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ABSTRACT

In this paper, a mathematical model consisting of mutualistic interactions among three species is proposed and
analyzed. The local stability analysis of the system is carried out in each of the following three cases: (1) The death
rate of any one (say third) species is greater than its birth rate. (2) The death rate of any two (say second and third)
species are greater than their birth rate. (3) The death rate of all the species are greater than their birth rate.
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1. INTRODUCTION:

Mutualism is the interaction of two or more species of organisms that benefits each other (Odum [9]). In an ecosystem,
mutualisms are found in many diverse communities; such interactions are well documented in the field. Examples
include the algal-fungal associations of lichens (Ahmadjian [1]; Hale [5]). the legume-nitrogen-fixing bacteria
interactions (Burns and Hardy [2]); plant pollinator interactions (Janzen [6]).

An example of a three way mutualism in Panama rainforests. This involves Virola trees, toucans, and agoutis. Agoutis
are small rainforest mammals that eat fruits and seeds. A Virola tree produces fruits high in the top of the tree and they
are eaten by toucans. Agoutis cannot climb Virola tree and eat Virola seeds from fruits eaten by toucans that drop the
seeds. In times of plenty, when there are too many seeds to eat, agoutis bury some seeds that they plan on digging up
when food is in short supply in the dry season. You can imagine that an agouti might forget the location of some of its
buried Virola seeds, which are now, in effect, planted under the soil and can germinate and grow when conditions are
favorable. So, the toucan helps both the tree and the agouti. The tree supplies the food (seeds) for both animal species,
and the agouti helps the tree by planting its seeds so new trees will grow (Robbins [11]}, Simpson K, and Day N. [12]).

A general concept of mathematical modeling can be found in Meyer [8]. A detailed study on ecological species is given
in the treatises of the authors such as Cushing [3], Freedman [4] and Paul colinvaux [10]. Recently the authors in [7,
13] investigated problems related to (i) competitor-competitor-mutualist Lotka-Volterra model, (ii) mutualism-
competition model. However the volume of work on mutualism is significantly small compared to that of the work
dealing with Prey-Predator and competition interactions. This motivates the author to study three species mutualistic
interactions in ecosystem. In this paper, we investigate the Stability analysis of mutualistic interactions among three
species with limited resources for first and second species and unlimited resources for third species.

2. MATHEMATICAL MODEL:

The mathematical model for three mutually interacting species with limited resources for the first and second species
and unlimited resources for third species is given by the following system of equations:
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dN
d_tl: N,(a,— oy, N, + a,N, + a3 N;)
dN.
dt2 =N,(a, +, N, —a,,N, + ,,N,) (2.1)
dN
dt3 =N,(a, +ay, N, +a,N,)

where N,, i=1,2,3 represent the population density of first, second and third species respectively, a, represent the
intrinsic growth rate of first, second and third species respectively, &;, and &,, are the rate of decrease of first and
second species due to insufficient food, ¢, is the mutual coefficient of third species to first species, &,, is the mutual
coefficient of first species to second species, «,, is the mutual coefficient of third species to second species, @, is
the mutual coefficient of first species to third species, &, is the mutual coefficient of second species to third species.

a,,e,,,0,,0,,0, ,0%,,0, ,Q, are nonnegative constants. If the death rate is greater than the birth rate for any

species, we continue to use the same notation as intrinsic growth rate with negative sign for the rate of difference.
2.1 Stability analysis:

In this section we shall study the local stability analysis of the nonnegative equilibrium points of the system (2.1).

There are at most four possible nonnegative equilibrium points as follows
(i E,; =(0,0,0) always exist.

a
—L,0,0 | always exist.

all

(i) E,,

a
(iii) Eyy =| 0,—2,0 | always exist.
6‘{22

a0y, + a0, a0, + 4,0,
a0, — 00,0, QQ,, —0,Q,,

,0 | exists if @;,a,, > 0,Q,,.

