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ABSTRACT 

The aim of the present investigation is to study the peristaltic transport through the gap between coaxial tubes, where 

the outer tube is non uniform and the inner tube is rigid. The necessary theoretical results such as viscosity, pressure 

gradient and friction force on the inner and outer tubes have been obtained in terms of couple stress parameter. Out of 

these theoretical results the numerical solution of pressure gradient, outer friction, inert friction and flow rate are 

shown graphically for the better understanding of the problem. 
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1. INTRODUCATION: 

 

Peristalsis is now well known to physiologists to be one of the major mechanisms for fluid transport in many biological 

systems. In particular, a mechanism may be involved in swallowing food through the esophagus, in urine transport 

form the kidney to the bladder through the urethra, in movement of chyme in the gastro –intestinal tract, in the transport 

of spermatozoa in the ductus efferent of the male reproductive tracts and in the cervical canal, in movement of ovum in 

the female fallopian tubes, in the transport of lymph in the lymphatic vessels, and in the vasomotion of small blood 

vessel such as arterioles, venules and capillaries. In addition, peristaltic pumping occurs in many practical applications 

involving biomechanical system. Also, finger and roller pumps are frequently used for pumping corrosive or very pure 

materials so as to prevent direct contact of the fluid with the pump’s internal surfaces. 

               

A number of analytical [3, 6, 7, 8, 9, 12, 13, 21], numerical and experimental [1, 10, 18, 19, 20] studies of peristaltic 

flows of different fluids have been reported. A summary of most of the investigation reported up to the year 1983, has 

been presented by Srivastava and Srivastava [14], and some imported contribution of recent year, are reference in 

Srivastava and Saxsen [16]. Physiological organs are generally observed have the form of a non-uniform duct [11, 21]. 

In particular, the vas deferens in rhesus monkey is in the form of a diverging tube with a ration of exit to inlet 

dimensions of approximately four [4]. Hence, peristaltic analysis of a Newtonian fluid in a uniform geometry cannot be 

applied when explaining the mechanism of transport of fluid in most bio-systems. Recently, Srivastava et al [16] and 

Srivastava and Srivastava [15] studied peristaltic transport of Newtonian and non-Newtonian fluids in non-uniform 

geometries. 

 

With the above discussion in mind, we propose to study the peristaltic transport of a viscous incompressible fluid 

(creeping flow) through the gap between coaxial tubes, where the outer tube is non-uniform and has a sinusoidal wave 

traveling down its wall and the inner one is a rigid, uniform tube and moving with a constant velocity. This 

investigation may have application in many clinical applications such as the endoscopes problem. 

 

With the above discussion in mind, we propose to study the peristaltic transport of a viscous incompressible fluid 

(creeping flow) through the gap between coaxial tubes, where the outer tube is non-uniform and has a sinusoidal wave 

traveling down its wall and the inner one is a rigid, uniform tube and moving with a constant velocity. This 

investigation may have application in many clinical applications such as the endoscopes problem. 

 

2. FORMULATION OF THE PROBLEM: 

 

Consider the flow of an incompressible Newtonian fluid through coaxial tubes such that the outer tubes is non-uniform 

and has a sinusoidal wave traveling down and inner one rigid, and moving with a constant velocity. The geometry of 

the wall surface is  
  
_______________________________________________________________________________________________ 
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= + −                                                                                                                            (2.2) 
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With a1 is the radius of the inner tube 2a  (
'

z ) is the radius of the outer tube at axial distance 
'

z form inlet, a20 is the 

radius of the outer tube at the inlet, k(<<1) is the constant whose magnitude depends on the length of the outer tube, b 

is the amplitude, λ   is the wave length, c is the propagation velocity and t is the time. Choose a cylindrical coordinate 

system (
'

r ,
'

z  ) where the z-axis lies along the centreline of the inner and the outer tubes and 
'

r is the distance 

measured racially. 

 

The equation of motion of the flow in the gap between the inner and the outer tubes are 

 
' ' '

' ' '

1 ( , ) ( )
0

r u w

r r z

∂ ∂
+ =

∂ ∂
                                                                                                                (2.3) 

 
' ' ' ' ' ' 2 '

' ' 2
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ρ µ σ

∂ ∂ ∂ ∂ ∂ ∂ ∂
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∂ ∂ ∂ ∂ ∂ ∂ ∂
                                      (2.4) 
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0' ' ' ' ' ' ' '2
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t r z z r r r z
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∂ ∂ ∂ ∂ ∂ ∂ ∂
′+ + = − + + −

∂ ∂ ∂ ∂ ∂ ∂ ∂
                                    (2.5) 

 

Whereu′  and w′ are the velocity components in the r′ and w′direction respectively, ρ  is the density, p′ is the 

pressure and µ  is the viscosity, σ  is Electric conductivity and B0 is applied magnetic field.  

