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________________________________________________________________________________ 

 

ABSTRACT 

 
The dispersion of a solute in a Newtonian fluid flowing through a tube under the influence of magnetic field is studied. 

The generalized dispersion model is used to solve unsteady convective diffusion equation. As a result, the total process 

of dispersion can be described in terms of a simple diffusion process with effective diffusion coefficient as a function of 

time. The effect of magnetic field on the dispersion coefficient and mean concentration is discussed. It is observed that 

the magnetic field reduces the dispersion coefficient. The time taken for the mean concentration to attain the peak value 

is found to increase with magnetic field. 
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1. INTRODUCTION: 

 

The study of dispersion of a solute in flowing fluids has several applications in Industries, Chemical engineering, 

Biomedical engineering, environmental sciences, physiological fluid dynamics and various other branches of science. 

The study of dispersion facilitates to understand the transport of nutrients in blood and various artificial devices [5, 11, 

12, 14]. Hence, the dispersion theory is of great value to know the rate of dispersion of drugs.  

 

The concept of longitudinal dispersion was introduced by Taylor [17]. Using the method of moments, Aris [3] extended 

Taylor theory by considering axial diffusion. Ananthakrishnan et al. [1] obtained a numerical solution for the complete 

convective diffusion equation considering both radial and molecular diffusion. Gill [7] generalized the work of Taylor 

by giving a series expansion about the mean concentration to describe the local concentration. This theory was 

extended by Gill and Ananthakrishnan [8] by including the effect of finite slug inputs on the dispersion process. In their 

subsequent paper [9] showed that the method of series solution mentioned above provides an exact solution to the 

unsteady convective diffusion problem for laminar flow in a circular tube provided that the coefficients in dispersion 

model are obtained as a suitable function of time ‘t’. This model was widely known as generalized dispersion model. 

The applications of magnetohydrodynamic principles in biology and medicine are abundant. It is known that the 

Lorentz’s force opposes the motion of a conducting fluid. 

 

The dispersion of a solute in a laminar flow of an electrically conducting fluid in a two dimensional channel in the 

presence of a transverse magnetic field has been studied by [10] using both Taylor’s theory and Aris analysis. 

Annapurna and Gupta [2] studied the dispersion of a solute in an electrically conducting fluid flow between two 

parallel plates in the presence of a uniform transverse magnetic field.  The importance of dispersion in hydromagnetic 

flows has been discussed by [4].  Deshikachar [6] studied the axial molecular diffusion of a solute in the laminar flow 

of an electrically conducting fluid oscillating with zero mean velocity, between two parallel plates in the presence a 

transverse magnetic field using perturbation analysis. 

 

In this paper the dispersion of a solute in a Newtonian fluid flowing through a pipe is studied under the influence of a 

transverse magnetic field with a motivation to understand the influence of magnetic field on the rate of dispersion. The 

mathematical formulation of the problem in pipe flow and the corresponding solutions are presented in section 2. The 

effect of magnetic field (Hartmann number) on the dispersion coefficient and the overall dispersion process is discussed 

in section 3. The conclusions are presented in section 4. 
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2. MATHEMATICAL FORMULATION: 

 

Consider the dispersion of a solute that is initially of zs units in length distributed in a straight circular tube of radius 

‘a’. The unsteady convective diffusion equation which describes the local concentration C  of the solute as a function 

of longitudinal (axial) coordinate z , transverse (radial) coordinate r  and time t  can be written in non- dimensional 

form as  
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where w  is the axial velocity of the fluid in pipe and Dm is coefficient of molecular diffusion (molecular diffusivity) 

which is assumed to be constant.C0 is the reference concentration and 
zd

pda
w
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is the characteristic 

velocity (centerline velocity in a Poiseuille flow), µ  is the Newtonian viscosity of the fluid and 
zd

pd
 is the applied 

pressure gradient along the axis of the pipe, Pe = 

mD

aw0 ,  Peclet number. The variables with bars represent the 

corresponding dimensional quantities. 

