.

Also $S = U \cap m_x^{(1,2)*} - cl(S) \cap U = U \cap S \subset U \cap m_x^{(1,2)*} - int(m_x^{(1,2)*} - cl(S)) \subseteq U \cap m_x^{(1,2)*} - cl(S) = m_x^{(1,2)*} - int(U \cap m_x^{(1,2)*} - cl(S)) = m_x^{(1,2)*} - int(S).$ We have $S \subseteq m_x^{(1,2)*} - int(S)$. But $m_x^{(1,2)*} - int(S) \subseteq S$. Hence S is $m_x^{(1,2)*} - open$.

Definition: 4.2 [11] A mapping $f: X \rightarrow Y$ is said to be

- (i) $M^{(1,2)*}$ -continuous if $f^{-1}(V)$ is $m_x^{(1,2)*}$ -open in X for every $m_y^{(1,2)*}$ -open subset V of Y.
- (ii) $M^{(1,2)^*}$ - α -continuous if $f^{-1}(V)$ is an $m_x^{(1,2)^*}$ - α -open in X for every $m_y^{(1,2)^*}$ -open subset V of Y.

¹O. Ravi*, ²R. G. Balamurugan and ³M. Krishnamoorthy/DECOMPOSITIONS OF $M^{(1,2)*}$ -CONTINUITY AND COMPLETE $M^{(1,2)*}$ -CONTINUITY IN BIMINIMAL SPACES/IJMA-2(11), Nov.-2011, Page: 2299-2307 We introduce a new mapping as follows:

Definition: 4.3 A mapping $f: X \to Y$ is said to be $M^{(1,2)^*}$ -LC continuous if $f^{-1}(V)$ is a locally $m_x^{(1,2)^*}$ -closed in X for every $m_y^{(1,2)^*}$ -open subset V of Y.

Theorem: 4.4 Assume that the $m_x^{(1,2)^*}$ -closure of any subset of X is $m_x^{(1,2)^*}$ -open. Let $f: X \to Y$ be a mapping where X has property [I]. Then the following are equivalent.

- (i) f is $M^{(1,2)*}$ -continuous.
- (ii) f is $M^{(1,2)*}$ - α -continuous and $M^{(1,2)*}$ -LC continuous.

Proof: It is a decomposition of $M^{(1,2)^*}$ -continuity from Proposition 4.1.

5. DECOMPOSITION OF COMPLETE $M^{(1,2)*}$ -CONTINUITY:

Proposition: 5.1Let (X, m_x^1, m_x^2) have property $[\mathfrak{u}]$ and $S \subset X$. Then the following are equivalent.

- (i) S is regular $m_x^{(1,2)*}$ -open.
- (ii) S is $m_x^{(1,2)*}$ -open and $m_x^{(1,2)*}$ -semi-regular.
- (iii) S is $m_x^{(1,2)*}$ -open and $m_x^{(1,2)*}$ -semi-closed.
- (iv) S is $m_x^{(1,2)*}$ -open and $m_x^{(1,2)*}$ -sg-closed.
- (v) S is $m_x^{(1,2)*}$ - α -open and $m_x^{(1,2)*}$ -sg-closed.

Proof:

- (i) \Rightarrow (ii): By Proposition 3.16 and 3.19.
- (ii) \Rightarrow (iii): By Remark 3.20.
- (iii) \Rightarrow (IV): By Proposition 3.12.
- (iv) \Rightarrow (v): It is obvious.
- (v) \Rightarrow (i): Since S is $m_x^{(1,2)^*}$ - α -open, S is $m_x^{(1,2)^*}$ -preopen. Thus $S \subseteq m_x^{(1,2)^*}$ -int $(m_x^{(1,2)^*}$ -cl(S))-(1).

Also since S is $m_x^{(1,2)*}$ -sg-closed and $m_x^{(1,2)*}$ -semi-open, $m_x^{(1,2)*}$ -scl(S) \subseteq S. But S \subseteq $m_x^{(1,2)*}$ -scl(S).

Therefore $S = m_x^{(1,2)^*}$ -scl(S) and hence S is $m_x^{(1,2)^*}$ -semi-closed. It implies $m_x^{(1,2)^*}$ -int($m_x^{(1,2)^*}$ -cl(S)) $\subseteq S$ – (2). From (1) and (2), S is regular $m_x^{(1,2)^*}$ -open.

Theorem: 5.2 For a biminimal space X, the following holds.

$$m_x^{(1,2)*}$$
-RO(X) = $m_x^{(1,2)*}$ -PO(X) $\cap m_x^{(1,2)*}$ -SC(X).

Proof: Let $S \in m_x^{(1,2)^*}$ -RO(X). Thus $S = m_x^{(1,2)^*}$ -int($m_x^{(1,2)^*}$ -cl(S)). Since $S \subseteq m_x^{(1,2)^*}$ -int($m_x^{(1,2)^*}$ -cl(S)) and $m_x^{(1,2)^*}$ -int($m_x^{(1,2)^*}$ -cl(S)) $\subseteq S$, $S \in m_x^{(1,2)^*}$ -PO(X) and $S \in m_x^{(1,2)^*}$ -SC(X). Thus $S \in m_x^{(1,2)^*}$ -PO(X) $\cap m_x^{(1,2)^*}$ -SC(X).

The converse part is obvious.

Theorem: 5.3 For a subset S of X, the following are equivalent.

- (i) S is $m_x^{(1,2)*}$ -semi-open and $m_x^{(1,2)*}$ -sg-closed.
- (ii) S is $m_x^{(1,2)*}$ -semi-regular.

