On gα-Separation Axioms

S. Balasubramanian*1 and M. Lakshmi Sarada2

¹Department of Mathematics, Government Arts College (A), Karur – 639 005, Tamilnadu (INDIA)

²Department of Mathematics, A.M.G. Degree College, Chilakaluripet – 522 616, Andhrapradesh (INDIA)

E-mail: mani55682@rediffmail.com¹ and lakhsa77492@yahoo.com²

(Received on: 08-12-11; Accepted on: 28-12-11)

ABSTRACT

In this paper by using $g\alpha$ -open sets we define almost $g\alpha$ -normality and mild $g\alpha$ -normality also we continue the study of further properties of $g\alpha$ -normality. We show that these three axioms are regular open hereditary. We also define the class of almost $g\alpha$ -irresolute mappings and show that $g\alpha$ -normality is invariant under almost $g\alpha$ -irresolute M- $g\alpha$ -open continuous surjection.

AMS Subject Classification: 54D15, 54D10.

Key words and Phrases: $g\alpha$ -open, semiopen, semipreopen, almost normal, midly normal, M- $g\alpha$ -closed, M- $g\alpha$ -open, rc-continuous.

1. Introduction:

In 1967, A. Wilansky has introduced the concept of US spaces. In 1968, C.E. