GENERALIZED BI-RECURRENT WEYL SPACES

¹Girish Dobhal* and ²Asha Ram Gairola

^{1,2}Department of Computer Application, Graphic Era University, Dehradun, INDIA

E-mail: ¹girish.dobhal@gmail.com, ²ashagairola@gmail.com

(Received on: 21-10-11; Accepted on: 07-11-11)

ABSTRACT

In this paper, we have studied the generalized bi-recurrent Weyl spaces. The bi-recurrent properties of Weyl Conformal curvature, Weyl projective curvature and Weyl concircular curvature tensor have been studied and some relation between them has been derived.

Mathematics Subject Classification: 53A40

Keywords: Generalized Weyl space, Bi-recurrent Weyl space.

1. Introduction:

An-n-dimensional differentiable manifold W_n is said to be Weyl space if it has a symmetric connection ∇^* and a symmetric conformal metric tensor g_{ij} preserved by ∇^* . Accordingly, in local coordinates there exists a covariant vector field T_k (complementary vector field) satisfying the condition [1], [2], [3],

$$\nabla^*_{k} g_{ij} - 2T_{k} g_{ij} = 0 \tag{1.1}$$

The above equation can be extended to

$$\partial_k g_{ij} - g_{hj} \Gamma_{jk}^h - 2T_k g_{ij} = 0 (1.2)$$

where Γ_{ik}^h are the connection coefficients of the symmetric connection ∇ and are defined as

$$\Gamma_{jk}^{h} = \begin{Bmatrix} h \\ ik \end{Bmatrix} - g^{hm} (g_{mj} T_k + g_{mk} T_j - g_{jk} T_m)$$
(1.3)

Moreover, under the renormalization condition

$$\tilde{g}_{ij} = \lambda^2 g_{ij} \tag{1.4}$$

of the metric tensor g_{ij} , the covariant vector field T_k is transformed by the law

$$\tilde{T}_k = T_k + \partial_k I n \lambda \tag{1.5}$$

 $\tilde{T}_k = T_k + \partial_k In\lambda$ where λ is a scalar function defined on W_n . We denote such a Weyl space by $W_n(\Gamma_{jk}^h, g_{ij}, T_k)$ or $W_n(g, T)$.

An n-dimensional differential manifold having an anti-symmetric connection ∇ and anti-symmetric metric tensor g_{ij} preserved by ∇ is called generalized Weyl space [4]. It is denoted by $GW_n(g,T)$.

For such a space, in local co-ordinate system, the compatibility condition are

$$\nabla_k g_{ij} - 2T_k g_{ij} = 0 \tag{1.6}$$

Where T_k are the components of a covariant vector field, called the complementary vector field of the $GW_n(g,T)$ space. Using the concept of covariant differentiation ([5], [6]), the compatibility condition of (1.6) can be written as

$$\partial_k g_{ik} - g_{hj} L_{ik}^h - g_{ih} L_{jk}^h - 2T_k g_{ij} = 0 (1.7)$$

where L_{ik}^h are the connection coefficient of the anti-symmetric connection ∇ and are obtain from the compatibility condition as

$$L_{ij}^{h} = \Gamma_{ij}^{h} + \frac{1}{2} [\chi_{im}^{h} g_{jh} + \chi_{mj}^{h} g_{ih} + \chi_{ij}^{h} g_{hm}] g^{mi}$$
(1.8)

Now putting

$$\chi_{ij}^{h} = \frac{1}{2} [\chi_{im}^{h} g_{jh} + \chi_{mj}^{h} g_{ih} + \chi_{ij}^{h} g_{hm}] g^{mi}$$
(1.9)

We obtain

$$L_{ij}^h = \Gamma_{ij}^h + \chi_{ij}^h \tag{1.10}$$

Where Γ_{ij}^h and χ_{ij}^h are respectively the coefficient of a Weyl connection and the torsion tenor of $GW_n(g,T)$ space and are expressed as

$$\Gamma_{ij}^{h} = \frac{1}{2} [L_{ij}^{h} + L_{ji}^{h}] = L_{ij}^{h} \tag{1.11}$$

and

$$\chi_{kl}^{h} = \frac{1}{2} \left[L_{kl}^{h} - L_{lk}^{h} \right] = L_{[kl]}^{h} \tag{1.12}$$

square bracket stands for anti-symmetry.

