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ABSTRACT
In this paper we analyze the start-up flow of an incompressible Viscoelastic Rivlin-Ericksen fluid. The initial flow is
assumed due to the movement of boundaries. At an instant of time t, the boundaries are suddenly brought to rest and
the flow is maintained due to a prescribed pressure gradient. The governing equations are solved applying Laplace
Transform Technique and the flow characteristics are discussed for different flow variables. The analysis is carried out
by considering the pressure gradient in the form c(1 + f{t)) where f{t) is taken in the following forms a) u b) e c) te’™”
d) 0 which corresponds to constant pressure gradient.
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INTRODUCTION:

Flows through porous medium are of principal interest in the fields of agricultural engineering, underground water
resources and seepage of water in river beds, filtration and purification processes in chemical engineering, petroleum
technology to study the movement of natural gas, oil and water through the oil reservoirs. A porous medium is a solid
which contains a number of small holes distributed throughout the solid. These holes may be effective or ineffective.
Fluid can pass through effective holes and these holes contribute towards the porosity of the material. Fluid cannot pass
through ineffective holes. Some of the examples of porous medium are a pack of sand, cotton and woolen packing,
wood dust, soil, leather, sandstone and foamed plastics. The porosity of the material is defined as the fraction of the
total volume of the material which is actually occupied by the holes. In the year 1856 Darcy [4] gave an empirical
formula from his experimental results on flows of water through porous medium

v=-k/u (VP-pF) @

where k is the permeability of the material, p is the density, v is the velocity vector and F is the force, | is the
coefficient of viscosity.

The equation (I) can also be written as

Ve<ps=pg-tu (an

k
This equation is of the potential flow form and is valid when k is very large. However, in many practical problems the
permeability is small near the boundary i.e., the particles are loosely packed so that there .exists a boundary layer
thickness very near to the surface. The existence of this boundary layer thickness is experimentally demonstrated by
Beavers and Joseph [2]. Taking into consideration the above aspect, the equation (II) can be written in the form

V<p>:pg—%u+,uvzu (1)
This boundary layer type equation for flow through porous media was postulated by Brinkman [3]

The study of run-up flows is gaining importance due to its wide applications in different technologies. Such
phenomenon arises in petrochemical engineering, lubrication technology, irrigation systems, water supply and bio-fluid
mechanics where the pressure gradient is suddenly withdrawn from the steady state flow which henceforth gains
unsteadiness due to extraneous influence. Researchers in this field are initiated for the first time by Kazakia and Rivlin
[5] in which they investigated run-up flow in an incompressible isotropic Viscoelastic fluid contained between two
infinite rigid parallel plates. Rivlin [9] also discussed run-up and spin-up flow in a Viscoelastic fluid between two
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infinite parallel plates containing Maxwell fluid initially at rest. They have studied the fluid motion resulting from
sudden velocities given to the plates and subsequently held constant. Pattabhi Ramacharyulu and Appala Raju [7] have
studied run-up flow in a generalized porous medium. Ramakrishna [8] discussed a similar problem related to the flow
of a dusty viscous fluid in a conduit choosing parallel plate geometry and cylindrical geometry. Raji Reddy and
Sambasiva Rao [101 analyzed run-up flow of viscous incompressible fluid through a rectangular pipe, a pipe of
equilateral triangular cross-section, parallel plate channel and a circular cylinder. They solved the problem using ADI
numerical technique. Basha [6] extended the analysis of Raji Reddy and Sambasiva Rao [10] by considering
Viscoelastic Rivlin-Erickson fluid between parallel plates. He extended this study by taking a second order Rivlin-
Ericksen Viscoelastic fluid between parallel porous plates subjected to a constant suction. Anderson et al [1] studied
run-up flow of a viscous fluid in a porous medium channel. The run-up flow is discussed in two cases by maintaining a
constant pressure gradient and a constant flow rate. The time histories of the centerline velocity and the wall friction are
calculated together with time varying velocity profiles.

In this paper we have studied the start-up flow of an incompressible Viscoelastic Rivlin-Ericksen fluid. The initial flow
is assumed due to the movement of boundaries. At an instant of time t, the boundaries are suddenly brought to rest and
the flow is maintained due to a prescribed pressure gradient. The governing equations are solved applying Laplace
Transform Technique and the flow characteristics are discussed for different flow variables. The analysis is carried out
by considering the pressure gradient in the form c(1 + f(t)) where f{t) is taken in the following forms a) yt b) e™ c) te™
d) 0 which corresponds to constant pressure gradient.

