International Journal of Mathematical Archive-2(12), 2011, Page: 2590-2597

ωI -normal and ωI -regular spaces

N. Chandramathi^{1*}, K. Bhuvaneswari² and S. Bharathi³

¹Department of Mathematics, Hindusthan college of Engineering and Technology, Coimbatore-32, Tamilnadu, India *Email: mathi.chandra303@gmail.com

²Department of Mathematics, Mother Teresa Women's University, Kodaikanal, Tamilnadu, India Email: drkbmaths@gmail.com

> ³Department of Mathematics, Angel college of Engineering and Technology, Tirupur (Dt), Tamilnadu, India Email: bharathikamesh6@gmail.com

> > (Received on: 23-11-11; Accepted on: 13-12-11)

ABSTRACT

 I_g -normal and I_g -regular space are introduced and investigated by M. Navaneethakrishnan et.al [2]. In this paper we introduce and investigate some properties of ωI -normal and ωI -regular spaces via ideal.

Key words: ωI -closed sets and ωI -open sets, completely condense ideals, ω -closed sets, ω -normal and ω -regular spaces.

2000 Mathematics Subject Classification: 54D10, 54D15.

1. Introduction and Preliminaries:

An ideal *I* on a topological space is a collection of subsets of X which satisfies (i) $A \in I$ and $B \subset A$ implies $B \in I$ and (ii) $A \in I$ and $B \in I$ implies $A \cup B \in I$. Given a topological space (X, τ) with an ideal *I* on X and if $\mathcal{O}(X)$ is the set of all subsets of X, a set operator (.)*: $\mathcal{O}(X) \to \mathcal{O}(X)$, called a local function [2] of A with respect to τ and *I* is defined as follows: for $A \subset X$, $A^*(I,\tau) = \{x \in X / U \cap A \notin Iforevery U \in \tau(x)\}$ where $\tau(x) = U \in \tau / x \in U$. We will make use of the basic facts about the local functions without mentioning it explicitly. A Kuratowski closure operator cl*(.) for a topology $\tau^*(I,\tau)$ called the * -topology, finer than τ and is defined by $cl^*(A) = A \cup A^*(I,\tau)$ when there is no chance for confusion we simply write A^* instead of $A^*(I,\tau)$ and τ^* or $\tau^*(I)$. X* is often a proper subset of X. The hypothesis X=X* is equivalent to the hypothesis $\tau \cap I = \phi$. For every ideal topological space (X,τ,I) there exist a topology, $\tau^*(I)$ finer than τ and β generated by $(I,\tau) = (U \setminus I : U \in \tau and I \in I)$ but in general $\beta(I,\tau)$ is not always a topology [2]. If I is an ideal on X, then (X,τ,I) is called ideal space. By an ideal space we always mean an ideal topological space (X,τ,I) with no separation properties assumed. If $A \subset X$, cl(A) and int(A) will respectively denote the closure and interior of A in (X,τ,I) and $\tau^*(A)$ will respectively denote the closure and interior of A in (X,τ,I)

Definition: 1.1 [7] A subset A of a topological space (X, τ) is said to be αgs -closed, if $\alpha cl(A) \subset U$ whenever $A \subset U$ and $U \in SO(X, \tau)$.

Corresponding author: N. Chandramathi¹, *E-mail: mathi.chandra303@gmail.com

Definition: 1.2 [1] A subset A of an ideal topological space (X, τ, I) is called $\mathcal{O}I$ – closed if $cl^*(A) \subseteq U$ whenever $A \subseteq U$ and U is semi- I- open in (X, τ, I) .

Lemma: 1.1 [6] Let (X, τ, I) be an ideal space. If I is completely condense, then $\tau^* \subset \tau^{\alpha}$.

Lemma: 1.2 [1, Theorem 2.10] In an ideal topological space (X, τ, I) the following are equivalent:

- (i) A is ωI -closed
- (ii) $cl^*(A) \subseteq U$ for some semi-I-open set U containing A.

Lemma: 1.3 Let (X, τ, I) be an ideal space. Then every subset of X is ωI –closed if and only if every semi-I-open set is *-closed.