The components of mixed curvature tensor and Ricci tensor of $GW_n(g,T)$ are respectively

$$L_{iki}^{h} = \partial_{k} L_{ii}^{h} - \partial_{i} L_{ik}^{h} + L_{lk}^{h} L_{ii}^{l} - L_{li}^{h} L_{ik}^{l} \tag{1.13}$$

$$L_{ii} = L^a_{iia} \tag{1.14}$$

on the other hand scalar curvature of $GW_n(g,T)$ is defined by

$$L = g^{ij}L_{ij} (1.15)$$

It is easy to see that curvature tensor L_{iki}^h of $GW_n(g,T)$ can be written as

$$L^h_{jki} = B^h_{jki} + \chi^h_{jkl} \tag{1.16}$$

Where the tensors B_{jki}^h and χ_{jkl}^h are defined respectively

$$B_{jki}^{h} = \partial_k \Gamma_{ji}^{h} - \partial_i \Gamma_{jk}^{h} + \Gamma_{lk}^{h} \Gamma_{ji}^{l} - \Gamma_{lk}^{h} \Gamma_{jk}^{l}$$

$$\tag{1.17}$$

$$\chi_{jki}^{h} = \nabla_{k} \chi_{ji}^{h} - \nabla_{i} \chi_{jk}^{h} + \chi_{li}^{h} \chi_{jk}^{l} - \chi_{lk}^{h} \chi_{ji}^{l} - 2 \chi_{jl}^{h} \chi_{ki}^{l}$$
(1.18)

The curvature tensor of $GW_n(g,T)$ satisfies the relation [6].

$$L_{ikl}^h + L_{ilk}^h = 0 (1.19)$$

$$L_{hlk}^{j} + L_{hkl}^{j} + L_{klh}^{j} = 2\left[\nabla_{k}\chi_{lh}^{j} + \nabla_{h}\chi_{kl}^{j} + 2\chi_{lm}^{j}\chi_{hk}^{m} + 2\chi_{hm}^{j}\chi_{kl}^{m} + 2\chi_{km}^{j}\chi_{lh}^{m}\right]$$
(1.20)

$$\nabla_{m}L_{jkl}^{i} + \nabla_{k}L_{jlm}^{i} + \nabla_{l}L_{jmk}^{i} = 2\left[L_{jpl}^{i}\chi_{mk}^{p} + L_{jpk}^{i}\chi_{lm}^{p} + L_{jpm}^{i}\chi_{kl}^{p}\right] \tag{1.21}$$

The Weyl Conformal curvature C_{ijk}^h , Weyl projective curvature W_{ijk}^h and Weyl concircular curvature tensor Z_{ijk}^h in $GW_n(g,T)$ are respectively given by [7][8],

$$C_{ijk}^{h} = R_{ijk}^{h} + \frac{2}{n(n-2)} \left[\delta_{k}^{h} R_{[ij]} - \delta_{j}^{h} R_{[ik]} - g_{ik} g^{hm} R_{[mj]} + g_{ij} g^{hm} R_{[mk]} - (n-2) \delta_{i}^{h} R_{kj} \right] - \frac{1}{(n-2)} \left[\delta_{k}^{h} R_{ij} - \delta_{j}^{h} R_{ik} - g_{ik} g^{hm} R_{mj} + g_{ij} g^{hm} R_{mj} \right] + \frac{R}{(n-1)(n-2)} \left(g_{ij} \delta_{k}^{h} - g_{ik} \delta_{j}^{h} \right)$$
(1.22)

$$W_{ijk}^{h} = R_{ijk}^{h} + \frac{1}{(n-1)} \left(R_{ik} \delta_{j}^{h} - R_{ij} \delta_{k}^{h} \right) \tag{1.23}$$

$$Z_{ijk}^{h} = R_{ijk}^{h} + \frac{R}{n(n-1)} \left(g_{ik} \delta_{j}^{h} - g_{ij} \delta_{k}^{h} \right) \tag{1.24}$$