FORMULATION OF THE PROBLEM:
We consider the time-dependent and unidirectional flow of an incompressible Viscoelastic Rivlin-Ericksen fluid

through a porous medium in an infinitely long channel bounded by two parallel plane boundaries. The solid matrix is
treated as homogeneous with respect to porosity characteristics.

The governing equation of the flow in the Cartesian coordinates (x’, y’, z’) are =0 €8

ow’ op’ > w aw ou o,
’ _/+ ﬂ 72 + al ’ 72 -—w (2)
Jt oy iy’ k

Where (0, 0, w’) is the velocity, p is the density of the fluid, | is the coefficient of viscosity, p” is the pressure, k is the
permeability parameter, t’ is the time and «, is the coefficient of kinematic Viscoelacity.

We introduce the non-dimensional variable
7 ’ ’ h
0, 2) =h(yz), t=|—|
u
w =uw, p=pu’p 3)
Where u is a characteristic velocity, 4 is half width of the channel.
The governing equations in the non-dimensional form reduce to
ow op N 1 9w ’w D

— + ), ——5— 4
o 2 RRy Dy’ R @

Where
h
= ﬂ (Reynolds number)
Y7,
h2
D™ = 7 (Darcy parameter)
a, . .
o, = - (Viscoelastic parameter)
o,

We assume that initially the flow is steady due to the movement of the upper plate in the absence of an external
pressure gradient. The steady state momentum equation obtained from (4) is

o*w
dy’
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The corresponding boundary conditions in non-dimensional form are
w=0 at y=-1 and
w=1 at y=+1 (6)

On solving equation (5) and using the boundary conditions (6) we obtain the velocity

W= sinha(1+y)
sinh a
Where a’> = D! N

Now the boundaries are brought to rest and the flow is maintained by prescribing a pressure gradient

- g—” = (14 f(1) ®
vé

Where c is constant.

The initial condition is

weSmhadsy) g
sinh a

The boundary conditions are given by

w=0 at y= +1

w=0 at y=-1 ©)
(9) Represents the no-slip condition.

Solution of the Problem:

We solve the governing equation (4) using the Laplace Transform technique.

Let w(y,s), f (y, §) be the Laplace Transform with respect to‘t’ of w(y, t), T (t) respectively given by the definition.

7 (3.9, Fv.9)] = [ e w0y, £ 0))ae (10)
0

Where s is the transform parameter.

Taking Laplace Transform on both sides, equation (4) transforms to

d’Ww  Rs+a’ _ R inha(l+ 1 -

ZV - BT 5o (aoaz—l)sm_a—(y)—c(—+f(s)j (11)
dy I+, Rs I+, Rs sinh2a s
The transformed boundary conditions are
w =0 at y=+1
w =0 at y=-1 (12)
Solving (11) using the boundary conditions (12) we get

inh a(l inh £(1 - h
W:l sm'a( +y)_s1n.ﬁ( +y) N cR _ 1+f(s) cos ,By_l 13
s sinh 2a sinh2/ Rs +D™ s cosh
JRs +a’

Where ,B =

J1+a, Rs

Taking the inverse Laplace transform of (13), the expression for velocity can be obtained.

The shear stress (1) at the walls is calculated using the formula

T= (a—WJ (14)
dy
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The flow rate is calculated using the formula

+1
0= j wdy 15)
We obtain the solution of the problem by considering the different forms of pressure gradient in the following cases.

Case: 1

9
When the pressure gradient is —a—p = c(l1+ ), where 7is a constant i.e., the pressure gradient is a linear function of
<

time.