(iv) E,, =

From the variational matrix about the equilibrium point E,,, it is shown that E,, is unstable node with locally
unstable manifold in the (N, N,,N;) space. Further, all the three species populations grow indefinitely as ¢ — oo.
The equilibrium point E,, [respectively E,, ] is saddle point with locally stable manifold in the N, [respectively N, ]
direction and with locally unstable manifold in the (N,, N 3) [respectively (V,, N3) ] plane. Furthermore, first species
population [respectively second] decline near equilibrium point E,, [respectively E; ] and second and third species

populations [respectively first and third] grow indefinitely as # — oo . For the local stability analysis of the equilibrium

point E,, , we consider subsystem of the system (2.1) in the following equations

dN,
= Nl(al -a;,N, +6‘(12N2)
d (2.2)
dN,
- = Nz(az +a, N, _azzNz)
dt
a0y, +a,Q, a0, + a0,

R is one of the nonnegative equilibrium point of subsystem
00, =00, 00, — 0,0,

.
We see that E,, =

(2.2). Clearly, E,, has the same stability behavior as E; in the interior of the (N;,N,) plane. The variational

matrix of subsystem (2.2) at the equilibrium point E; is
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—0,, (a0, +a,0,) (a0, +a,0,)
J, [ a,a,, +a,a,, ’ a,a, +a,q, J _ 04,0y — 0,0, 04,0y — 0,0,
0Oy — 00 04Oy — O (a0, +a,d,)  —0y (a0, +a,0,,)
0,0y, — 04,00 040y, — 04,0

Thus, the characteristic equation of J, is 4>+ 0,4+ 0, =0 where

aa,, +a,Q, aa, +a,’
o= 0{“( 1%22 2%12 ]4—0[22( 1421 2411 J
a0, — 0,0 00y — Q)4
_ ( a0y +a,0, J( a0, +a,a,
a0, — 0,4, a0y, — Q)

0, j (anazz _alzaZI)
According to Routh-Hurwitz criterion, the necessary and sufficient conditions for stability are ¢, >0, ¢, >0 . Since

a,,0,, >a,0,,,0,>0,0, >0 and therefore, by Routh-Hurwitz criterion, the equilibrium point E; of subsystem
(2.2) is stable node. Obviously, E,, is stable node in the (N,,N,) plane. However, the roots of the characteristic
equation of the variational matrix of system (2.1) at E,, satisfy

_ a,a, +a,0, a,8,, + 4,0,
§1+§2__ an( + @,

a0, — 0,0, a0, — 0,

a,a, +a,0, a,0,, + 4,0,
‘:'glgz = ( (anazz _alzazl)

a0y, — 0,4, 0%, — 0 &,

a0y, + 4,4, a0, +a,
& :a3+af3]( +
a0, — Q)

3. THE DEATH RATE OF ANY ONE (SAY THIRD) SPECIES IS GREATER THAN ITS BIRTH RATE:

Under this situation, system (2.1) has the form

dN
d_tl = Nl(al —a“Nl +a12N2 +al3N3)
dN
dt2 =N,(a, +a, N, —a,,N, + &,;N;) Gb
dN
dt3 = Ny(=a, + oy N, + a;,N,)

3.1 Stability analysis:

The present section deals with the existence of the equilibrium points of system (3.1) and local stability analysis of

each one are investigated. At most there are seven possible nonnegative equilibrium points for system (3.1), the
existence conditions on them are given as the following.

(1) The equilibrium point E =(0,0,0) always exist.

a
(2) The equilibrium point E,, =£—1,O,OJ always exist.

11
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a
(3) The equilibrium point E,; = 0,—%,0 always exist.

(4) The equilibrium point E,, =

(5) The equilibrium point E, =

(6) The equilibrium point E, =

22

a, a0, —a,o. L
O,A,M) exists if a,a,, > a,a, .
a32 a23a32
a a.q,, —a,d ..
A,O,Mj exists if a,@,, > a,a, .
a3l al3a3l

a0, + 4,0, a0, +a,q,
Q0 — 0,0, @0, — 04,0,

,OJ exists if ,,a,, > o, a,, .

(7) The equilibrium point £, (Nl* ,N;,N_: ) exists if and only if there is a unique positive solution to the following

equations

—a, N, +o,N, +a;N;=—aq,
a, N, —a,,N, +a,;N,=—a,
ayN, +a,N,=a,

provided that the three conditions

hold, where

(C) a,0,,0, + a, (0, 0y + 03060, ) >, 0,0
(C,) a,0,0, + ay (&, 0y + 0430, ) > 4,00y,

(Cy) a(ap ) + 0y 0, ) + 4, (0,0, + 04, 0) + 30,05, <aA,0, Oy

o W00 — 0,000y t 4, (@, +0430,)
0400300y + 04300, 0 + 04, 00300 + 0300, 0,

N; __Ta00, + 0,000 +a,(0, ) + 04505))
00030y + 04300, 0 + 0, 0030 + 0300, O,

+_ T4 (0,0, + 0, 0) — a, (04,0, + 0, 05)) + 05 (04,0, — 0, 05)

N,

LZI ]a23a32 + a]3a2la32 + a12a23a3l + L¥13a22a3]

Computing the variational matrices corresponding to each equilibrium point and then using the Routh-Hurwitz criteria
the following dynamical behaviour are observed.