From (1.22) and (1.24) we have

$$C_{ijk}^{h} = Z_{ijk}^{h} + \frac{2}{n(n-2)} \left[\delta_{k}^{h} Z_{[ij]} - \delta_{j}^{h} Z_{[ik]} - g_{ik} g^{hm} Z_{[mj]} + g_{ij} g^{hm} Z_{[mk]} - (n-2) \delta_{i}^{h} Z_{kj} \right] - \frac{1}{(n-2)} \left[\delta_{k}^{h} Z_{ij} - \delta_{j}^{h} Z_{ik} - g_{ik} g^{hm} Z_{mj} + g_{ij} g^{hm} Z_{mk} \right]$$

$$(1.25)$$

where
$$Z_{jk} = R_{jk} - \frac{R}{n}g_{jk}$$
 (1.26)

2. Bi-Recurrent Weyl Spaces:

Definition: 2.1 If the curvature tensor L_{ijk}^h of GW_n satisfies the condition

$$L_{ijk,ab}^{h} = \lambda_{ab} L_{ijk}^{h} \tag{2.1}$$

where λ_{ab} is a non-zero covariant tensor field, then GW_n is called bi-recurrent. Such a space is denoted by GW_n^* .

Definition: 2.2 If the curvature tensor C_{ijk}^h of GW_n satisfies the condition

$$C_{ijk\,ah}^h = \lambda_{ab}C_{ijk}^h \tag{2.2}$$

where λ_{ab} is a non-zero covariant tensor field, then GW_n is called generalized Weyl space with bi-recurrent Weyl Conformal curvature tensor. We denote such a space by $C^* - GW_n$.

Definition: 2.3 If the curvature tensor Z_{ijk}^h of GW_n satisfies the condition

$$Z_{ijk,ab}^{h} = \lambda_{ab} Z_{ijk}^{h} \tag{2.3}$$

where λ_{ab} is a non-zero covariant tensor field, then GW_n is called generalized Weyl space with bi-recurrent Weyl Concircular curvature tensor. We denote such a space by $Z^* - GW_n$.

Definition: 2.4 If the curvature tensor W_{ijk}^h of GW_n satisfies the condition

$$W_{ijk,ab}^h = \lambda_{ab} W_{ijk}^h \tag{2.4}$$

where λ_{ab} is a non-zero covariant tensor field, then GW_n is called generalized Weyl space with bi-recurrent Weyl Projective curvature tensor. We denote such a space by $W^* - GW_n$.

Theorem: 2.1 The necessary and sufficient condition for a Generalized Weyl space GW_n to be $W^* - GW_n$ is that it should be $Z^* - GW_n$.

Proof: Let GW_n satisfies the relation (2.3) then (2.3) in view of (1.24) reduces to

$$R_{ijk,ab}^{h} = \lambda_{ab} R_{ijk}^{h} + \frac{(R_{,ab} - \lambda_{ab} R)}{n(n-1)} \left(g_{ik} \delta_{j}^{h} - g_{ij} \delta_{k}^{h} \right)$$
 (2.5)

contracting the indices h and k we have

$$R_{ij,ab}^{h} = \lambda_{ab}R_{ij}^{h} + \frac{(R_{,ab} - \lambda_{ab}R)}{n}g_{ij}$$

$$\tag{2.6}$$

Now differentiating (1.23) covariantly with respect to a and then again differentiating the result thus obtained with respect to b we have

$$W_{ijk,ab}^{h} = R_{ijk,ab}^{h} + \frac{1}{(n-1)} \left(R_{ik,ab} \delta_{j}^{h} - R_{ij,ab} \delta_{k}^{h} \right)$$
 (2.7)