The equation (3.2) takes the form

== 1 s1nh.a(1+y) B smh. B+ y) N cR l+l cosh By 1 16)
s sinh 2a sinh2 Rs +D™ cosh
Taking Inverse Laplace Transform of the above equation we get w(y, t) as
R [ cosh = (-1)"e* nzx(l+a,Rs,)” .
Wyt =B oy | hay | s ED et AU RS, ) G, 1T
D | cosha = 2Rs, (1-a,a”) 2
= ()" ¢ n+ 1)+ Rs, )’
+c Y ( ,) e Grntha g S, ) cos(2n+1)£y (17)
s, =08 (R—a,D"a*) (Rs, +D™) 2
2 2 2 2 2 2
—{461 +(2n+1) 7[} —{4a +n 71'}
Where S = and S =
n 2 2 n 2 2
R[4+(2n+1) T ao} R{4+n V.4 ao}
The Shear stress T on the upper wall is
cR asmha = o5 nx(+a, Rs )*
(D)o =—=1+p) et
= S S sha Z(; 4Rs, (1-a, a”)
= (-1 2n+) 1+, R
—c 1+l - ) e (n )7 ( 0!0 all ) sin(2n+l)£
S )28 (R—a,D"a*) (Rs, +D™) 2
(18)
The Shear stress T on the lower wall is
s 2
cR asinha e nr(l+a,Rs )
0)_, =—1+7) + Z .
Y “cosha o
D 4Rs (I-a,a )
n Sn[ , 2
o (=) e Cn+Yr(+a,Rs, )
+1+-L |y 0 """ sin@n+DZ (19)
S n:O ’ _1 2 ’ _1 2
n 28, (R—aOD a )(Rs, +D )
The flow rate Q is given by
St 2
: w € nt(l+a, Rs,) n
0 = 2cR(1_+7) sinh a 1l s 0o n H-(-1) ]
1 acosh a n= 2
D Rs,, (l—aoa )

© 2011, IJMA. All Rights Reserved 2628



Dr. V. Sugunamma1 *, M. Sneha Latha” and N. Sandeepa/ RUN-UP FLOW OF A RIVILIN-ERICKSEN FLUID THROUGH A POROUS

MEDIUM IN A CHANNEL/ IIMA- 2(12), Dec.-2011, Page: 2625-2639
no Si ,

y | e (-1 4e (1+a0 Rs, )

+cl 1+ | X

S n=0 ’ -1 ’ ’ -1

" Sy (R=ayD S,)(Rs, +D )

V.4
sin(2n+1)—
( )2

The centerline velocity at y = 0 is given by

n Snt 2
W(y=0) = cR(1+ ) 1 s § =D e nz(+ayRs,) T
-1 cosha n=0 2 2
D Rs, (1—a'0a )
n Snt , 2
oo -D e (I+a.Rs, )
+c(1+ 7,} > I 0 " ]
S — ’ - ’ ’ -
n Su (R—aOD S, ) (Rs, +D )
Case: 11

0 -
When the pressure gradient is —a—p =c(l+e ” ).
<

The equation (3.2) takes the form

o= 1 |sinha(l+y) sinh S(1+y) N cR 1+ 1 cosh fy 1
s sinh 2a sinh2/3 Rs+D™' \s s+y)| cosh S

Taking Inverse Laplace Transform we get w (y,t) as
St

n n 2
cR cosha o (=) e " nzx(+ayRsy) | aurx
W(y,t)=—_1(1+}/){ hy—1}+ s % sin - (1+)
D cosha n=0 2Rsp (1-aya”)
St ’ 2
| 1 oo (=D @n+1)x(+ay Rsy ) z
+cl—+— > ) v — cos(2n+1)—y
sp sp +y )n=0 (R-ayD a’)(Rsy +D ) 2

The Shear stress T on the upper wall is

Syt 2
cR asinha oo € n7z(l+0{0 Rsy;)
—d+p + 2

(T)y:+1 |

D cosha

< 2
n=0 " 4Rs, (I-aya”)

’

S t
L1 Je e (n+D) w1+ Rsy % .
> v sin(2n+1)—

’ 2 -
Sn sn +¥)0 2R-ayD a") (R, +D )

7 1

The Shear stress T on the lower wall is

S 1 R
R inh oo € nrw(l+a, Rs
(T)y:—l _ ¢ (1+7) {asm a}+ 5 0"n

D—l

cosha n=0 4Rsy (1 2, 02)

n St ’ 2
1 1 o (1) e (2n+1)7r(1+a0 Rsy; ) T
+co —+— > sin(2n+1)5

’

= -1 2 -
sp sy +y )n=0 2(R-ayD "a ) (Rsp +D )
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The flow rate Q is given by

Su! 2
:2cR(1+7){ sinh a _1} o e nx(l+ayRsy)

0 - + 3 [1-1"]

n=0

acosha

D Rsp (I-aya )