Proof: Suppose that every subset of X is ωI - closed. Let U be a semi -I-open set then U is ωI -closed and $U^* \subset U$ implies $cl^*(U) \subset U$. Hence U is *-closed.

Conversely, suppose that every semi-I-open set is *-closed. Let A be non empty subset of X contained in a semi-I-open set U. Then $cl^*(A) \subset U^*$ implies $cl^*(A) \subset U$. This proves that A is ωI -closed.

Lemma: 1.4 A set A is ωI –open if and only if $F \subseteq int^*(A)$ whenever F is semi –I-closed and $F \subseteq A$.

Proof: Suppose that $F \subseteq \operatorname{int}^*(A)$, where F is semi-I-closed and $F \subseteq A$.Let $A^c \subseteq U$, where U is semi-I-open .Then $U^c \subseteq A$ and U^c is semi-I-closed. Therefore, $U^c \subseteq \operatorname{int}^*(A)$.Since $U^c \subseteq \operatorname{int}^*(A)$, we have $(\operatorname{int}^*(A))^c \subseteq U$, i.e. $cl^*(A^c) \subseteq U$, since $cl^*(A^c) = (\operatorname{int}^*(A))^c$.Thus A^c is $\mathcal{O}I$ -closed, i.e. A is $\mathcal{O}I$ open.

2. *\omegal* -Normal spaces:

Definition: 2.1 An ideal space (X, τ, I) is said to be an ωI -normal if for every pair of disjoint closed sets A and B, there exist ωI - open sets U and V such that $A \subseteq U$ and $B \subseteq V$.

Remark 2.1 Since every open set is ωI -open, every normal space is ωI - normal. But a normal space need not be ωI -normal as the following example shows.

Example: 2.1 Let
$$X = \{a, b, c\}, \tau = \{X, \phi, \{b\}, \{a, b\}, \{b, c\}\}, I = \{\phi, \{b\}\}.$$
 Then $\varphi^* = \varphi$,

 $(\{a,b\})^* = \{a\}, (\{b,c\})^* = \{c\}, \{b\}^* = \varphi$, and $X^* = (\{a,c\})$.Since every semi-I-open set is *-closed and so by lemma 1.3, every subset of X is ωI - closed and hence every subset of X is ωI - open. This implies that (X, τ, I) is ωI - normal. Now, $\{a\}$ and $\{c\}$ are disjoint closed subsets of X which are not separated by disjoint open sets and so (X, τ) is not normal.

Theorem: 2.1 Let (X, τ, I) an ideal space where I is completely condense. Then the following are equivalent.

(i) (X, τ, I) is normal.

(ii) For every pair of disjoint closed sets A and B containing A, there exists disjoint ωI - open set U and V of X such that $A \subset U$ and $B \subset V$.

(iii) For every closed set A and an open set V containing A, there exists an $\mathcal{O}I$ - open set U such that $A \subset U \subset Cl^*(U) \subset V$

Proof: (*i*) \Rightarrow (*ii*) It is clear, since every open set is ωI -open.

 $(ii) \Rightarrow (iii)$ Let A be a closed set and V be an open set containing A. Since A and X-V are disjoint closed sets, there exist disjoint ωI - open sets U and W such that $A \subset U$ and $X - V \subset W$. Again $U \cap W = \phi$ implies that $U \cap \operatorname{int}^*(W) = \phi$ and so $Cl^*(U) \subset X - \operatorname{int}^*(W)$. Since X-V is closed and W is ωI -open, $X - V \subset W$ implies that $X - V \subset \operatorname{int}^*(W)$ and so $X - \operatorname{int}^*(W) \subset V$. Thus, we have, $A \subset U \subset Cl^*(U) \subset X - \operatorname{int}^*(W) \subset V$ which proves (c).