Above equation in view of (2.5) and (2.6) reduces to

$$\begin{split} W^{h}_{ijk,ab} &= \lambda_{ab} R^{h}_{ijk} + \frac{(R_{,ab} - \lambda_{ab} R)}{n(n-1)} \left(g_{ik} \delta^{h}_{j} - g_{ij} \delta^{h}_{k} \right) + \frac{1}{(n-1)} \left[\lambda_{ab} R_{ik} \delta^{h}_{j} - \frac{(R_{,ab} - \lambda_{ab} R)}{n} g_{ik} \right] \\ &- \delta^{h}_{k} \left[\lambda_{ab} R_{ij} - \frac{(R_{,ab} - \lambda_{ab} R)}{n} g_{ij} \right] \end{split} \tag{2.8}$$

$$= \lambda_{ab} \left[R_{ijk}^h + \frac{1}{(n-1)} \left(R_{ik} \delta_j^h - R_{ij} \delta_k^h \right) \right]$$
 (2.9)

$$=\lambda_{ab}W_{ijk}^{h}$$

therefore the space is $W^* - GW_n$.

Conversely let the space be $W^* - GW_n$ then (2.4) in view of (1.23) gives

$$R_{ijk,ab}^{h} + \frac{1}{(n-1)} \left(R_{ik,ab} \delta_{j}^{h} - R_{ij,ab} \delta_{k}^{h} \right) = \lambda_{ab} \left[R_{ijk}^{h} + \frac{1}{(n-1)} \left(R_{ik} \delta_{j}^{h} - R_{ij} \delta_{k}^{h} \right) \right]$$
(2.10)

transecting (2.10) by g^{ij} we obtain

$$R_{ij,ab} = \lambda_{ab} R_{ij} - \frac{1}{n} (\lambda_{ab} R - R_{,ab}) g_{ij}$$
 (2.11)

Therefore we have

$$\delta_k^h R_{ij,ab} - \delta_j^h R_{ik,ab} = \lambda_{ab} \left(\delta_k^h R_{ij} - \delta_j^h R_{ik} \right) - \frac{R}{n} \lambda_{ab} \left(\delta_k^h g_{ij} - \delta_j^h g_{ik} \right) + \frac{R_{,ab}}{n} \left(\delta_k^h g_{ij} - \delta_j^h g_{ik} \right)$$

$$(2.12)$$

Substituting (2.12) in (2.10) we have

$$R_{ijk,ab}^{h} - \frac{R_{,ab}}{n(n-1)} \left(\delta_k^h g_{ij} - \delta_j^h g_{ik} \right) = \lambda_{ab} \left[R_{ijk}^h - \frac{R}{n(n-1)} \left(\delta_k^h g_{ij} - \delta_j^h g_{ik} \right) \right]$$

which reduces to

$$Z_{ijkab}^{h} = \lambda_{ab} Z_{ijk}^{h}$$

Theorem: 2.2 The necessary and sufficient condition for a Generalized Weyl space GW_n to be $C^* - GW_n$ is that it should be $Z^* - GW_n$.

Proof: Let GW_n satisfies the relation (2.3) then (2.3) in view of (1.24) reduces to (2.5) and (2.6).

Now differentiating (1.24), (1.25) and (1.26) covariantly with respect to a and then again differentiating the result thus obtained with respect to b we have respectively

$$Z_{ijk,ab}^{h} = R_{ijk,ab}^{h} + \frac{R_{,ab}}{n(n-1)} \left(g_{ik} \delta_{j}^{h} - g_{ij} \delta_{k}^{h} \right), \tag{2.13}$$

$$C_{ijk,ab}^{h} = Z_{ijk,ab}^{h} + \frac{2}{n(n-2)} \left[\delta_{k}^{h} Z_{[ij],ab} - \delta_{j}^{h} Z_{[ik],ab} - g_{ik} g^{hm} Z_{[mj],ab} + g_{ij} g^{hm} Z_{[mk],ab} - (n-2) \delta_{i}^{h} Z_{[kj],ab} \right] - \frac{1}{(n-2)} \left[\delta_{k}^{h} Z_{ij,ab} - \delta_{j}^{h} Z_{ik,ab} - g_{ik} g^{hm} Z_{mj,ab} + g_{ij} g^{hm} Z_{mk,ab} \right]$$
(2.14)

and
$$Z_{jk,ab} = R_{jk,ab} - \frac{R_{,ab}}{n} g_{jk}$$
 (2.15)

Equation (1.14) in view of (2.13) and (2.15) reduces to

$$C_{ijk,ab}^{h} = R_{ijk,ab}^{h} + \frac{R_{,ab}}{n(n-1)} \left(g_{ik} \delta_{j}^{h} - g_{ij} \delta_{k}^{h} \right) + \frac{2}{n(n-2)} \left[\delta_{k}^{h} \left(R_{ij,ab} - \frac{R_{,ab}}{n} g_{ij} \right) - \delta_{j}^{h} \left(R_{ik,ab} - \frac{R_{,ab}}{n} g_{ik} \right) \right. \\ \left. - g_{ik} g^{hm} \left(R_{mj,ab} - \frac{R_{,ab}}{n} g_{mj} \right) + g_{ij} g^{hm} \left(R_{mk,ab} - \frac{R_{,ab}}{n} g_{mk} \right) - (n-2) \delta_{i}^{h} \left(R_{kj,ab} - \frac{R_{,ab}}{n} g_{kj} \right) \right. \\ \left. - \frac{1}{(n-2)} \left[\delta_{k}^{h} \left(R_{ij,ab} - \frac{R_{,ab}}{n} g_{ij} \right) - \delta_{j}^{h} \left(R_{ik,ab} - \frac{R_{,ab}}{n} g_{ik} \right) - g_{ik} g^{hm} \left(R_{mj,ab} - \frac{R_{,ab}}{n} g_{mj} \right) \right. \\ \left. + g_{ij} g^{hm} \left(R_{mk,ab} - \frac{R_{,ab}}{n} g_{mk} \right).$$

$$(2.16)$$

Equation (2.16) in view of (2.5), (1.24) and (2.6) reduces to

$$\begin{split} C^h_{ijk,ab} &= \lambda_{ab} \{ Z^h_{ijk} + \frac{2}{n(n-2)} \left[\delta^h_k Z_{[ij]} - \delta^h_j Z_{[ik]} - g_{ik} g^{hm} Z_{[mj]} + g_{ij} g^{hm} Z_{[mk]} - (n-2) \delta^h_i Z_{kj} \right] \\ &- \frac{1}{(n-2)} \left[\delta^h_k Z_{ij} - \delta^h_j Z_{ik} - g_{ik} g^{hm} Z_{mj} + g_{ij} g^{hm} Z_{mk} \right] \} \end{split}$$

which reduces to

$$C_{ijk.ab}^h = \lambda_{ab}C_{ijk}^h$$

Conversely, let the space be $C^* - GW_n$ then (2.2) in view of (1.25) reduces to

$$\begin{split} Z_{ijk,ab}^{h} + & \frac{2}{n(n-2)} \left[\delta_{k}^{h} Z_{[ij],ab} - \delta_{j}^{h} Z_{[ik],ab} - g_{ik} g^{hm} Z_{[mj],ab} + g_{ij} g^{hm} Z_{[mk],ab} - (n-2) \delta_{i}^{h} Z_{kj,ab} \right] \\ - & \frac{1}{(n-2)} \left[\delta_{k}^{h} Z_{ij,ab} - \delta_{j}^{h} Z_{ik,ab} - g_{ik} g^{hm} Z_{mj,ab} + g_{ij} g^{hm} Z_{mk,ab} \right] = \lambda_{ab} \{ Z_{ijk}^{h} + \frac{2}{n(n-2)} \left[\delta_{k}^{h} Z_{[ij]} - \delta_{j}^{h} Z_{[ik]} - g_{ik} g^{hm} Z_{mj} + g_{ij} g^{hm} Z_{mk} \right] - (n-2) \delta_{i}^{h} Z_{kj} \right] - \frac{1}{(n-2)} \left[\delta_{k}^{h} Z_{ij} - \delta_{j}^{h} Z_{ik} - g_{ik} g^{hm} Z_{mj} + g_{ij} g^{hm} Z_{mk} \right] \} \end{split}$$

which reduces to

$$Z_{ijk,ab}^{h} - \lambda_{ab} Z_{ijk}^{h} = \frac{2}{n(n-2)} [\delta_{k}^{h} (Z_{[ij],ab} - \lambda_{ab} Z_{[ij]}) - \delta_{j}^{h} (Z_{[ik],ab} - \lambda_{ab} Z_{[ik],ab}) - g_{ik} g^{hm} (Z_{[mj],ab} - \lambda_{ab} Z_{[mj]}) + g_{ij} g^{hm} (Z_{[mk],ab} - \lambda_{ab} Z_{[mk]}) - (n-2) \delta_{i}^{h} (Z_{kj,ab} - \lambda_{ab} Z_{kj})] - \frac{1}{(n-2)} [\delta_{k}^{h} (Z_{ij,ab} - \lambda_{ab} Z_{ij}) - \delta_{j}^{h} (Z_{ik,ab} - \lambda_{ab} Z_{ik}) - g_{ik} g^{hm} (Z_{[mj]} - \lambda_{ab} Z_{mj}) + g_{ij} g^{hm} (Z_{mk,ab} - \lambda_{ab} Z_{mk})]$$

$$(2.17)$$

Equation (2.17) in view of (1.26)(2.6) and (2.15) reduces to

$$Z_{ijk,ab}^h - \lambda_{ab} Z_{ijk}^h = 0$$

therefore the space is $Z^* - GW_n$.

REFERENCES:

- [1] Zlatanov, G. Nets in the n-dimensional space of Weyl, C.R. acad. Bulgare. Sci. 41, (1988), 29-32.
- [2] Tsareva, B. and Zlatanov, G. On the geometry of the nets in the n-dimensional space of Weyl, J. Geom. 18, (1990), 182-197
- [3] Norden,, A. Affinely connected spaces, GRMFL Moscow, (1976).
- [4] Murgescu,, V. Espaces de Weyl generalized, Rev. Rour. Math. Pure. et. Appl., XX, (2),(1970),293
- [5] Murgescu, V. Espaces de Weyl generalized, Bul. Inst. Pol. de Jassy., 1970.
- [6] Zeren Akgun, L. On generalized weyl Spaces, Bul. Cal. Math. Soc., 91, (4), (1999), 267-278.
- [7] Miron, R. Mouvements confermes elans les espaces W_n et N_n , Tensor N.S. 19,(1968),33-41.
- [8] Singh U.P. and Singh A. K., On Kaehlerian conharmonic recurrent and Kaehlerian conharmonic symmetric space, Acc. Naz. Dei Lincei, Rend, 62(2), (1977). 173-179.
- [9] K.S. Rawat, and Girish Dobhal, *On the bi-recurrent Bochner curvature tensor*, Journal of the Tensor Society, 1(2007), 33-40.
- [10] K.S. Rawat, and Girish Dobhal, *Bi-recurrent and bi-symmetric Concircularcurvature tensor of Riemannian space*, Jour. PAS, **15**(2009), 54-60.