St ’ 2
| 1 Y (D"4e +ayRsy)
+c >

. T
—+— v 1 , — sin(2n+1)— (26)
sp sp +7 )"0 S, (R—ayD " Sy ) (Rsy +D ) 2

The centerline velocity at y = 0 is given by
n Snt 2
~ (-1) e nrt(l+ay Rs,)
CR(lJ;”){ ! —1} > 0" in™%
- n=0

w(y=0) =

cosha

2
D Rsp (I-aya )

S’t ")
| 1 Ve D" @ueat+ayRsy)
+c| —+— >

Sy Sp 7

R — 27)
n=0 (R—ayD S,) (Rsp +D )

Case: II1

) _
When the pressure gradient is @ c(l+te g ).
<

The equation (3.2) takes the form

== 1 |sinha(l+y) sinh B+ y) N cR 1 1 cosh By 1
s| sinh2a sinh 28 Rs +D”' cosh

+ (28)
s (s+79)°

Taking Inverse Laplace Transform we get w (y, t) as
t
n Sn 2
{Coshay _1} - (-7 e " nz(+ayRsy)

R
w0 =——(1+7)
D

>

sin 2% (14 y)
n=0 2

cosha 2Rs), (1—a0a2)
S,t ’

2
+{ 1 1 J§ (—Dne " Qn+D i+ Rsy )

V.4
7+— 15 ~ — cos@n+1)—y (29)
Sy Sp Y =0 (R—a/OD a )(Rs, +D ) 2

The Shear stress T on the upper wall is

S, ! 2
¢R asinha 4 nﬂ'(1+a0 Rs;,)
d+7) + X

(T)y:+1 -

D cosha

- 2
n=0 " 4Rs, (1-aya”)
S,t ’
| | o (=) e @n+1)7(1+ay Rsy % z
—d o+ 3 8 sin(2n+1)7 (30)

’ 2 —
Sp (Sn +7/J n=0 2(R—Q'OD az)(Rsn +D )

The Shear stress O on the lower wall is

Sl 2
cR asinha o e = nx(l+oyRsy)
I+ + 3

(T)y:_l =

-1 cosha

2 2
D n=0 " 4Rs, (I-aya”)
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S/t ’

2
11 Je &) @utha+ayRsy) x
+c —+— > ) y =] sin(2n+1)— (31)
sn sn +7)7 2R-ayD a”) (Rsy +D )
The flow rate Q is given by
S 1+ Rsp)?
1 oo € nrx(l+«, S
0=2F1 7)[ T —1}+ > 0 --n") 62
S,t ’
1 1 o (-D)"4e™ (+ayRsy )2 x
+c| —+— 5 > 1 ————sin(2n+1)—
sn (sp +9° )P0 (R—ay D" Sy) (Rsy +D ) 2

The centerline velocity is given by
S t

n n 2
~ (-1) e nrt(l+a, Rsy,)
w(y=0)= CR(I_J;”{ lh —1}+ > g " in 2%
D cosh a n=0 Rsp (1-aya”)
" St s nza Rs, )’
+C[1,+ 1 }oo D" @nbateag B ) 33)
sn sn +7)"0 (R—ay DS, ) (Rsy +D )
Case: IV
When the pressure gradient is @ =c
Z
The equation (3.2) takes the form
7 = 1 smh a(l+y) sm}T,B(1+ y) N cR (lj cosh fy 1 34)
s | sinh2a sinh 28 Rs +D " \s)| cosh
Taking Inverse Laplace Transform wet get w (y, t) is given as
n Sy 2
¢R | coshay o (- e nx(+ayRsp)  urx
w(y,t) = ] -1+ X 2 sin — (1+y)
D cosha n=0 2Rs, (1- &y a ) 2
S t ")
o o(-1)" ™" @n+Dal+ayRsy ) x
+ > - 15 - ——cos(2n+1)—y (35)
=0 S, (R-ayD" a”) (Rsy +D ") 2
The Shear stress T on the upper wall is
Syt 2
cR | asinha o e nﬂ'(l+0{0 Rsy;)
@)= =" ha | 2
D cosha | n=0 4Ry, (-aya”)
S t ’ 2
o (D" ™" @n+Dd+ayRsy ) .
-3 v ) - —— sin(2n+1)— (36)
n=025, (R-ay D a”) (Rsy +D ) 2
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The Shear stress T on the lower wall is

