FIXED POINT THEOREM IN PSUEDOCOMPACT TYCHONOV'S SPACE

Rajesh Shrivastava and Manavi Kohli*
Govt. Science and Commerce College Benazir, Bhopal, India
Corresponding author mail address: manavi.kohli@rediffmail.com

(Received on: 07-12-11; Accepted on: 23-12-11)

Abstract

In this paper we have established fixed point theorem for contractive type maps on Psuedocompact Tychonov space. Our results generalize the corresponding results of Edelstein [6], Fisher [3], Leader [7], Harinath [1], Jain and Dixit [2], Naidu [5].

INTRODUCTION:

Harinath [1] earlier established some fixed point theorems in Psuedocompact Tychonov space. Jain and Dixit [2] also established some fixed point theorems in Psuedocompact Tychonov space, which generalizes the result of Fisher [3], Harinath [1] and Liu Zeqing [4] and also established some coincidences point theorems in Psuedocompact Tychonov space. The notion of Psuedocompact Tychonov space is defined as follows:

A topological space X is said to be Psuedocompact if every real- valued continuous function of X is bounded. It is known that every compact space is Psuedocompact, but the converse need not be true. We define a non - negative function F on $\mathrm{X} \times \mathrm{X}$ satisfying the following properties -
(i) $F(x, y)=0$, if $x=y ; x, y \in X$.
(ii) $F(x, y)=F(y, x) ; x, y \in X$
(iii) $\mathrm{F}(\mathrm{x}, \mathrm{y}) \leq \mathrm{F}(\mathrm{x}, \mathrm{z})+\mathrm{F}(\mathrm{z}, \mathrm{y}) ; \mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$
(iv) F is lower semi- continuous.

It is well known that if X is psuedocompact then its product $X \times X$ need not be psuedocompact and therefore, any continuous real valued function defined on $\mathrm{X} \times \mathrm{X}$ need not be bounded. But we can construct a function on X which is equivalent to a function on $\mathrm{X} \times \mathrm{X}$, so that it is bounded.

Theorem: Let P be a Psuedocompact Tychonov's space and d be a non - negative real valued continuous function over $\mathrm{P} \times \mathrm{P}(\mathrm{P} \times \mathrm{P}$ is a Tychonov's space but need not be Psuedocompact). Suppose d also satisfies the condition:

$$
\begin{align*}
\mathrm{d}(\mathrm{STx}, \mathrm{Sy})<\alpha_{1} & \frac{\mathrm{~d}(\mathrm{Tx}, \mathrm{STx}) \mathrm{d}(\mathrm{y}, \mathrm{Sy})}{\mathrm{d}(\mathrm{Tx}, \mathrm{Sy})+\mathrm{d}(\mathrm{Tx}, \mathrm{y})}+\alpha_{2} \frac{\mathrm{~d}(\mathrm{Tx}, \mathrm{Sy}) \mathrm{d}(\mathrm{y}, \mathrm{STx})}{\mathrm{d}(\mathrm{y}, \mathrm{STx})+\mathrm{d}(\mathrm{Tx}, \mathrm{y})}+\alpha_{3}[\mathrm{~d}(\mathrm{Tx}, \mathrm{STx})+\mathrm{d}(\mathrm{y}, \mathrm{Sy})] \\
& +\alpha_{4}[\mathrm{~d}(\mathrm{Tx}, \text { Sy })+\mathrm{d}(\mathrm{Tx}, \mathrm{y})]+\alpha_{5}[\mathrm{~d}(\mathrm{Tx}, \text { Sy })+\mathrm{d}(\mathrm{y}, \text { STx })]+\alpha_{6}[\mathrm{~d}(\mathrm{y}, \mathrm{STx})+\mathrm{d}(\mathrm{Tx}, \mathrm{y})] \tag{1}
\end{align*}
$$

for all $\mathrm{x}, \mathrm{y} \in \mathrm{P}$ with $\mathrm{Tx} \neq \mathrm{y}, \mathrm{Tx} \neq \mathrm{Sy}, \mathrm{STx} \neq \mathrm{y}$
where $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}, \alpha_{6}>0, \alpha_{1}+2 \alpha_{3}+\alpha_{4}+2 \alpha_{5}+\alpha_{6}<1$ and $\alpha_{1}+\alpha_{2}+4 \alpha_{4}+4 \alpha_{5}+4 \alpha_{6}<1$