The boundary conditions are 

 
' ' ' ' '

0 10, ,u w V at r r= = =                                                                         (2.6a) 

'
' ' ' '2

2'
0

r
u w at r r

t

∂
= = =

∂
                                                                         (2.6b) 

 

It is convenient to non dimensionalize the variable appearing in equation (1-6) and introducing Reynolds number Re, 

wave number ratio δ , and velocity parameter 
0

V  and as follows:    

2' ' ' '

' '20 20

'

20

' ' '

20 1 2

0 1 2

20 20 20

, , , ( ), , Re ,

2
, , 1 ( ( )o

a caz r u t c
z r u p p z t

c a c c

a V r r kz
V r r z t

c a a a

ρλ

λµ λ µλ

λ π
δ ε φ

λ λ

= = = = = =

= = = = = = + + −

                             

(2.7)        

    where

20

1
b

amplitude
a

φ = ≤   

The equation of motion and boundary conditions in the dimensionless form becomes  

1 ( )
0

r u w

r r z

∂ ∂
+ =

∂ ∂
                                                                                                                               (2.8) 

 

2
3 2 4

2

1 ( )
Re { } ( )

u u u p ru u
u w

t r z r r r r z
δ δ δ

∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + = − + +

∂ ∂ ∂ ∂ ∂ ∂ ∂
-

2 2
M uδ                        (2.9) 
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2
2

2

1 ( )
Re { } ( )

w w w p rw w
u w

t r z z r r r z
δ δ

∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + = − + +

∂ ∂ ∂ ∂ ∂ ∂ ∂
-

2
M w                                       (2.10) 

 

   where 0 20M B a
σ

µ
= is the Hartmann number  

 

The boundary conditions are 

 

u=0                w=V0      at r = r1=ε ,                                                                                                (2.11a) 

u=
2

2

20

0 1 sin[2 ( )]
λ

φ π
∂

= = = + + −
∂

r kz
w at r r z t

y a
                                     (2.11b) 

 

Using the long wavelength approximation and dropping terms of order  δ  it follows from equation (5.2.8-5.2.11) that 

the appropriate equation describing the flow in the laboratory frame of reference are  

 

0 ,
∂

=
∂

p

r
                                                                                                                                       (2.12) 

21
( )

p w
r M w

z r r r

∂ ∂ ∂
= −

∂ ∂ ∂
                                                                                                   (2.13) 

 

with dimensionalessl boundary condition  

 

        w=V0                at r = 1r = ε , 

2

20

0 1 sin[2 ( )
kz

w at r r z t
a

λ
φ π= = = + + − ]                                                     (2.14) 

 

Integrating equation and using the boundary condition one finds the expression for the velocity profile as 

2 1

21 1
2

2 1
4

( )1 2 2 2 2 0( , ) ( )[( )( ) ] ( )[1 ]
2 1 1

4 ( ) ( / )

/
/

/

VInp
w z t r r r r In

z In In r r

r r r
r r M

r r
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∂
                                       (2.15)

 

     

The instantaneous volume flow rate Q (z,t) is given by 

 

2
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2 1
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( / ) ( / )[1 ]
48( )
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∂

= −
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p
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The pressure rise )(tp
L

∆  and friction force (at the wall) on the outer and the inner tubes
( ) ( )( ) ( )o i

L LF t and F t  

respectively, in a tube of length L, in their non-dimensional forms, are given by 

 

0

( )

A

L

p
p t d z

z

∂
∆ =

∂�                                                                                                                (2.18) 
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( ) 2

2

0

( ) ( ) ,
∂

∆ = −
∂�

A

o

L

p
F t r dz

z
                                                                                                              (2.19)                                                  

( ) 2

1

0

( ) ( ) ,

A

i

L

p
F t r dz

z

∂
∆ = −

∂�                                                                                                    (2.20) 

Where A=L/λ , 

 

Substituting from equation (2.17) in equation (2.18-2.20) and with 1r ε= and 

2
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The limiting of equation (2.15-2.17) as 1r tends to zero gives the forms of the axial velocity and the pressure gradient 

for peristaltic flow in non uniform tube(without endoscope, ε =0 ), these are 

2 2

2

1
( , , ) ( )( )

4

p
w r z t r r

z

∂
= − −

∂
                                                                                                   (2.24)        

   4

2

8p Q

z rπ

∂
= −

∂
                                                                 (2.25) 

 

 Hence the pressure rise and the outer friction force, in this case respectively, take the form 

 

4
0
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Equation (2.26) and equation (2.27) are the same result as those obtained by Gupta and  Seshadri [16], Srivastava and 

Srivastava for non Newtonian fluid [15] when the power law index and also those obtained by Srivastava et al.[14] for 

a constant viscosity if 0=δ . Further, if k=0 in equations (2.26) and (2.27), we get expression for the pressure rise and 

friction force in a uniform tube. The analytical interpretation of our analysis with other theories are difficult to make at 

this stage, as the integrals in equation (2.21-2.23) and equation (2.26) and (2.27) are not integrable in closed form, 

neither for non-uniform nor uniform geometry (k=0).Thus further studies of our analysis are only possible after 

numerical evaluation of these integrals. 