Syt 2
@ _CR {asinha} § e nr(l+ayRsp)
=1 O |
y D 1 | cosha n=0 4Rs), (1_a0a2)
S t ’ 2
o )" & @nthz(+ayRs,) .
+ 3 _ - s sin(2n+1)— 37
n=0 25, (R-ay D a”) (Rsy +D ) 2
The flow rate Q is given by
S, ! 2
2cR | sinha o e nx(+ay Rsp) n
0= 1 {W—l]i‘ g [1-(=1) ]
p  Lacosha n=0 Rs, (1= a”)
n S;:lt r 2
oo c(—1) 4e (1+0{0 Rsy;, )

+ > T

: —— sin2n+1)Z% (38)
"=0 5, (R—ayD Sy ) (Rsy +D ) 2

The centerline velocity at y = 0 is given by

n Syt 2
R 1 o (1) e " nz+ayRsy)”  nx
w(y=0)= ] 0 -1+ X > sin —
S,l’ ’ 2
o c(-1)" e @n+Dz+ay Ry )
+ X ; 39)

Z 1 |
n=0 g, (R—ayD Sy,) (Rsp +D )
DISCUSSION:

In this study we analyse the Start-up flow of a porous medium in a horizontal channel. Initially the flow is assumed to
be due to the movement of the boundaries and at time t the boundaries are brought to rest. The subsequent flow is
maintained due to a pressure gradient. We studied the problem for three forms of time-dependent pressure gradient and
a constant pressure gradient to discuss the flow features. In each case the velocity field, centerline velocity, shear stress
on the walls and the flow rate has been calculated for different variations in the governing parameters and their
behavior is discussed graphically. The flow phenomena is analyzed for different sets of variations in Viscoelastic
parameter 0, Reynolds number R, Darcy parameter D™ and time t. It is observed that in all cases the velocities are
negative except for R variation in the case where the pressure gradient is of the form c(1 + t ™). In all the four cases,
the velocity profiles are bell shaped except for D' variation, with a maximum attained in the mid plane. It is observed
that the magnitude of velocity decreases with increase in Darcy parameter, i.e., lower the permeability of the medium,
lesser the velocity in the flow region. Also the magnitude of velocity decreases with increase of time.
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TABLE 1
SHEAR STRESS AT Y=1 IN CASE I
t a b c d e f
0 -88.5477 -192.6308 -329.2515 -106.2995 -247.1237 -435.5470
0.2 -88.244 -188.4552 -321.0352 -106.6524 -241.6898 -424.1426
0.4 -85.0636 -181.3945 -309.8799 -103.0283 -232.5608 -409.0891
0.6 -81.0663 -173.5641 -297.9514 -98.4409 -222.6696 -393.3987
0.8 -76.8374 -165.6147 -285.9770 -93.5663 -212.7047 -377.8046
1.0 -72.6022 -157.7936 -274.2369 -88.6648 -202.9245 -362.5756
a b [d d e f
R 80 100 120 80 100 120
D! 10° 10° 10° 2x10° 2x10° 2x10°
TABLE 2
SHEAR STRESS AT Y=-1IN CASE I
t a b c d e f
0 -34.4323 -83.7421 -158.0809 -32.8524 -83.8584 -164.1687
0.2 -32.4275 -79.3617 -150.8915 -30.8696 -79.4314 -156.7191
0.4 -30.3076 -74.9860 -143.8234 -28.8001 -75.0182 -149.3862
0.6 -28.2463 -70.7681 -137.0091 -26.8063 -70.7821 -142.3300
0.8 -26.2928 -66.7550 -130.4915 -24.9257 -66.7605 -135.5882
1.0 -24.4620 -62.9589 -124.2806 -23.1675 -62.9604 -129.1661
a b [ d e f
R 60 80 100 60 80 100
D! 10° 10° 10° 2x10° 2x10° 2x10°
TABLE 3
SHEAR STRESS AT Y=1 IN CASE II
t a b c d e f
0 79.3223 90.4617 104.8817 86.4686 97.9375 113.8699
0.2 52.3177 67.5969 84.5323 50.5220 66.3487 85.0332
04 41.9912 56.8756 73.5246 41.0061 56.0834 74.0049
0.6 35.8213 50.0436 66.0935 35.2784 49.7144 66.9346
0.8 31.3764 44.9662 60.4129 31.0594 44.9104 61.4987
1.0 27.8849 40.8823 55.7581 27.6914 40.9877 56.9861
TABLE 4
SHEAR STRESS AT Y=-1 IN CASE II
t a b c d e f
0 249.4416 316.2801 373.1324 287.5822 387.5308 482.5627
0.2 88.7686 135.7819 183.5010 82.6538 134.4838 190.6397
0.4 59.3302 92.5390 127.6757 60.5819 101.0303 144.5167