 

The initial and boundary conditions in dimensionless form, are given by  
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Consider the flow of Newtonian fluid in a circular pipe. Assume that the flow is axi-symmetric, fully developed, steady 

and laminar. A uniform magnetic field Bo is applied in the transverse direction. Following [15] and [16], the equation 

of motion is given by 
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Solving the equation (3) along with the no slip condition and the velocity distribution of a fluid in a pipe, in non- 

dimensional form can be obtained as  
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Where M =  is the Hartmann number,  is strength of the magnetic field,  is the electrical 

conductivity of the medium,  is the co-efficient of viscosity of blood. Io is the modified Bessel function of order zero 

of the first kind.   The mean velocity of the fluid in dimensionless form is given by 
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3. METHOD OF SOLUTION: 

 

Consider the convection across a plane moving with an average velocity wm of the fluid. For this, define a new 

coordinate system moving with new axial coordinate z1, given by  

 z1 = z - wm t                         (6) 

The solution of equation (1) along with the conditions (2) is formulated as a series expansion in 
j

m

j

z

C

∂

∂
, following [9] is 

given by  
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where �=
1
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2 drrCC m

                       (8) 

is the mean concentration over a cross section. 

 

On transforming the unsteady convective diffusion equation (1) into the moving co-ordinate system (r, z1, t) where z1 is 

given in equation (6) and substituting equation (7) into the transformed unsteady convective equation, we get 
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It is assumed that the process of distributing Cm is diffusive in nature from the time ‘zero’, then following [9], the 

generalized dispersion model for Cm can be written as 
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with dispersion coefficient Ki as suitable functions of time t. The first two terms in the right hand side of equation (10) 

describe the transport of Cm in axial direction z1 through convection and diffusion respectively, and therefore, the 

coefficients K1 and K2 are termed as the longitudinal convection and diffusion coefficients for Cm.  

 

Substituting equation (10) in equation (9) and rearranging the terms, we get an infinite set of differential equations 

given by 
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for j =1, 2… with f0  = 1 

 

we get the initial and boundary conditions on fj’s  from equation (2) and (7), as  

 

fj (0, r)  = 0      j = 1, 2….                     (14a) 
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and from equation (7) and (8),  the solvability condition is obtained as    

0
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Multiplying equations (11) (12) and (13) by r and integrating from    0 to 1, and using the condition (14), we have 
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Solution for f1:  

 

In the series expansion of equation (7), the function f1 is the most important coefficient as it gives the measure of 

deviation of the local concentration C from the mean concentration Cm. The solution to the non-homogeneous parabolic 

partial differential equation (11) and the conditions (14) can be written in the form 

 

 f1 (t, r) = f1s(r) + f1t (t, r)                       (19) 

 

where f1s(r) is the large time solution which corresponds to Taylor-Aris’s dispersion theory and  f1t is the transient part 

which describes the time-dependent nature of the dispersion phenomena corresponding to a Newtonian model. From 

equations (11) and (14) and using (16), we have 
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with the boundary and initial conditions 
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 f1t(0, r) = - f1s(r)                          (24c) 

 

From the solvability condition (2.19), we have 
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The solution for  f1s is, obtained from equation (20) subject to the conditions (22) and (25), is given by 
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From equation (21) subject to the conditions (23) and (25), the solution for f1t  is obtained as 
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J0 and J1 are the Bessel functions of first kind of order zero and one respectively and mλ ’s are the solutions of the 

equation  J1(x) = 0 

 

Solution for K2: 

 

The coefficient K2 (t) has a very significant role in the generalized dispersion model given by equation (10). It is known 

from equation (17), that K2 depends on the function f1. Substituting the expression of f1s and  f1t  and simplifying  the 

equation (17), we can obtain K2  . Once K2 (t) is known, then f2 (t, r ) can  be obtained  from equation (12) in a similar 

manner to that  f1(t, r ). Following similar procedure we can find K3 (t), f3 (t, r),K4 (t), f4 (t, r) … etc. Since the 
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expression for f1 (t, r) and K2 (t) are complicated in nature, it is very difficult to evaluate f2 (t, r), K3 (t) ,.….. and so on. 