Then S and T have unique common fixed point.
Proof: Let $\varphi: \mathrm{P} \rightarrow \mathrm{R}$ by $\varphi(\mathrm{p})=\mathrm{d}(\mathrm{STp}, \mathrm{Tp})$ fpr all $\mathrm{p} \in \mathrm{P}$ where R is the set of real numbers. Clearly φ is continuous functions, since P is Psuedo Compact Tychonov's space, every real bounded continuous function over P is bounded and attain its bounds, thus there exists a point $\mathrm{v} \in \mathrm{P}$ such that
$\varphi(\mathrm{v})=\inf \{\varphi(\mathrm{p}): \mathrm{p} \in \mathrm{P}\}$, where the inf denotes the infimum or the greatest lower bound in R.
We now affirm that v is a fixed point for S. If not, let us suppose that
Sv $\neq v$, then using (1), we have,

$$
\begin{aligned}
\varphi(S v) & =\mathrm{d}(S T S v, T S v) \\
& =\mathrm{d}(S T S v, S T v)
\end{aligned}
$$

$$
<\alpha_{1} \frac{\mathrm{~d}(\mathrm{TSv}, \mathrm{STSv}) \mathrm{d}(\mathrm{Tv}, \mathrm{STv})}{\mathrm{d}(\mathrm{TSv}, \mathrm{STv})+\mathrm{d}(\mathrm{TSv}, \mathrm{Tv})}+\alpha_{2} \frac{\mathrm{~d}(\mathrm{TSv}, \mathrm{STv}) \mathrm{d}(\mathrm{Tv}, \mathrm{STSv})}{\mathrm{d}(\mathrm{Tv}, \mathrm{STSv})+\mathrm{d}(\mathrm{TSv}, \mathrm{Tv})}+\alpha_{3}[\mathrm{~d}(\mathrm{TSv}, \mathrm{STSv})+\mathrm{d}(\mathrm{Tv}, \mathrm{STv})]
$$

$$
+\alpha_{4}[\mathrm{~d}(\mathrm{TSv}, \mathrm{STv})+\mathrm{d}(\mathrm{TSv}, \mathrm{Tv})]+\alpha_{5}[\mathrm{~d}(\mathrm{TSv}, \mathrm{STv})+\mathrm{d}(\mathrm{Tv}, \mathrm{STS})]+\alpha_{6}[\mathrm{~d}(\mathrm{Tv}, \mathrm{STS})+\mathrm{d}(\mathrm{TSv}, \mathrm{Tv})]
$$

$$
<\alpha_{1} \mathrm{~d}(\mathrm{STSv}, \mathrm{STv})+\alpha_{2} \times 0+\alpha_{3}[\mathrm{~d}(\mathrm{TSv}, \mathrm{STSv})+\mathrm{d}(\mathrm{Tv}, \mathrm{STv})]+\alpha_{4} \mathrm{~d}(\mathrm{STv}, \mathrm{Tv})+\alpha_{5} \mathrm{~d}(\mathrm{Tv}, \mathrm{STSv})
$$

$$
+\alpha_{6}[\mathrm{~d}(\mathrm{Tv}, \mathrm{STSv})+\mathrm{d}(\mathrm{STv}, \mathrm{Tv})]
$$

$$
=\alpha_{1} \mathrm{~d}(\mathrm{STSv}, \mathrm{STv})+\alpha_{3}[\mathrm{~d}(\mathrm{STSv}, \mathrm{STv})+\mathrm{d}(\mathrm{STv}, \mathrm{Tv})]+\alpha_{4} \mathrm{~d}(\mathrm{STv}, \mathrm{Tv})+\alpha_{5}[\mathrm{~d}(\mathrm{STSv}, \mathrm{STv})+\mathrm{d}(\mathrm{STv}, \mathrm{Tv})]
$$

$$
+\alpha_{6} \mathrm{~d}(\mathrm{STSv}, \mathrm{STv})
$$

$$
=\left(\alpha_{1}+\alpha_{3}+\alpha_{5}+\alpha_{6}\right) \mathrm{d}(\mathrm{STSv}, \mathrm{STv})+\left(\alpha_{3}+\alpha_{4}+\alpha_{5}\right) \mathrm{d}(\mathrm{STv}, \mathrm{Tv})
$$