0.6 46.7096 74.2969 103.5444 49.6392 85.0956 123.4764
0.8 38.8343 63.2667 89.3183 42.2700 74.4170 109.5919
1.0 33.1216 55.3455 79.2703 36.6931 66.2890 99.0541
a b [ d e f
R 60 80 100 60 80 100
D! 10° 10° 10° 2x10° 2x10° 2x10°
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TABLE 5
SHEAR STRESS AT Y=1 IN CASE III
t a b c d e f
0 31.5431 443146 60.1453 49.5172 67.3938 89.2372
0.2 38.7071 55.9877 75.0870 51.1609 74.7115 101.7835
0.4 37.1808 55.6799 76.0712 47.0232 71.1429 98.8901
0.6 34.7032 53.2398 73.7743 43.0193 66.8373 94.3144
0.8 32.1867 50.3783 70.6475 39.3840 62.6085 85.5208
1.0 29.8139 47.5089 67.3468 36.1158 58.6207 84.8460
TABLE 6
SHEAR STRESS AT Y=-1 IN CASE III
t a b c d e f
0 7.5591 19.9184 34.4590 7.4206 20.2274 35.6752
0.2 9.1650 20.7177 34.4164 9.1192 21.2956 36.1231
04 9.1320 20.1701 33.3662 8.9656 20.6287 34.9613
0.6 8.6785 19.2249 31.9545 8.4784 19.6165 33.4474
0.8 8.0938 18.1594 30.4348 7.8985 18.5200 31.8542
1.0 7.4761 17.0751 28.9075 7.3024 17.4233 30.2718
a b c d e f
R 60 80 100 60 80 100
D! 10° 10° 10° 2x10° 2x10° 2x10°
TABLE 7
SHEAR STRESS AT Y=1 IN CASE IV
t a b c d e f
0 79.8583 110.4068 142.2550 95.3446 133.6207 175.1625
0.2 67.0676 95.6753 125.4413 79.4607 116.0292 155.4708
04 58.5861 85.5572 113.7106 69.4591 104.1779 141.7658
0.6 52.003 77.5644 104.3992 61.6825 94.6915 130.6399
0.8 46.5843 70.8822 96.5653 55.2648 86.6816 121.1355
1.0 41.9978 65.1302 89.7699 49.8119 79.7351 112.8034
TABLE 8
SHEAR STRESS AT Y=-1 IN CASE IV
t a b c d e f
0 51.3633 89.6460 130.3705 48.6435 78.1213 108.7379
0.2 44.2899 79.2440 116.8029 41.0954 67.5888 95.4369
0.4 39.0830 71.5544 106.8297 35.8459 60.2557 86.1651
0.6 34.8024 65.1591 98.5183 31.6507 54.3832 78.7700
0.8 31.1629 59.6448 91.3128 28.1415 49.4268 72.5191
1.0 28.0112 54.7973 84.9353 25.1365 45.1320 67.0768
a b [ d e f
R 60 80 100 60 80 100
D! 10° 10° 10° 2x10° 2x10° 2x10°
TABLE 9
FLOW RATE IN CASE I
t a b c d e f
-35.4315 -19.9677 -7.2443 -85.7815 -65.9482 -47.0645
0.2 -23.4321 214771 -18.4025 -44.2491 -43.9908 -41.1526
04 -15.1020 -17.0149 -17.6989 -26.8696 -30.8220 -32.2887
0.6 -9.9604 -12.9478 -15.0085 -17.1948 -22.2306 -25.2778
0.8 -6.6982 -9.8034 -12.3036 -11.3018 -16.2872 -19.8478
1.0 -4.5777 -7.4401 -9.9758 -7.5577 -12.0559 -15.6346
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TABLE 10
FLOW RATE IN CASE II
t a b c d e f
0 70.2722 77.3776 79.1293 93.4366 116.7248 135.0013
0.2 2.8881 7.0289 11.5546 0.1999 1.1335 3.2031
0.4 -0.0377 0.4718 1.5116 -0.0893 -0.0816 -0.0063
0.6 -0.2035 -0.1956 -0.0429 -0.1084 -0.1345 -0.1521
0.8 -0.2230 -0.2810 0.3059 -0.1136 -0.1469 -0.1769
1.0 -0.2283 -0.2983 -0.3596 -0.1155 -0.1516 -01858
a b [d d e f
R 60 80 100 60 80 100
D! 10° 10° 10° 2x10° 2x10° 2x10°
TABLE 11
FLOW RATE IN CASE III
t a b c d e f
0 -6.0059 -9.5166 -13.2435 -3.4993 -5.8049 -5672
0.2 -0.7124 -1.5663 -2.8662 -0.2144 -0.3775 -0.6672
0.4 -0.3286 -0.5546 -0.9433 -0.1502 -0.2118 -0.2854
0.6 -0.2710 -0.3847 -0.5408 -0.1336 -0.1801 -0.2267
0.8 -0.2521 -0.3400 -0.4363 -0.1264 -0.1674 -0.2059
1.0 -0.2433 -0.3225 -0.4009 -0.1226 -0.1611 -0.1963
TABLE 12
FLOW RATE IN CASE IV
t a b c d e f
0 43192 43.3568 92.4933 -51.1972 10.0328 76.8931
0.2 -4.0793 22.1472 54.3098 2223471 92154 50.4611
04 -2.4794 14.1962 37.0751 -12.4855 7.5476 37.2550
0.6 -1.5465 9.7867 26.9391 -7.5833 5.8300 28.1939
0.8 -1.0090 6.9419 20.1491 -4.8051 4.4225 21.6098
1.0 -0.6867 4.9940 15.3123 -3.1274 3.3315 16.7042
a b [d d e f
R 60 80 100 60 80 100
D! 10° 10° 10° 2x10° 2x10° 2x10°