 $(iii) \Rightarrow (i)$ Suppose A and B are disjoint closed subsets of X. By hypothesis, there exists a $\mathcal{O}I$ - open set U of X such that $A \subset U \subset Cl^*(U) \subset X - B$. Since U is $\mathcal{O}I$ - open $A \subset \operatorname{int}^*(U)$. Since , $PO(X) \cap I = \{\varphi\}$ by Lemma 1.1 $\tau^* \subset \tau^{\alpha}$ and so $\operatorname{int}^*(U), X \setminus cl^*(U) \in \tau^{\alpha}$. Thus, $A \subseteq \operatorname{int}^*(U) \subseteq \operatorname{int}(cl(\operatorname{int}(\operatorname{int}^*(U)))) = G(say)$ and $B \subset X \setminus cl^*(U) \subseteq \operatorname{int}(cl(\operatorname{int}(X \setminus cl^*(U)))) = H(say)$. To show that (X, τ) is normal, it suffices to show that $G \cap H = \varphi$. In fact $x \in G \cap H \Rightarrow \operatorname{int}(cl(\operatorname{int}(\operatorname{int}^*(U))))$ and $x \in H \Rightarrow x \in cl(\operatorname{int}(\operatorname{int}^*(U)))$ and $x \in H \in \tau \Rightarrow$ there exists $y \in \operatorname{int}(\operatorname{int}^*(U))$ and

 $y \in H \subset cl(int(X \setminus cl^*(U))) \Rightarrow int(int^*(U)) \cap int(X \setminus cl^*(U)) \neq \varphi \Rightarrow G$ and H are disjoint required disjoint open sets containing A and B respectively, which proves (i).

Theorem: 2.2 In an ideal space the following are equivalent.

(i) (X, τ, I) is ωI – normal.

(ii) For every pair of disjoint closed sets A and B containing A, there exists disjoint ωI open set U and V of X such that $A \subset U$ and $B \subset V$.

(iii) For every closed set A and an open set V containing A, there exists an ωI -open set U such that $A \subset U \subset Cl^*(U) \subset V$

Proof: $(i) \Rightarrow (ii)$ The proof follows from the definition of ωI -normal space.

 $(ii) \Rightarrow (iii)$ Let A be a closed set and V be an open set containing A. Since A and X-V are disjoint closed sets, there exist disjoint ωI -open sets U and W such that $A \subset U$ and $X - V \subset W$. Again $U \cap W = \phi$ implies that $U \cap \operatorname{int}^*(W) = \phi$ and so $Cl^*(U) \subset X - \operatorname{int}^*(W)$. Since X-V is closed and W is ωI -open, $X - V \subset W$ implies that $X - V \subset \operatorname{int}^*(W)$ and so $X - \operatorname{int}^*(W) \subset V$. Thus, we have, $A \subset U \subset Cl^*(U) \subset X - \operatorname{int}^*(W) \subset V$ which proves (c).

 $(iii) \Rightarrow (i)$ Suppose A and B are disjoint closed sub sets of X. By hypothesis, there exists a ωI - open set U of X such that $A \subset U \subset Cl^*(U) \subset X - B$. If $W = X - cl^*(U)$ then U and W are disjoint ωI -open sets containing A and B respectively. Therefore, (X, τ, I) is ωI -normal.

Theorem: 2.3 Let (X, τ, I) an ideal space where *I* is completely condense. If (X, τ, I) is ωI -normal then it is a normal space.

Proof: Suppose that I is completely condense. By Theorem 4.3.1, (X, τ, I) is ωI normal if and only if each pair of disjoint ωI –open sets U and V such that $A \subset U$ and $B \subset V$ if and only if X is normal, by theorem 2.1.

Theorem: 2.4 Let (X, τ, I) be an ωI – normal space. If F is closed and A is ω - closed set such that $A \cap F = \varphi$, there exist disjoint ωI -open sets U and V such that $A \subset U$ and $F \subset V$.

Proof: Since $A \cap F = \varphi$, $A \subset X - F$. where X - F is semi open .Therefore, by hypothesis $cl(A) \subset X - F$. Since $cl(A) \cap F = \varphi$ and X is ωI – normal, there exist disjoint ωI -open sets U and V such that $A \subset U$ and $F \subset V$.

The following corollary 2.1 gives properties of normal spaces. If $I = \{\varphi\}$ in theorem 2.4 then we have the following corollary 2.1 the proof of which follows from theorem 2.3 and Remark 2.2, since $\{\varphi\}$ is a completely condense ideal. If $I = \mathcal{N}$ in theorem 2.4, we have the corollary 2.2, since $\tau^*(\mathcal{N}) = \tau^{\alpha}$ and ωI -open sets coincide with αgs -open sets.