 

5.3. NUMERICAL RESULT AND DISCUSSION: 

 

To discuss the results obtained above quantitatively we shall assume the form of the instantaneous volume rate of the 

flow Q (z, t), periodic in (z-t) as [19,21] 

        

2

2 2

20

( , ) 2
2 sin(2 ( )) sin(2 ( )) sin (2 ( ))

2

Q z t Q kz
z t z t z t

a

φ λ
φ π φ π φ π

π π

−

= − + − + − + −  

where 
−

Q  is the time average of the flow over one period of the wave .This form Q(z, t) has been assumed in view of 

the fact that the constant value of Q(z,t) gives )(tP
L

∆  always negative, and hence will be no pumping action. Using this 

form of Q (z, t), we shall now compute the dimensionless pressure rise )(tP
L

∆ , the inner friction force )()(
tF

i

L
(on the 



����������	


�����
�����������

�
������������������������������������������������� �����!�����"��# �����!������������$��#��%
�&'�

(���#�)

'�����*��+)�#�+
��

© 2011, IJMA. All Rights Reserved                                                                                                                                                   2807  

inner surface) and the outer friction force )()(
tF

o

L
 (on the outer tube) over the tube length for various value of the 

dimensionless time t, dimensionless flow average
−

Q , amplitude ratio φ , radius ratio ε , magnetic field parameter M 

and the velocity of the inner tube V0.The average rise in pressure ,
−

L
P∆ outer friction force 

( )

( )

o

L
F

−
and the inner 

friction force 
( ) ( )i

LF t
−

  are then evaluated by averaging  )(tP
L

∆ , )()(
tF

o

L
 and )()(

tF
i

L
 over one period of the 

wave. As integrals in equation (2.21-2.23) are not integrable in closed form, they are evaluated numerically using 

digital computer. Following Srivastava [15],], using the value of the various parameters in equation (2.21-2.23) as: 

                 a20=1.25cm,                L= λ =8.01cm           .
λ

20
a3

k =  

Furthermore, since most routine upper gastrointestinal endoscopes are between 8-11 mm in diameter as reported Cotton 

and Williams [17] and the radius of the small intestine is 1.25 cm as reported in Srivastava [15] then the radius ratioε , 

take the values 0.32, 0.38, and 0.44. 

 

In figures (1) and (3) we plot the variation of Hartmann number and radius ratio on the pressure rise over the length of a 

non uniform annulus when the magnitude of the velocity is zero. We note that increasing the Hartmann number the 

pressure is also increases. In Fig (2) when both the Hartmann number and radius ratio kept constant here it is observed 

that increasing the velocity decreases the pressure rise when radius ratio is at   ε =0.38 and Hartmann number at M=5  

 

In Figures (4) (5) and (6) we consider the effects of a variable Hartmann number, velocity and radius ratio on the inner 

friction force over the length of a non-uniform annulus. The effects of varying velocity and Hartmann number on the 

inner friction force are same as indicate in outer friction force. From fig (4) it is observed that the as the radius ratio 

increase the inner friction force is also increases when the magnitude of velocity is zero and Hartmann number is at 

M=5. In fig. (7) we plotted the variation of pressure rise over the length of a uniform annulus for different value of 

velocity it is clear that as velocity increase the pressure is also increases for different value of flow rate
−

Q =0.0, 0.22, 

0.66, when magnetic field is placed at M=5 and radius ratio ε at 0.38In figures (8), (9) (10) and (11) we plot the effects 

of variation in Hartmann number velocity and radius ratio on the pressure rise, inner and outer friction. From fig (8) 

and (9) it is observed that as the velocity increase the pressure is also increases and as the magnetic field increases the 

velocity is decreases. From fig (10) it is clear  that as the velocity increase the pressure is also increases for different 

value of radius ratio ε =0.32,0.38,0.44, it has been observed that as the radius ratio increase there is a decreasing in the 

pressure when magnetic field is placed at M=5. In fig (11) it is clear that as the velocity increase the inner friction force 

is decreases for different value of magnetic field M=10, 50,100 when radius ratio is constant and magnitude of the 

velocity is varying and is not affected when velocity is zero. 

 
 

Fig (1): Variation of pressure rise over the length of a non–uniform annulus at � = 0.4, V0=0, and different values of M 
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Fig (2): Variation of pressure rise over the length of a non–uniform annulus at � = 0.4, � = 0.38, and M=1 different 

values of V0 

 

 
 

Fig (3): Variation of pressure rise over the length of a non–uniform annulus at different values of  � � = 0.4, V0 =0 and  

M=1’ 
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Fig (4): Variation of inner friction force over the length of a non-uniform annulus at � = 0.4, and different values of � at 

V0 = 0, M=3 

 

 
Fig (5): Variation of inner friction force over the length of a non-uniform annulus at � = 0.4, and different values of V0, 

� =0.38 M=3 

 

 
 

Fig (6): Variation of inner friction force over the length of a non-uniform annulus at � = 0.4, and different values of M 

at V0 = 0, �=0.38 
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Fig (7): Variation of pressure rise over the length of a uniform annulus at � = 0.4, M=5, � = 0.38 and different values of   

V0 
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