We observe that the magnitudes of velocities increase with increase of Reynolds number, R and Viscoelastic parameter
Olp.

In case I, the velocity profiles are shown in Fig (1-4). The magnitude of the velocity steadily increases with increase in
oo (Fig 1). A similar behaviour is observed in the variation of R (Fig 2). The magnitude of velocity decreases with
increase in t in contrast to the variations with respect to 0y and R (Fig 4). The velocities are flat and the flatness of the
profiles indicates that the fluid particles in this region move together as a rigid body (Fig 3). It is also observed that the
magnitude of velocity decreases with D™

In case II, the velocity profiles for variations in 0, R, D' are shown in Figs(5-8). They behave in a similar manner as
in case I where the pressure gradient is of the form c(1 + yt).

In case III, the velocity profiles for variations in ¢, R, D, t are shown Figs (9-12). In this case the velocities are
negative for variations of 0, D', t. Fro a variation in R the velocity shows a different behaviour. The velocity is
negative for R 100 and suddenly becomes positive for R> 100 (Fig 10), which is in contrast to the behaviour observed
in cases II and III.

In case IV, i.e., in the case of constant pressure gradient, the velocity profiles for variations in 0y, R, D™, tis shown in
Figs (13-16). These profiles show a similar behaviour as in case I and II. The centerline velocity profiles with respect to
variation in R are drawn in Figs (17-20) for cases I, II, III, IV respectively. In case I the centerline velocity steadily
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increases for small Reynolds number with time and a steady state is reached at t = 0.4. For large Reynolds numbers
there is a sharp increase in the centerline velocity and more time is taken to attain the steady state. In case II the time
taken to reach the steady state with R is not following a uniform pattern. In case III, for all values of R the steady state
is attained at the same time when R varies from 40 to 100 and more time is taken when R = 120. A similar observation
is made in case IV also.

Shear stress T on the walls have been calculated by setting oy = 0.5 and tabulated in Tables 1-8. It is observed that for a
given Reynolds number R, the magnitude of shear stress decreases with increase in time in all the four cases at both the
walls. The shear stresses are negative in case I at both the walls and positive in all the cases II, IIl and IV.

The flow rate is calculated by setting 0,y = 0.01 and tabulated in tables 9-12. It is observed that the flow rate enhances
with time in case I, III and IV where it reduces with time in case II. The flow rate increases with increase of Reynolds
number in cases I, IT and IV. Increase of Reynolds number decreases flow rate in case III. Flow rate decreases with
Darcy parameter in cases I and IV and increases in cases II and III.
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