$\mathrm{d}(\mathrm{STSv}, \mathrm{STv})<\frac{\alpha_{3}+\alpha_{4}+\alpha_{5}}{1-\alpha_{1}-\alpha_{3}-\alpha_{5}-\alpha_{6}} \mathrm{~d}(\mathrm{STv}, \mathrm{Tv})$
since $\alpha_{1}+2 \alpha_{3}+\alpha_{4}+2 \alpha_{5}+\alpha_{6}<1$
from above $\varphi(\mathrm{Sv})<\varphi(\mathrm{v}) \quad$ which is a contradiction and hence $\mathrm{Sv}=\mathrm{v}$ i.e. $\mathrm{v} \in \mathrm{P}$ is a fixed point for S . Using (2), $\mathrm{STv}=\mathrm{TS} v=\mathrm{Tv}$

Now, we shall prove that $\mathrm{Tv}=\mathrm{v}$, if possible, let $\mathrm{Tv} \neq \mathrm{v}$, then,

$$
\begin{aligned}
\mathrm{d}(\mathrm{STv}, \mathrm{~Sv})<\alpha_{1} & \frac{\mathrm{~d}(\mathrm{Tv}, \mathrm{STv}) \mathrm{d}(\mathrm{v}, \mathrm{~Sv})}{\mathrm{d}(\mathrm{Tv}, \mathrm{~Sv})+\mathrm{d}(\mathrm{Tv}, \mathrm{v})}+\alpha_{2} \frac{\mathrm{~d}(\mathrm{Tv}, \mathrm{~Sv}) \mathrm{d}(\mathrm{v}, \mathrm{STv})}{\mathrm{d}(\mathrm{v}, \mathrm{STv})+\mathrm{d}(\mathrm{Tv}, \mathrm{v})}+\alpha_{3}[\mathrm{~d}(\mathrm{Tv}, \mathrm{STv})+\mathrm{d}(\mathrm{v}, \mathrm{~Sv})] \\
& +\alpha_{4}[\mathrm{~d}(\mathrm{Tv}, \mathrm{~Sv})+\mathrm{d}(\mathrm{Tv}, \mathrm{v})]+\alpha_{5}[\mathrm{~d}(\mathrm{Tv}, \mathrm{~Sv})+\mathrm{d}(\mathrm{v}, \mathrm{STv})]+\alpha_{6}[\mathrm{~d}(\mathrm{v}, \mathrm{STv})+\mathrm{d}(\mathrm{Tv}, \mathrm{v})]
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\mathrm{d}(\mathrm{Tv}, \mathrm{v})< & \alpha_{1} \frac{\mathrm{~d}(\mathrm{Tv}, \mathrm{v}) \mathrm{d}(\mathrm{v}, \mathrm{Tv})}{\mathrm{d}(\mathrm{v}, \mathrm{Tv})+\mathrm{d}(\mathrm{Tv}, \mathrm{v})}+\alpha_{2} \frac{\mathrm{~d}(\mathrm{Tv}, \mathrm{v}) \mathrm{d}(\mathrm{v}, \mathrm{Tv})}{\mathrm{d}(\mathrm{v}, \mathrm{Tv})+\mathrm{d}(\mathrm{Tv}, \mathrm{v})}+\alpha_{3}[\mathrm{~d}(\mathrm{Tv}, \mathrm{Tv})+\mathrm{d}(\mathrm{v}, \mathrm{v})] \\
& +\alpha_{4}[\mathrm{~d}(\mathrm{Tv}, \mathrm{v})+\mathrm{d}(\mathrm{Tv}, \mathrm{v})]+\alpha_{5}[\mathrm{~d}(\mathrm{Tv}, \mathrm{v})+\mathrm{d}(\mathrm{v}, \mathrm{Tv})]+\alpha_{6}[\mathrm{~d}(\mathrm{v}, \mathrm{Tv})+\mathrm{d}(\mathrm{Tv}, \mathrm{v})] \\
= & \left(\alpha_{1} / 2+\alpha_{2} / 2+2 \alpha_{4}+2 \alpha_{5}+2 \alpha_{6}\right) \mathrm{d}(\mathrm{Tv}, \mathrm{v}) \\
= & \alpha_{1}+\alpha_{2}+4 \alpha_{4}+4 \alpha_{5}+4 \alpha_{6}<1
\end{aligned}
$$

Thus, from above,
$d(T v, v)<d(T v, v)$
leading to a contradiction and hence $\mathrm{Tv}=\mathrm{v}$, i.e. v is a fixed point of T