Corollary: 2.1 Let (X, τ) be a normal space. If F is semi closed and A is ω - closed set disjoint from F, then there exist disjoint ω -open sets U and V such that $A \subset U$ and $F \subset V$.

Corollary: 2.2 Let (X, τ, I) be an ideal space where $I = \mathcal{N}$. If F is a closed set and A is an ω -closed set disjoint from F, there exist disjoint αgs -open sets U and V such that $A \subset U$ and $F \subset V$.

Theorem: 2.5 Let (X, τ, I) be an ideal space which is ωI – normal .Then the following hold.

- (i) For every closed set A and an ω -open set B containing A, there exists an ωI -open set U such that $A \subset \operatorname{int}^*(U) \subset U \subset B$
- (ii) For every ω -closed set A and every open set B containing A, there exists an ωI -open set U such that $A \subset U \subset Cl^*(U) \subset B$.

Proof: (i) Let A be a closed set and B be an ω -open set containing A. Then $A \cap (X - B) = \phi$ where A is closed and X-B is ω -closed sets. By theorem 4.4.4 there exist disjoint ωI -open sets U and V such that $A \subset U$ and $X - B \subset V$. Since $U \cap V = \phi$, we have $U \subset X - V$ by Theorem 2.3.4 $A \subset \operatorname{int}^*(U)$. Therefore, $A \subset \operatorname{int}^*(U) \subset U \subset X - V \subset B$ This proves (i).

(ii) Let A be a ω closed set and B be a semi open set containing A. Then X - B is a semi closed set contained in the ω -open set X-A. By (a), there exists an ωI -open set V such that $X - B \subset \operatorname{int}^*(V) \subset V \subset X - A$. Therefore, $A \subset X - V \subset cl^*(X - V) \subset B$. If U = X - V, then $A \subset U \subset cl^*(U) \subset B$ and so U is the required ωI -closed set.

The following Corollaries 2.3 and 2.4 give some properties of normal spaces. If $I = \{\varphi\}$ in theorem 2.5 then we have the following corollary 2.2. If $I = \mathcal{N}$ is theorem 2.5, then we have the following corollary 2.3.

Corollary: 2.3 Let (X, τ, I) be a normal space. Then the following hold. (i) For every closed set A and an ω -open set B containing A, there exists an ω -open set U such that $A \subset int(U) \subset U \subset B$

(ii) For every ω -closed set A and every open set B containing A, there exists an ωI -open set U such that $A \subset U \subset Cl(U) \subset B$

Corollary: 2.4 Let (X, τ, I) be a normal space. Then the following hold.

(i) For every closed set A and an ω -open set B containing A, there exists an αgs -open set U such that $A \subset \operatorname{int}_{\alpha}(U) \subset U \subset B$

(ii) For every ω -closed set A and every open set B containing A, there exists an αgs -closed set U such that $A \subset U \subset Cl_{\alpha}(U) \subset B$.

Definition: 2.2 An ideal space (X, τ, I) is said to be an I_{ω} – normal if for every pair of disjoint – ωI closed sets A and B, there exist open sets U and V such that $A \subseteq U$ and $B \subseteq V$. Since every closed set is ω I-closed, every I_{ω} -normal space is normal. But a normal space need not be I_{ω} -normal as the following example shows.

Example: 2.2 Let $X = \{a, b, c, d\}$, $\tau = \{X, \phi, \{a\}\}$, $I = \{\phi, \{a\}\}$. Since $\{a\}^* = \phi$, $X^* = (\{a, c\})$ Since every semi-I-open set is *-closed and so by Theorem 2.3.8, every subset of X is ωI - closed. Now $A = \{a, b\}$ and $B = \{c, d\}$ are disjoint ωI -closed sets but they are not separated by disjoint open sets and so (X, τ, I) is not I_{ω} -normal. Since there is no pair of disjoint closed sets, (X, τ, I) is normal.