It was shown that in the absence of magnetic field [9], K3 (t ∞→ ) = -1/ 23040 and the magnitude of higher order 

coefficients decrease further. We have not evaluated these coefficients which are likely to decrease further in 

magnitude due to the presence of magnetic field. 

 

Solution for mean concentration: 

 
Neglecting K3(t) and higher order coefficients, the generalized dispersion model leads to 
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The initial and boundary conditions for Cm are given by 
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From equation (30) along with the help of the initial and boundary conditions (31) the solution for mean concentration 

can be obtained as  
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4 RESULTS AND DISCUSSION: 

 
The objective of the present study is to understand the effect of magnetic field on the dispersion of a solute in a 

Newtonian fluid flowing in a pipe.  This study facilitates to know the dispersion of drugs and nutrients in circulatory 

system. This analysis can also be utilized to artificial blood handling devices such as blood oxygenators and 

hemodialysers.   

 

The dispersion coefficient K2 is found to be influenced significantly by the magnetic field. The values of      (K2 -1/Pe2) 

for different values of M are given in table 1. It is observed that the values of dispersion coefficient are oscillatory for 

very small values of Hartmann number M and this oscillatory behaviour gradually increases with increases in M. This 

oscillatory behavior disappears from M = 0.001 onwards and dispersion coefficient decreases with increases in M. In 

the absence of magnetic field such fluctuations in dispersion coefficient are not present [9]. This might be due to the 

possibility that the distribution of solute in the flow under pressure gradient, and by convection which might be effected 

by Lorentz force and viscous force. 

 

Table- 1 

M K2 – 1/Pe
2 

M K2 – 1/Pe
2 

0.00001 -1.2696 × 1015 0.1 3.2492 × 10-4 

0.00003 -3.9084 × 1012 0.5 2.9643 × 10-4 

0.00005 1.3052 × 1011 1 2.2862 × 10-4 

0.0001 2.7435 × 109 2 9.7878 × 10-5 

0.0003 3.0459 × 105 3 3.7021 × 10-5 

0.0005 - 4.5049 × 104 4 1.4546 × 10-5 

0.001 1.8642 × 102 5 6.0960 × 10-6 

0.005 4.9595 × 10-2 10 2.3203 × 10-7 

0.01 8.1341 × 10-4 20 5.4142 × 10-9 

 

The time dependent nature of the dispersion coefficient K2 versus time for different values of magnetic field (Hartmann 

number) for dispersion in pipe flow is described in Fig.1. The dispersion coefficient (K2 -1/Pe2) becomes essentially a 

constant for large values of time. Taylor’s theory is applicable to the dispersion of the passive tracer in flow after the 
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time at which (K2 -1/Pe2) attains the asymptotic value of the dispersion coefficient, while for small values of time the 

approximation corresponding to Lighthill [13] holds good. It is also observed that the time beyond which the Taylor’s 

theory is applicable is unaffected by the presence of magnetic field. The time taken to reach the steady state is observed 

to be dependent on the magnetic field. In the absence of magnetic field, the time to reach the steady state is 0.5 [9]. In 

the presence of magnetic field this steady state is reached faster and this critical value reduces as Hartmann number 

increases. When M = 3 the time to reach this critical value is almost half of the time corresponding to the case when M 

= 1. The presence of magnetic field in a pipe reduces the dispersion coefficient. Increase in the Hartmann number still 

decreases the dispersion coefficient. When Hartmann number is 2 the dispersion is reduced by 2 times of the 

corresponding value for M = 1. When M = 3 this reduction factor is observed to be 6.  From Fig 2, it is noticed that the 

dispersion coefficient in pipe flow analysis decreases with increase in Hartmann number and as M approaches 5, K2 

approaches the value zero. In this case flow becomes more plug like and the dispersion disappears. 

 

The time evaluation of the function f1 for dispersion is described in Fig 3. f1 provides a measure of deviation in the 

local concentration C from the mean concentration Cm.  At time t = 0 f1 is uniformly zero over the entire cross-section 

of the pipe.  f1 is noted to attain its steady state value f1s as t increases which is also shown in  Fig 4.  

