GENERALIZED SEMI CLOSED SETS IN BIGENERALIZED TOPOLOGICAL SPACES

P. Priyadharsini*, G. K. Chandrika and A. Parvathi

Department of Mathematics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, India

E-mail: dharsini86@yahoo.co.in, chandrikaprem@gmail.com, aparvathi.s@gmail.com

(Received on: 11-10-11; Accepted on: 30-10-11)

ABSTRACT

The aim of the paper is to introduce the concept of $\mu_{(m, n)}$ -generalized semi closed sets in bigeneralized topological spaces and study some of their properties.

Mathematics Subject Classification: 54A05.

Keywords: generalized topological spaces, generalized semi topological spaces, bigeneralized topological spaces, $\mu_{(m,n)}$ -generalized semi closed set.

1. INTRODUCTION:

Generalized closed sets in a topological space were introduced by Levine [6] in order to extend many of the important properties of closed sets to a larger family. For instance, it was shown that compactness; normality and completeness in a uniform space are inherited by generalized closed subsets. The study of bitopological spaces was first initiated by Kelly [5] and thereafter a large number of papers have been done to generalize the topological concepts to bitopological setting. Fukutake [6] introduced generalized closed sets and pairwise generalized closure operator in bitopological spaces. Csaszar [2] introduced the concepts of generalized neighborhood systems and generalized topological spaces. Boonpok [1] introduced the concept of bigeneralized topological spaces and studied (m, n)-closed sets and (m, n)-open sets in bigeneralized topological spaces.

In this paper, we introduce the notions of $\mu_{(m, n)}$ -gs closed sets in bigeneralized topological spaces and study some of their properties.

2. PRELIMINARIES:

We recall some basic definitions and notations. Let X be a set and denote expX the power set of X. A subset μ of exp X is said to be a *generalized topology* (briefly GT) on X if $\phi \in \mu$ and an arbitrary union of elements of μ belongs to μ [2]. Let μ be a GT on X, the elements of μ are called μ -open sets and the complements of μ -open sets are called μ -closed sets. If $A \subseteq X$, then $i_{\mu}(A)$ denotes the union of all μ -open sets contained in A and $c_{\mu}(A)$ is the intersection of all μ -closed sets containing A [3].

Proposition: 2.1 [8] Let (X, μ) be a generalized topological space. For sub sets A and B of X, the following properties hold:

- (1) $c_u(X A) = X i_u(A)$ and $i_u(X A) = X c_u(A)$;
- (2) If $(X A) \in \mu$ then $c_{\mu}(A) = A$ and if $A \in \mu$ then $i_{\mu}(A) = A$;
- (3) If $A \subseteq B$, then $c_u(A) \subseteq c_u(B)$ and $i_u(A) \subseteq i_u(B)$;
- (4) $A \subseteq c_{\mu}(A)$ and $i_{\mu}(A) \subseteq A$;
- (5) $c_{u}(c_{u}(A)) = c_{u}(A)$ and $i_{u}(i_{u}(A)) = i_{u}(A)$.

P. Priyadharsini*, G. K. Chandrika and A. Parvathi / Generalized Semi Closed Sets in Bigeneralized Topological Spaces / IJMA- 2(11), Nov.-2011, Page: 2425-2428

Definition: 2.2 [1] Let X be a nonempty set and let μ_1 , μ_2 be generalized topologies on X. The triple (X, μ_1, μ_2) is said to be a *bigeneralized topological space* (briefly BGTS).

Let (X, μ_1, μ_2) be a bigeneralized topological space and A be a subset of X.

The closure of A and the interior of A with respect to μ_m are denoted by c_{μ_m} (A) and i_{μ_m} (A) respectively, for m = 1, 2.

Definition: 2.3 [1] A subset A of a bigeneralized topological space (X, μ_1, μ_2) is called (m, n)-closed if $C_{\mu_m}(C_{\mu_n}(A)) = A$, where m, n = 1, 2 and m \neq n. The complement of a (m, n)-closed set is called (m, n)-open.

Proposition: 2.4 [1] Let (X, μ_1, μ_2) be a bigeneralized topological space and A be a subset of X. Then A is (m, n)-closed if and only if A is both μ -closed in (X, μ_n) and (X, μ_n) .

Proposition: 2.5 [1] Let (X, μ_1, μ_2) be a bigeneralized topological space. Then A is (m, n)-open if and only if $i_{\mu_m}(i_{\mu_n}(A) = A)$.