Theorem: 2.6 In an ideal space the following are equivalent.

(i) (X, τ, I) is I_{ω} – normal.

(ii) For every ωI closed set A and every ωI -open set B containing A, there exists an open set U of X such that $A \subset U \subset Cl(U) \subset V$

Proof: (*i*) \Rightarrow (*ii*) Let A be a ωI closed set and V be an ωI -open set containing A. Since A and X-B are disjoint ωI closed sets, there exist disjoint open sets U and V such that $A \subset U$ and $X - B \subset V$. Again $U \cap V = \phi$ implies that $cl(U) \subset X - V$ Therefore, $A \subset U \subset Cl(U) \subset X - V \subset B$. This proves (ii)

 $(ii) \Rightarrow (i)$ Suppose A and B are disjoint ωI - closed sub sets of X then the ωI - closed set A is contained in the ωI - open set X-B. By hypothesis, there exists an open set U of X such that $A \subset U \subset Cl(U) \subset X - B$. If V = X - Cl(U), then U and V are disjoint open sets containing A and B respectively. Therefore, (X, τ, I) is I_{ω} - normal. This proves (i).

If $I = \{\varphi\}$, then I_{ω} -normal spaces coincide with ω -normal spaces and so if we take $I = \{\varphi\}$ in theorem 2.6, then we have the following characterization for ω -normal spaces.

Corollary: 2.5 In a space (X, τ) the following are equivalent.

- (i) X is \mathcal{O} -normal.
- (ii) For every ω closed set A and every ω -open set B containing A, there exists an open set U of X such that $A \subset U \subset Cl(U) \subset V$

Theorem: 2.7 In an ideal space (X, τ, I) the following are equivalent.

- (i) (X, τ, I) is I_{ω} normal.
- (ii) For every pair of disjoint ωI closed sets A and B, there exists disjoint an open set U of X containing A such that $cl(U) \cap B = \varphi$
- (iii) For every pair of disjoint ωI closed sets A and B, there exists an open set U containing A and an open set V containing B such that $cl(U) \cap cl(V) = \varphi$.

Proof: (*i*) \Rightarrow (*ii*) suppose that A and B are disjoint ωI – closed subsets of X. Then the ωI closed set A is contained in the ωI – open set X-B. By theorem 2.5 there exists an open set U such that $A \subset U \subset Cl(U) \subset X - B$. Therefore, U is the required open set containing A such that $Cl(U) \cap B = \varphi$

 $(ii) \Rightarrow (iii)$.Let A and B be two disjoint ω I-open sets of X. By hypothesis, there exists an open set U containing A such that $Cl(U) \cap B = \varphi$. Also, Cl(U) and B are disjoint ωI – closed sets of X. By hypothesis, there exists an open set V containing B such that $cl(U) \cap cl(V) = \varphi$

- $(iii) \Rightarrow (i)$. The proof is clear.
- If $I = \{\varphi\}$, in theorem 2.7 then we have the following characterizations of ω -normal spaces.

Corollary: 2.6 In a space (X, τ) , the following are equivalent.

- (i) (X, τ) is ω normal.
- (ii) For every pair of disjoint ω closed sets A and B, there exists disjoint semi-open set U of X containing A such that $cl(U) \cap B = \varphi$
- (iii) For every pair of disjoint ω closed sets A and B, there exists disjoint semi-open set U of X containing A and a open set V containing B such that $cl(U) \cap cl(V) = \varphi$.

Theorem: 2.8 Let (X, τ, I) be I_{ω} - normal. If A and B are two disjoint ωI -closed subsets of X, then there exists disjoint open sets U and V such that $Cl^*(A) \subset U$ and $Cl^*(B) \subset V$.

Proof: Suppose that A and B are two disjoint ωI -closed sets. By theorem 2.7 (iii) there exists an open set V containing B such that $cl(U) \cap cl(V) = \varphi$. Since A is ωI -closed set, $A \subset U$ implies that $Cl^*(A) \subset U$. Similarly, $Cl^*(B) \subset V$.

If $I = \{\varphi\}$, in theorem 2.8 then we have the following property of disjoint ω -closed sets in ω - normal spaces.

Corollary: 2.7 Let (X, τ) be a ω - normal. If A and B are two disjoint ω -closed subsets of X, then there exists disjoint open sets U and V such that $Cl(A) \subset U$ and $Cl(B) \subset V$.

Theorem: 2.9 Let (X, τ, I) is I_{ω} – normal. If A is ωI -closed set and B is an ωI -open set containing A, then there exists an open set U such that $A \subset Cl^*(A) \subset U \subset \operatorname{int}^*(B) \subset B$.

Proof: Suppose A is an ωI -closed set and B is an ωI -open set containing A. Since A and X-B are disjoint ωI closed sets, by theorem 2.7, there exist disjoint open sets U and V such that $Cl^*(A) \subset U$ and $Cl^*(X-B) \subset V$.Now $X - \operatorname{int}^*(B) = Cl^*(X-B) \subset V$ implies that $X - V \subset \operatorname{int}^*(B)$. Again $U \cap V = \varphi$ implies that $U \subset X - V$ and so $A \subset Cl^*(A) \subset U \subset X - V \subset \operatorname{int}^*(B) \subset B$.

If $I = \{\varphi\}$, in theorem 2.9, then we have the following corollary 2.8

Corollary: 2.8 Let (X, τ) is ω – normal. If A is ω -closed set and B is a ω -open set containing A, then there exists an open set U such that $A \subset Cl(A) \subset U \subset int(B) \subset B$.

The following Theorem 14 gives a characterization of normal spaces in terms of ω -open sets which follows from lemma 2.1 if $I = \{\varphi\}$.

Theorem: 2.9 Let (X, τ) be a space. Then the following are equivalent.

(a) X is normal.

(b) For every pair of disjoint closed sets A and B containing A, there exists disjoint ω -open sets U and V of X such that $A \subset U$ and $B \subset V$.

(c) For every closed set A and an open set V containing A, there exists a ω -open set U such that $A \subset U \subset Cl(U) \subset V$

3. *WI* -Regular spaces:

Definition: 3.1 An ideal space (X, τ, I) is said to be ωI -regular if for each pair consisting of a point x and a closed set B not containing x, there exist disjoint ωI - open sets U and V such that $x \in U$ and $B \subset V$.

Remarks: 3.1 It is obvious that every regular space is ωI -regular, since every open set is ωI -open. The following example 3.1 shows that an ωI –regular space need not be regular.

Example: 3.1 Consider the ideal space of Example 2.1.Then $\varphi^* = \varphi$, $(\{a,b\})^* = \{a\}, (\{b,c\})^* = \{c\}, \{b\}^* = \varphi$, and $X^* = (\{a,c\})$ Since every semi-I-open set is *-closed and so by lemma 1.3, every subset of X is ωI - closed and hence every subset of X is ωI - open. This implies that (X, τ, I) is ωI - normal. Now, $\{c\}$ is a closed set not containing $a \in X$. $\{c\}$ and $\{a\}$ are not separated by disjoint open sets and so (X, τ) is not regular.

Theorem: 3.1 Let (X, τ, I) an ideal space. Then the following are equivalent.

(i) (X, τ, I) is ωI -regular

(ii) For every closed set B not containing $x \in U$, there exists disjoint ωI open set U and V of X such that $x \in U$ and $B \subset V$.

(iii) For every open V containing $x \in X$, there exists an ωI -open set U such that $x \in U \subset Cl^*(U) \subset V$

Proof: $(i) \Rightarrow (ii)$ It is clear, since every open set is ωI -open.

 $(ii) \Rightarrow (iii)$ Let V be an open subset such that such that $x \in V$. Then X - V is a closed set not containing x. Therefore, there exist disjoint ωI -open sets U and W such that $x \in U$ and $X - V \subset W$. Now, $X - V \subset W$ implies that $X - V \subset \operatorname{int}^*(W)$ and so $X - \operatorname{int}^*(W) \subset V$. Again $U \cap W = \phi$ implies that $U \cap \operatorname{int}^*(W) = \phi$ and so, $Cl^*(U) \subset X - \operatorname{int}^*(W)$ Therefore $x \in U \subset Cl^*(U) \subset V$. This proves (iii)

 $(iii) \Rightarrow (i)$ Let B be a closed set not containing x.By hypothesis, there exists an ωI - open set U of X such that $x \in U \subset Cl^*(U) \subset X - B$. If $W = X - cl^*(U)$ then U and W are disjoint ωI - open sets such that $x \in U$ and $B \subset W$. This proves (i).

Theorem: 3.2 If (X, τ, I) is an ωI –regular, T_1 -space where I is completely condense, then X is regular.

Proof: Let B be a closed set not containing $x \in X$. By Theorem 3.1 there exists an $\mathcal{O}I$ - open set U of X such that $x \in U \subset Cl^*(U) \subset X - B$. Since X is a T_1 -space, $\{x\}$ is closed and so $\{x\} \subset \operatorname{int}^*(U)$ by lemma 1.4. Since I is completely condense, $\tau^* \subset \tau^{\alpha}$ and so, $\operatorname{int}^*(U) = X - cl^*(U)$ are τ^{α} - open sets. Now, $x \in \operatorname{int}^*(U) \subset \operatorname{int}(cl(\operatorname{int}^*(U)))) = G$ and $B \subset X - cl^*(U) \subset \operatorname{int}(cl(\operatorname{int}(X - cl^*(U)))) = H$. Then G and H are disjoint open sets containing x and B respectively. Therefore, X is regular. If $I = \{\varphi\}$ in Theorem 3.2, then we have the following corollary 3.1 which gives characterizations of regular spaces.

Corollary: 3.1 If (X, τ, I) is a T_1 -space, then the following are equivalent.

(a) X is regular.

(b) For every closed set B not containing $x \in U$, there exists disjoint ω open set U and V of X such that $x \in U$ and $B \subset V$.

(c) For every open set V containing $x \in X$, there exists a ω -open set U such that $x \in U \subset Cl(U) \subset V$

Theorem: 3.2 If every semi-I- open subset of an ideal space (X, τ, I) is *-closed, then (X, τ, I) is ωI -regular.

Proof: Suppose every semi-I- open subset of an ideal space (X, τ, I) is *-closed .Then by lemma 1.4, every subset of X is ωI -closed and hence every subset of X is ωI -open. If B is a closed set not containing x, then $\{x\}$ and B are the required disjoint ωI -open sets containing x and B respectively. Therefore, (X, τ, I) is ωI -regular. The following example 3.2 shows that the reverse direction of the above theorem 3.2 is not true.

Example: 3.2 Consider the real line R with usual topology. Let $I = \{\varphi\}$. Then R is regular and hence ωI –regular. But semi-I-open sets are not semi-I-closed and hence semi-I-open sets are not *-closed.

References:

[1] N. chandramathi and K. Bhuvaneswari ωI - Closed Sets via Local function, Acta Ciencia Indica (to appear).

[2] E. Hatir and T. Noiri, on decompositions of continuity via idealization, Acta Math. Hungar., 96 (2002), 341 - 349.

[3] E. Hatir and T. Noiri, on semi-I –open sets and semi-I –Continuous Functions, Acta Math. Hungar, 107(4) (2005), 345 - 353.

[4] Janković, D., Hamlett, T. R., New topologies from old via ideals. Amer. Math. Monthly 97 (1990), 295-310.

[5] Janković and I. L. Reily, on semi separation properties, Indian J. Pure .appl. Math16 (1985)957-964.

[6] M. Navaneethakrishnan et al. I_g –Normal and I_g Regular Spaces, Acta. Math. Hungar, 2009, DOI: 10.1007/s 1047-009-9027-8.

[7] M. Rajamani and K. Viswanathan, On αgs -closed sets in topological spaces, Acta Ciencia Indica, Math.30 (2004), no.3, 21-25.

[8] V. Renugadevi and D. Sivaraj, A Generalization of Normal spaces, Archivum Mathematicum (BRNO) Tomus 44 (2008) 265-270.

[9] V. Renugadevi, D. Sivaraj and T. Tamizh chelvam, Codense and completely ideals, Acta. Math. Hungar. 108(2005), no.3, 197-205