^{1}O . Ravi*, ^{2}R . G. Balamurugan and ^{3}M . Krishnamoorthy/ DECOMPOSITIONS OF $M^{(1,2)*}$ -CONTINUITY AND COMPLETE $M^{(1,2)*}$ -CONTINUITY IN BIMINIMAL SPACES/ IJMA- 2(11), Nov.-2011, Page: 2299-2307

Proof: (i) ⇒ (ii): Since S is $m_x^{(1,2)*}$ -semi-open and $m_x^{(1,2)*}$ -sg-closed, $m_x^{(1,2)*}$ -scl(S) ⊆ S. Since $m_x^{(1,2)*}$ -scl(S) = S \cup $m_x^{(1,2)*}$ -int($m_x^{(1,2)*}$ -cl(S)) [13], then $m_x^{(1,2)*}$ -int($m_x^{(1,2)*}$ -cl(S)) ⊆ $m_x^{(1,2)*}$ -scl(S) ⊆ S. That is, $m_x^{(1,2)*}$ -int($m_x^{(1,2)*}$ -cl(S)) ⊆ S. So S is $m_x^{(1,2)*}$ -semi-closed. This proves that S is $m_x^{(1,2)*}$ -semi-regular. (ii) ⇒ (i): Since a $m_x^{(1,2)*}$ -semi-regular set is both $m_x^{(1,2)*}$ -semi-open and $m_x^{(1,2)*}$ -semi-closed and every $m_x^{(1,2)*}$ -semi-closed set is $m_x^{(1,2)*}$ -sg-closed, hence S is both $m_x^{(1,2)*}$ -semi-open set and $m_x^{(1,2)*}$ -sg-closed set.

Definition: 5.4 A mapping $f: X \rightarrow Y$ is said to be

- (i) Completely $M^{(1,2)*}$ -continuous if $f^{-1}(V)$ is regular $m_x^{(1,2)*}$ -open set in X for every $m_y^{(1,2)*}$ -open subset V of Y.
- (ii) contra $M^{(1,2)^*}$ -sg-continuous if $f^{-1}(V)$ is $m_x^{(1,2)^*}$ -sg-closed set in X for every $m_y^{(1,2)^*}$ -open subset V of Y.

Theorem: 5.5 Let $f: X \rightarrow Y$ be a mapping. Then the following are equivalent.

- (i) f is completely $M^{(1,2)*}$ -continuous.
- (ii) f is $M^{(1,2)*}$ -continuous and contra $M^{(1,2)*}$ -sg-continuous.
- (iii) f is $M^{(1,2)*}$ - α -continuous and contra $M^{(1,2)*}$ -sg-continuous.

Proof: It is the decomposition of complete $M^{(1,2)*}$ -continuity from Proposition 5.1.

REFERENCES:

- [1] Bhattacharyya, P and Lahari, B. K. Semi generalized closed sets in topology, Indian J. Math., 29 (1987), 375-382.
- [2] Ganster, M and Reilly, I. L. A decomposition of continuity, Acta Math. Hungar., 56 (3-4) (1990), 299-301.
- [3] Hatir, E and Noiri, T. Decompositions of continuity and complete continuity, Indian J. Pure Appl. Math., 33 (5) (2002), 755-760.
- [4] Kelly, J. C. Bitopological spaces, Proc. London Math. Soc., 13 (3) (1963), 71-89.
- [5] Levine, N. Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70 (1963), 36-41.
- [6] Mashhour, A. S., Abd El-Monsef, M. E and El-Deeb, S. N. On precontinuous mappings and weak precontinuous mappings, Proc. Math. and Phys. Soc. Egypt, 53(1982), 47-53.
- [7] Mashhour, A. S., Hasanein, I. A and El-Deeb, S. N. α -continuous and α -open mappings, Acta Math. Hungar., 41(1983), 213-218.
- [8] Njastad, O. On some classes of nearly open sets, Pacific J. Math., 15 (1965), 961-970.
- [9] Popa, V and Noiri, T. On M-continuous functions, Anal. Univ "Dunarea de Jos "Galati, Ser. Mat. Fiz. Mec. Tecor. (2), 18(23) (2000), 31-41.
- [10] Ravi, O and Lellis Thivagar, M. On stronger forms of (1, 2)*-quotient mappings in bitopological spaces, Internat. J. Math. Game Theory and Algebra, 14(6) (2004), 481-492.
- [11] Ravi, O., Balamurugan, R. G and Balakrishnan, M. On biminimal quotient mappings, International Journal of Advances in Pure and Applied Mathematics, 1(2) (2011), 96-112.
- [12] Ravi, O., Antony Rex Rodrigo, J., Vijayalakshmi, K and Balamurugan, R. G. On biminimal semi-generalized continuous functions, (submitted).

^{1}O . Ravi*, ^{2}R . G. Balamurugan and ^{3}M . Krishnamoorthy/ DECOMPOSITIONS OF $M^{(1,2)*}$ -CONTINUITY AND COMPLETE $M^{(1,2)*}$ -CONTINUITY IN BIMINIMAL SPACES/ IJMA- 2(11), Nov.-2011, Page: 2299-2307

- [13] Ravi, O., Balamurugan, R. G and Krishnamoorthy, M. Decompositions of $M^{(1,2)^*}$ -continuity and $M^{(1,2)^*}$ -continuity in biminimal spaces, (submitted).
- [14] Stone, M. H. Application of the theory of Boolean rings to general topology, TAMS. 41 (1937), 375-381.

[15] Tong, J. On decomposition of continuity, Acta Math. Hungar, 48(1-2) (1986), 11-15.

[16] Tong, J. On decomposition of continuity in topological spaces, Acta Math. Hunger. 54(1-2) (1989), 51-55.