(1) The equilibrium point E,, is saddle point.

) If aa;, <a,o, [resp. a,0, <a,l,, ], the equilibrium point E,, [resp. E,,] is saddle point with locally stable

manifold in the (N,,N;) [resp. (N,,N,) | plane and locally unstable manifold in the N, [resp. N,] direction and

if a,a, >a,q, [resp. a,a;, >a,,, |, the equilibrium point E,, [resp. E, ] is saddle point with locally stable

manifold in the N, [resp. N, ] direction and locally unstable manifold in the (N,,N,) [resp. (N,,N,)] plane.

(3) For the stability analysis of the equilibrium point E,,, we consider subsystem of the system (3.1) in the following

equations.

dN,
dt

dN,
dt
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3.2)

= N,(-a; + o;,N,)
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a; G0, — 4,05,

We see that E;4=( .
s, (LFR1225)

] is one of the nonnegative equilibrium point of subsystem (3.2) . Clearly,

E,, has the same stability behavior as E; 4 in the interior of the (N,,N,) plane. The variational matrix of subsystem

(3.2) at the equilibrium point E; is

—a0y a0,
J, (&’ a0, — 0,0, ] _ ;) O,
4% 030, G0, — 4,0 0
Oy

—a,(a;0,, —a,3,)

a, .
Thus, the characteristic equation of J, is A*+8A+8, =0 with §, = =2, §, =
(2%
32 32

. According

to Routh-Hurwitz criteria, we conclude that the equilibrium point E; , of subsystem (3.2) is saddle point. Obviously,
E,, is saddle point in the (N,,N,) plane. However, the roots of the characteristic equation of the variational matrix

of system (3.1) at E,, satisfy

a0
h+mn,=-—

3
a,(a;0,, — a,0ty,)

mn, =-
@,
_ 4030, — 4,030, + 4300, 0 + 4304300,

3

a23 a32

(4) The stability behavior of the equilibrium points E,; and E,, are similar to the equilibrium points E,, and FE,,
respectively and hence we omit the details.

Theorem: 3.1 The positive equilibrium point E, (N:,N;,N;) is not stable.

Proof: Assume N, = Nl* +u, N, = N; +u,, N, = N; +u, where u,,u,,u, small perturbations are. The variational

matrix about equilibrium point E,, is given by

_allNl alZNl al3N1
J =] o,N, —o,N, ayN,
* *
0{31N3 0532N3 0

The characteristic equation of the above variational matrix about equilibrium point E,, is A’ +k A +k,A+k, =0
where

* *
k =, N, +a,N,

* * * * * *
kz = (anazz _a12a21)N1 Nz —0{230{32N2N3 —0[130{31N1 N3

k3 == (alla23a32 + a12a23a3l + a13a21a32 + a13a22a31 )NI*N;N;
According to Routh-Hurwitz criterion, the necessary and sufficient conditions for stability are
k, >0, k; >0, kk, >k,
We observe that k; >0 but k, <0 and therefore, by Routh-Hurwitz criterion, the equilibrium point E,, is unstable.
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4. THE DEATH RATE OF ANY
THEIR BIRTH RATE:

TWO SPECIES (SAY SECOND AND THIRD) ARE GREATER THAN

Under this situation, system (2.1) has the form

dN,

— =N,(q, —4,)N, + o, N, + a3N;)

dt
dN,

dt
dN,

dt

4.1 Stability analysis:

N,(-a, +a,N, - a,,N, + ,;N;) 4.1

= N,(-a, +a,N, +o;,N,)

In this section, the existence and the local stability analysis of the nonnegative equilibrium points of the system (4.1)

are investigated. Six nonnegative equilibrium points are found. The existence of these equilibrium points shows that:

(1) The equilibrium point E,, =

(0, 0,0) always exist.

a
(2) The equilibrium point E,, =(—1,0,0j always exist, as the first species survives and second and third species

are washed out.

first species is washed out.