 

The effect of magnetic field on f1 is shown in fig 5. The presence of magnetic field is seen to reduce the magnitude of 

the peak values of f1.  when M = 3 there is a 3 fold reduction in the magnitude of f1 at r = 0 corresponding to the case 

when M = 1. It is noticed from Fig 4 and Fig 5 that the functions f1 and f1s pass through a common point for all times 

and for all values of the magnetic field. At this point f1 and f1s are zero and the local concentration C of the solute 

becomes equal to the mean concentration Cm. Therefore, this point shall be considered as the centre of mass of the 

solute over a cross section of the pipe. This centre of mass of the solute is independent of time and Hartmann number.  
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Fig- 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 Fig- 4 

   

Fig 1 Variation of dispersion coefficient K2-(1/Pe2) verses time t for different values of M     

Fig 2 Variation of dispersion coefficient K2-(1/Pe2) verses M for t = 0.05   

Fig 3 Distribution of dispersion function f1 for different values of time t when M=1                                        

Fig 4 Distribution of steady state dispersion function f1s for different values of M when t=0.5  

 

Fig 6 describes the variation of mean concentration with time when Hartmann number M = 1, pressure gradient P = 1 

and axial distance z = 0.5. It is observed that the peak values of the mean concentration Cm occurs at t = 4.64 for 

different lengths of slug inputs of solute. The peak value of Cm increases with increase in slug input length. There is a 

fivefold enhancement in Cm when zs is increased from 0.004 to 0.019 and a two fold increase is noticed when  

zs = 0.008.  

 

Fig 7 depicts the variation of mean concentration for different values of Hartmann number. It is observed that as M 

increases the value of Cm is also increased and the time taken to attain this peak value of Cm also increases.  The peak 

value in the absence of the magnetic field occurs at t = 1 [9]. The presence of magnetic field takes more time to attain 

the peak value. When M = 1 the peak value of Cm occurs at t = 4.65 while it is at t = 9.75 when M = 3. 

 

The variation of mean concentration Cm with axial distance z for different slug input lengths of solute is presented in 

Fig 8. The peak value of concentration occurs at z = 0.003. As the length of slug input of the solute increases the peak 

value also increase. In the pipe flow analysis when M = 1 the peak value increases from 0.761 to 1 when zs changes its 

value from 0.004 to 0.019. The plot of the variation of Cm versus z for different values of M is presented in Fig 9. It is 

noticed that the peak value of Cm increases with increase in M. However, the peak value is drifted to right of the origin 

as M takes higher values. 
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Fig- 6          Fig- 7 

 

Fig. 5 Distribution of dispersion function f1 for different values of M when t = 0.05                        

 

Fig. 6 Distribution of dispersion function f1 for different values of M when t = 0.05                       

 

Fig. 7 Variation of mean concentration Cm with time for different values of M when zs = 0.019  and  z = 0.5

 
 

                                 Fig- 8                                                                                                      Fig- 9 
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Fig 8 Variation of mean concentration Cm with axial distance z for different values of Zs when t = 0.03 and M =1   

 

Fig 9 Variation of mean concentration Cm with axial distance z for different values of M when t = 0.03 and zs= 0.04      

 

 

5. CONCLUSIONS: 

 

The objective of the present investigation is to study the effect of a magnetic field on the process of dispersion. The 

convective dispersion process is analysed applying the generalized dispersion model. It is observed that the diffusion 

coefficient, which describes the dispersion process, is influenced by a magnetic field. It is observed that the results on 

(K2 -1/Pe2) agree with that of Taylor’s theory for large times and for small values of time the results agree with 

Lighthill. It is also observed that the time beyond which the Taylor theory is applicable is unaffected by the presence of 

magnetic field. The effect of magnetic field is to reduce the rate of dispersion of the solute in the fluid flow. It is 

observed that the presence of magnetic field, time taken for the dispersion coefficient to reach a steady state is more 

and the time further increases with increase in the magnetic field. Enhancement in magnetic field reduces the 

dispersion. The time taken for the mean concentration to attain the peak value is found to increase in magnetic field. 

The values of Cm are drifted to the right of origin along the axial direction as M increases.  
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