Definition: 2.6 [7] A subset A of a bigeneralized topological space (X, μ_1, μ_2) is said to be (m, n) generalized closed (briefly $\mu_{(m, n)}$ -closed) if $c_{\mu_n}(A) \subseteq U$ whenever $A \subseteq U$ and U is a μ_m -open set in X, where m, n =1, 2 and m \neq n. The complement of a $\mu_{(m, n)}$ -closed set is said to be (m, n) generalized open (briefly $\mu_{(m, n)}$ -open).

Definition: 2.7 A subset A of a bigeneralized topological space (X, μ_1, μ_2) is said to be (m, n) semi closed if $i_{\mu_m}(c_{\mu_n}(A)) \subseteq A$, where m, n = 1, 2 and m \neq n. The complement of (m, n) semi closed set is called (m, n) semi open.

3. GENERALIZED SEMI CLOSED SETS:

In this section, we introduce $\mu_{(m,n)}$ -gs closed sets in bigeneralized topological spaces and study some of their properties.

Definition: 3.1 A subset A of a bigeneralized topological space(X, μ_1 , μ_2) is said to be (m, n) generalized semi closed (briefly $\mu_{(m, n)}$ -gs closed) if $sc_{\mu_n}(A) \subseteq U$ whenever $A \subseteq U$ and U is a μ_m -open set in X, where m, n = 1, 2 and m \neq n. The complement of a $\mu_{(m, n)}$ -gs closed set is said to be (m, n) generalized semi open (briefly $\mu_{(m, n)}$ -gs open).

The family of all $\mu_{(m, n)}$ -gs closed (resp. $\mu_{(m, n)}$ -gs open) sets of (X, μ_1, μ_2) is denoted by $\mu_{(m, n)}$ -GSC(X) (resp. $\mu_{(m, n)}$ -GSO(X)), where m, n = 1, 2 and $m \neq n$.

A subset A of a bigeneralized topological space(X, μ_1 , μ_2) is called *pairwise* μ -gs closed if A is $\mu_{(1, 2)}$ -gs closed and $\mu_{(2, 1)}$ -gs closed. The complement of a pairwise μ -gs closed set is called *pairwise* μ -gs open.

Lemma: 3.2 Every (m, n)-closed set is $\mu_{(m, n)}$ -gs closed. The converse is not true as can be seen from the following example.

Example: 3.3 Let $X = \{a, b, c\}$. Consider two generalized topologies $\mu_1 = \{\phi, \{a\}, \{a, b\}, X\}$ and $\mu_2 = \{\phi, \{c\}, \{b, c\}\}$ on X. Then $\{a\}$ is $\mu_{(1,2)}$ -gs closed but not (1, 2)-closed.

Proposition: 3.4 Let (X, μ_1, μ_2) be a bigeneralized topological space and A is a subset of X. If A is μ_n -gs closed, then A is $\mu_{(m, n)}$ -gs closed, where m, n = 1, 2 and $m \neq n$.

Lemma: 3.5 The union of two $\mu_{(m,n)}$ -gs closed sets is not a $\mu_{(m,n)}$ -gs closed set in general as can be seen from the following example.

Example: 3.6 Let $X = \{a, b, c, d\}$. Consider two generalized topologies $\mu_1 = \{\phi, \{a, b\}, \{b, c\}, \{a, b, c\}, X\}$ and $\mu_2 = \{\phi, \{a, b, d\}, \{b, c, d\}, X\}$ on X. Then $\{a\}$ and $\{c\}$ are $\mu_{(1, 2)}$ -gs closed but $\{a\} \cup \{c\} = \{a, c\}$ is not $\mu_{(1, 2)}$ -gs closed.

Proposition: 3.7 Let (X, μ_1, μ_2) be a bigeneralized topological space. If A is $\mu_{(m, n)}$ -gs closed and F is (m, n) closed, then $A \cap F$ is $\mu_{(m, n)}$ -gs closed, where m, n = 1, 2 and $m \neq n$.

Proof: Let $A \cap F \subseteq U$ and U be μ_m -open. Then $A \subseteq U \cup (X - F)$. By Proposition 2.4, F is μ_m -closed.

P. Priyadharsini*, G. K. Chandrika and A. Parvathi / Generalized Semi Closed Sets in Bigeneralized Topological Spaces / IJMA-2(11), Nov.-2011, Page: 2425-2428

Hence $sc_{\mu_n}(A) \subseteq U \cup (X - F)$. Therefore, $sc_{\mu_n}(A) \cap F \subseteq U$. Since F is (m, n) closed, by Proposition 2.4, F is μ_n -closed which in turn implies that F is μ_n -semi closed. Hence $sc_{\mu_n}(F) = F$.