(4) The equilibrium point E,, =

11

egeq e . ag a';azz + aza';z . . . .
(3) The equilibrium point E,, = 0,——,——=——=—= | always exists, as the second and third species survive and
a32 a23a32
a a.o, —ad.
—S,O,MJ exists if a,o, > a,a;, .
a}l al3a3l

(5) The equilibrium point E, =

(6) The equilibrium point E,(
equations

. .. a [04 [04
exists if — > —1L > 12
a, @, Oy

G0, — a0, a0, —a,&, OJ
0,0, — 0,0, &, —0&,

N,,N,,N,) exists if and only if there is a unique positive solution to the following

-a, N, +a,N, +o;;N;=—q,

o, N, = 0,,N, +a,;N;=a,

provided that the two conditions

o, N, +a;,N,=a,

(C)) ay(a,0; + 0300,)>0,06,00, + a,00,05,

(C5) a,(aq,a, + 0, 0)) + a,04,0, > ) (U Oy, + 0y 0 ) + Q30,0

+ a2a13a32 + 613 (a12a23 + a13a22)

a11a23a32 + al3a21a32 + a12a23a31 + %3“22“31

1 _a26¥13a31 +a3(alla23 +a13a21)

hold, where
ﬁl 405,03,
Fz —0,0,0;
N = —a, (0,

allaBaSZ + a13a21a32 + a12a23a31 + a13a220’/31

+0,,0,) +a,(04,05, + 0, 05,) + 0, (04,05, — 0, 0))

3

6Ylla236Z32 + a13a21a32 + al2a23a31 + a130’/22a31

© 2011, IIMA. All Rights Reserved
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The local stability analysis of system (4.1) by computing the variational matrices corresponding to each equilibrium

point and then using the Routh-Hurwitz criteria shows that:

(1) The equilibrium point E,, is saddle point.

(2) The eigenvalues of the variational matrix about E,, are given as follows

a0, —a,0,

h=-a, 4=0Tt0 g

all all

_a%, —aa,

Thus, the equilibrium point E,, is stable node or saddle point, depending on both A4, and A, are negative or

otherwise. (i.e. both 4, and A, are positive or one positive and other negative).

Dynamical behavior of equilibrium points E,;, E,,, E,; and E, are shown in the Theorem 5.1.

5. THE DEATH RATE OF ALL THE SPECIES ARE GREATER THAN THEIR BIRTH RATE:

Under this situation, system (2.1) has the form

dN,
d_tl = N,(-a, —a,N, + a,,N, + &,,N,)
dN
dtz =N,(-a, +o,N, —a,,N, +a,;N;) (GH))
dN
d; = N,(—a, + o, N, + &,,N,)

5.1 Stability analysis:

This section establishes the local stability analysis of the nonnegative equilibrium points of the system (5.1) . There are

at most five possible nonnegative equilibrium points as follows.

(1) The equilibrium point Ej, =(0,0,0) always exist.

ey . a, a,0,, +al .
(2) The equilibrium point E,, = 0,—-,—222 372 | always exists.
a32 a23a32

a a,d,, +a,Q,
(3) The equilibrium point E , =| —,0,———-1

J always exists.
a3| al}“}l

a0, ta,0, a4, +a,Q,

(4) The equilibrium point E , =

, ,0] exists if a,0,, > 0, &, .
00, — 0,0, 0,0, — 0,0,

(5) The positive equilibrium point Eg (2V, 1* *,N;*,N:*) exists if and only if there is a unique positive solution to the
following equations
-, N, +a,N, +a;Ny=aq,
N, —a,N, + 0N, =a,
ayN, +a;, N, =a,

provided that the two conditions
(Cs) a,00,00, + a5 (0,0, + 0300, ) > 0,06,

(C)) a0y + a,(04,0h; + 030, >, 06,05,
(Cy) a,(a 0 + 0, 00,) + a, (0, O, + 04, 0) + Q30 O, > 0300, 0,
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hold, where

N = 40y Oy + Ay 06,00, + A (0, Oy + O3 0y)
=
O\ 03Oy + O30 O, + O, 00305 + O30, Oy

N = a4, 00,,00, — A, 06300, + a5 (0,0 + 04,0,)
o=
QO30 + 000,00, + O, 0030 + O30, Oy

N** — al (a22a31 + a21a32) + aZ (a11a32 + a12a31) + a3 (allaZZ — alZaZI)
3 =
a11a23a32 + a13a21a32 + %2“23“31 + a13a22a31

From the variational matrix about the equilibrium point E, , it is shown that E, is stable point. We now state the
local dynamical behavior of the equilibrium points E.,, E,,, E;, and E,; in the form of Theorem 5.1. The proof of

this Theorem follows directly from the Routh-Hurwitz criteria and hence omitted.