UNIQUENESS: Claim: Let w be another fixed point of S. Then using (3), we get

$$
\begin{aligned}
\mathrm{d}(\mathrm{STv}, \mathrm{Sw})<\alpha_{1} & \frac{\mathrm{~d}(\mathrm{Tv}, \mathrm{STv}) \mathrm{d}(\mathrm{w}, \mathrm{Sw})}{\mathrm{d}(\mathrm{Tv}, \mathrm{Sw})+\mathrm{d}(\mathrm{Tv}, \mathrm{w})}+\alpha_{2} \frac{\mathrm{~d}(\mathrm{Tv}, \mathrm{Sw}) \mathrm{d}(\mathrm{w}, \mathrm{STv})}{\mathrm{d}(\mathrm{w}, \mathrm{STv})+\mathrm{d}(\mathrm{Tv}, \mathrm{w})}+\alpha_{3}[\mathrm{~d}(\mathrm{Tv}, \mathrm{STv})+\mathrm{d}(\mathrm{w}, \mathrm{Sw})] \\
& +\alpha_{4}[\mathrm{~d}(\mathrm{Tv}, \mathrm{Sw})+\mathrm{d}(\mathrm{Tv}, \mathrm{w})]+\alpha_{5}[\mathrm{~d}(\mathrm{Tv}, \mathrm{Sw})+\mathrm{d}(\mathrm{w}, \mathrm{STv})]+\alpha_{6}[\mathrm{~d}(\mathrm{w}, \mathrm{STv})+\mathrm{d}(\mathrm{Tv}, \mathrm{w})] \\
=\alpha_{1} & \frac{\mathrm{~d}(\mathrm{v}, \mathrm{v}) \mathrm{d}(\mathrm{w}, \mathrm{w})}{\mathrm{d}(\mathrm{v}, \mathrm{w})+\mathrm{d}(\mathrm{v}, \mathrm{w})}+\alpha_{2} \frac{\mathrm{~d}(\mathrm{v}, \mathrm{w}) \mathrm{d}(\mathrm{w}, \mathrm{v})}{\mathrm{d}(\mathrm{w}, \mathrm{v})+\mathrm{d}(\mathrm{v}, \mathrm{w})}+\alpha_{3}[\mathrm{~d}(\mathrm{v}, \mathrm{v})+\mathrm{d}(\mathrm{w}, \mathrm{w})]+\alpha_{4}[\mathrm{~d}(\mathrm{v}, \mathrm{w})+\mathrm{d}(\mathrm{v}, \mathrm{w})] \\
& +\alpha_{5}[\mathrm{~d}(\mathrm{v}, \mathrm{w})+\mathrm{d}(\mathrm{w}, \mathrm{v})]+\alpha_{6}[\mathrm{~d}(\mathrm{w}, \mathrm{v})+\mathrm{d}(\mathrm{v}, \mathrm{w})]
\end{aligned}
$$

$\mathrm{d}(\mathrm{v}, \mathrm{w})<\alpha_{2} / 2+2 \alpha_{4}+2 \alpha_{5}+2 \alpha_{6} \mathrm{~d}(\mathrm{v}, \mathrm{w})$

This implies $\mathrm{d}(\mathrm{v}, \mathrm{w})<\mathrm{d}(\mathrm{v}, \mathrm{w})$ since $\alpha_{2}+4 \alpha_{4}+4 \alpha_{5}+4 \alpha_{6}<1$ is a contradiction.
Hence proved that $v \in P$ is unique common fixed point of S and T.

REFERENCES:

[1] Harinath, K.S.: "A Chain of Result Fixed Points "Indian J. Pure. Math 10 (12) 1979.
[2] Jain, R.K and Dixit, S.P.: "Some Resilts on Fixed Point in Psuedocomact Tychonov Spaces" Indian J. Pure Appl. Math 15 (5) (1984) 455.
[3] Fisher, B.: "On Three Fixed Point Mapping for Compact Metric Spaces, Indian J. Pure Appl. Math. 8(4) (1977), 479.
[4] Zeqing, Liu.: "On Coincidence Point Theorems in Psuedocompact Tychonov Spaces" Bull. Cal. Math. Soc. 84 (1992), 573-574.
[5] Naidu, S.V.R. and Rao, K.P.R.: "Fixed Point and Coincidence Point Theorem" Indian J. Pure. Appl. Math. 19 (3), (March 1988) 255-268.
[6] Edelstein, M.: On fixed and periodic points under contractive mappings, J. London Math. Soc. 37 (1962), 74-79.
[7] Leader, S.: Uniformly contractive fixed points in compact metric spaces, Proc. Amer. Math. Soc. 86 (1982), 153158.