We obtain $sc_{\mu_n}(A \cap F) \subseteq sc_{\mu_n}(A) \cap sc_{\mu_n}(F) = sc_{\mu_n}(A) \cap F \subseteq U$. Hence, $A \cap F$ is $\mu_{(m,n)}$ -gs closed.

Proposition: 3.8 Let μ_1 and μ_2 be generalized topologies on X. If $\mu_1 \subseteq \mu_2$ then $\mu_{(2, 1)}$ -GSC(X) $\subseteq \mu_{(1, 2)}$ -GSC(X).

Proposition: 3.9 For each element x of a bigeneralized topological space (X, μ_1, μ_2) , $\{x\}$ is μ_m -closed or $X - \{x\}$ is $\mu_{(m,n)}$ -gs closed, where m, n = 1, 2 and $m \neq n$.

Proof: Let $x \in X$ and the singleton $\{x\}$ be not μ_m -closed. Then $X - \{x\}$ is not μ_m -open. If $X \in \mu_m$, then X is the only μ_m -open set which contains $X - \{x\}$. Hence $X - \{x\}$ is $\mu_{(m, n)}$ -gs closed and if $X \notin \mu_m$, then $X - \{x\}$ is $\mu_{(m, n)}$ -gs closed as there is no μ_m -open set which contains $X - \{x\}$ and hence the condition is satisfied vacuously.

Proposition: 3.10 Let A be a subset of a bigeneralized topological space (X, μ_1, μ_2) . If A is $\mu_{(m, n)}$ -gs closed, then $SC_{\mu_n}(A) - A$ contains no non-empty μ_m -closed set, where m, n = 1, 2 and $m \neq n$.

Proof: Let A be a $\mu_{(m, n)}$ -gs closed set and $F \neq \phi$ is a μ_m -closed set such that $F \subseteq sc_{\mu_n}(A) - A$. Then $A \subset X - F$, X - F is μ_m -open and since A is $\mu_{(m, n)}$ -gs closed, we have $sc_{\mu_n}(A) \subseteq X - F$. Therefore, $F \subseteq X - sc_{\mu_n}(A)$. Thus $F \subseteq sc_{\mu_n}(A) \cap (X - sc_{\mu_n}(A)) = \phi$. This is a contradiction. Thus $sc_{\mu_n}(A) - A$ contains no non-empty μ_m -closed set.

Proposition: 3.11 Let μ_1 and μ_2 be generalized topologies on X. If A is $\mu_{(m, n)}$ -gs closed, then $c_{\mu_m}(\{x\}) \cap A \neq \phi$ holds for each $x \in sc_{\mu_n}(A)$, where m, n = 1, 2 and $m \neq n$.

Proof: Let $\mathbf{x} \in sc_{\mu_n}(\mathbf{A})$. Suppose that $c_{\mu_m}(\{\mathbf{x}\}) \cap \mathbf{A} = \boldsymbol{\phi}$. Then $\mathbf{A} \subseteq \mathbf{X} - c_{\mu_m}(\{\mathbf{x}\})$. Since \mathbf{A} is $\mu_{(\mathbf{m}, \, \mathbf{n})}$ -gs closed and $\mathbf{X} - c_{\mu_m}(\{\mathbf{x}\})$ is $\mu_{\mathbf{m}}$ -open, we get $sc_{\mu_n}(\mathbf{A}) \subseteq \mathbf{X} - c_{\mu_m}(\{\mathbf{x}\})$. Hence, $sc_{\mu_n}(\mathbf{A}) \cap c_{\mu_m}(\{\mathbf{x}\}) = \boldsymbol{\phi}$. This is a contradiction.

Proposition: 3.12 If A is a $\mu_{(m, n)}$ -gs closed set of (X, μ_1, μ_2) such that $A \subseteq B \subseteq sc_{\mu_n}(A)$, then B is a $\mu_{(m, n)}$ -gs closed set, where m, n = 1,2 and m \neq n.

Proof: Let A be a $\mu_{(m, n)}$ -gs closed set and A \subseteq B \subseteq sc_{μ_n} (A). Let B \subseteq U and U is μ_m -open. Then A \subseteq U. Since A is $\mu_{(m, n)}$ -gs closed, we have sc_{μ_n} (A) \subseteq U. Since B \subseteq sc_{μ_n} (A), then sc_{μ_n} (B) \subseteq sc_{μ_n} (A) \subseteq U. Hence B is $\mu_{(m, n)}$ -gs closed.

Theorem: 3.13 A subset A of a bigeneralized topological space (X, μ_1, μ_2) is $\mu_{(m, n)}$ -gs open iff for every subset F of X, $F \subseteq si_{\mu_n}(A)$ whenever F is μ_m -closed and $F \subseteq A$, where m, n = 1, 2 and m \neq n.