Theorem: 5.1
(i) The equilibrium points E,, and E, have the same stability behavior in the N,N, plane.

(ii) The equilibrium points E,, and E, have the same stability behavior in the NN, plane.
(iii) The equilibrium points E,; and E., have the same stability behavior in the NN, plane.
(iv)The equilibrium points E,; and E.; are saddle point.

6. NUMERICAL SIMULATIONS:

In this section, numerical simulations are carried out to investigate the dynamic behavior of the systems (3.1), (4.1)

and (5.1) about the equilibrium points E,,, E,, and E.. respectively. Consider the parameter values

a,=05, a,=04, a,=03, oy, =2, ¢,,=0.2, ;; =0.5, 6.1

@, =0.1, @, =18, a,,=06, a, =0.3, &, =0.4 ‘
For this set of parameter values, the system (3.1) has an equilibrium point at (0.4293, 0.4280, 0.5459). It is saddle
point as the eigenvalues of the variational matrix of the system (3.1) about the equilibrium point (0.4293, 0.4280,
0.5459) are approximately -0.8956, -0.8408, 0.1074. Furthermore, third species is extinct out due to death rate is
greater than its birth rate while first and second species populations are grow constantly (See Fig. (1)). Similarly, for
the same data set (6.1), the systems (4.1) and (5.1) have equilibrium points at (0.6278, 0.2792, 1.3995) and (0.3300,
0.5025, 2.1191) respectively which are saddle points. The dynamical behavior of the systems (4.1) and (5.1) about

the equilibrium points (0.6278, 0.2792, 1.3995) and (0.3300, 0.5025, 2.1191) are shown in the Fig. 2 and Fig. 3
respectively.

o
o
o
@

first species first species
07k second species o7k second species
third species third species

=
=)
=
)

c 05F c 05F
=] 2
= =
= 04+ = 04+
3 g
Q 03} Q03

=
ra
=
]

=
=

=)
=

20 30 40 50 60 70 80 90 100

=
=
na
=
w
=
.
=1
13
=
@ [
=
=
=
=)
=
w
=
=
=
=)
=

time time
Fig- 1. Fig.-2

© 2011, IIMA. All Rights Reserved 2532



Munde A. B. and *Dhakne M. B./ Stability analysis of mutualistic interactions among three species with limited resources for
first and second species and unlimited resources for third species/ IJMA- 2(12), Dec.-2011, Page: 2525-2533

08

first species
second species
third species

07r

06

056

04r

population

03r

02f

0

20 25

=
wm
=t
o

REFERENCES:

[1] Ahmadjian V., The Lichen Symbiosis, Blaisdell, Toronto, 1967.

[2] Burns R. C. and R. W. F. Hardy, Nitrogen Fixation in Bacteria and Higher Plants, Springer-Verlag, New York,
1975.

[3] Cushing J. M., Integro-differential Equations and Delay Models in Population Dynamics, Lect. Notes in
Biomathematics, Springer-Verlag, Heidelberg, 1977.

[4] Freedman H. 1., Deterministic Mathematical Models in Population Ecology, Marcel-Decker, New York, 1980.

[5] Hale M. E., The Biology of Lichens, 2d ed. Arnold, London, 1974.

[6] Janzen D. H., Euglossine bees as long-distance pollinators of tropical plants, Science, 171 (1971) pp 203-205.

[7] Mats Gyllenberg, Ping Yan and Yi Wang, Limit cycles for competitor-competitor-mutualist Lotka-Volterra
systems, Physica, D 221, (2006) pp 135-145.

[8] Meyer W.J., Concept of Mathematical Modeling, Mc Graw-Hill, 1985.

[9] Odum E. P., Fundamentals of Ecology, 3d ed. Saunders, Philadelphia, 1971.

[10] Paul Colinvaux, Ecology, John Wiley and Sons Inc., New York, 1986.

[11] Robbins, C., Birds of North America, Racine, WI: Western Publishing Co. 1966.

[12] Simpson K. and Day N., Birds of Australia, Princeton: Princeton University Press, 1999.

[13] Yuanshi Wang and Hong Wu, A mutualism-competition model characterizing competitors with mutualism at low
density, Mathematical and Computer Modelling, Vol. 53, (2011) pp 1654-1663.

© 2011, IIMA. All Rights Reserved 2533