Proof: Suppose that A is $\mu_{(m, n)}$ -gs open. Let $F \subseteq A$ and F be μ_m -closed. Then $X - A \subseteq X - F$ and X - F is μ_m -open. Since X - A is $\mu_{(m, n)}$ -gs closed, $sc_{\mu_n}(X - A) \subseteq X - F$. Thus $X - si_{\mu_n}(A) \subseteq X - F$ and hence $F \subseteq si_{\mu_n}(A)$. Conversely, suppose that $F \subseteq si_{\mu_n}(A)$ whenever F is μ_m -closed and $F \subseteq A$. Let $X - A \subseteq U$ and U is μ_m -open. Then $X - U \subseteq A$ and X - U is μ_m -closed. By assumption, we have $X - U \subseteq si_{\mu_n}(A)$. Then $X - si_{\mu_n}(A) \subseteq U$. Therefore, $sc_{\mu_n}(X - A) \subseteq U$. Thus, X - A is $\mu_{(m, n)}$ -gs closed. Hence A is $\mu_{(m, n)}$ -gs open.

Theorem: 3.14 Let A and B be subsets of a bigeneralized topological space (X, μ_1, μ_2) such that $si_{\mu_n}(A) \subseteq B \subseteq A$. If A is $\mu_{(m, n)}$ -gs open then B is $\mu_{(m, n)}$ -gs open, where m, n = 1, 2 and m \neq n.

P. Priyadharsini*, G. K. Chandrika and A. Parvathi / Generalized Semi Closed Sets in Bigeneralized Topological Spaces / IJMA- 2(11), Nov.-2011, Page: 2425-2428

Proof: Suppose that $si_{\mu_n}(A) \subseteq B \subseteq A$. Let F be μ_m -closed such that $F \subseteq B$. Then $F \subseteq A$ also. Since A is $\mu_{(m,n)}$ -gs open, $F \subseteq si_{\mu_n}(A)$. Since $si_{\mu_n}(A) \subseteq B$, we have $si_{\mu_n}(si_{\mu_n}(A)) \subseteq si_{\mu_n}(B)$.

Consequently, $si_{\mu_n}(A) \subseteq si_{\mu_n}(B)$.

Hence $F \subseteq si_{\mu_n}(B)$. Therefore, B is $\mu_{(m, n)}$ -gs open.

Proposition: 3.15 If a subset A of a bigeneralized topological space (X, μ_1, μ_2) is $\mu_{(m, n)}$ -gs closed, then $sc_{\mu_n}(A) - A$ is $\mu_{(m, n)}$ -gs open, where m, n = 1, 2 and m \neq n.

Proof: Suppose that A is $\mu_{(m, n)}$ -gs closed. Let $X - (sc_{\mu_n}(A) - A) \subseteq U$ and U be μ_m -open. Then $X - U \subseteq sc_{\mu_n}(A) - A$ and X - U is μ_m -closed. By proposition 3.10, $sc_{\mu_n}(A) - A$ cannot contain a non-empty μ_m -closed set. Consequently, $X - U = \phi$ and hence U = X. Therefore, $sc_{\mu_n}(X - (sc_{\mu_n}(A) - A) \subseteq U$ so we obtain $X - (sc_{\mu_n}(A) - A)$ is $\mu_{(m, n)}$ -gs closed. Hence, $sc_{\mu_n}(A) - A$ is $\mu_{(m, n)}$ -gs open.

REFERENCES:

- [1] C. Boonpok, Weakly open functions on bigeneralized topological spaces, Int. J. of Math. Analysis, 15 (5) (2010) 891-897.
- [2] A. Csaszar, Generalized topology, generalized continuity, Acta Math. Hungar., 96 (2002), 351-357.
- [3] A.Csaszar, Generalized open sets in generalized topologies, Acta Math. Hungar., 106 (2005), 53-66.
- [4] T. Fukutake, On generalized closed sets in bitopological spaces, Bull. Fukuoka Univ. Ed. Part III, 35(1985), 19–28.
- [5] J. C. Kelly, Bitopological spaces, Pro. London Math. Soc., 3 (13) (1969), 71–79.
- [6] N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo, 19 (2) (1970), 89–96.
- [7] W. Dungthaisong, C. Boonpok and C. Viriyapong, Generalized closed sets in bigeneralized topological spaces, Int. J. of Math. Anal., 5 (24) (2011) 1175–1184.
- [8] W. K. Min, Almost continuity on generalized topological spaces, Acta Math. Hungar., 125 (2009), 121–125.
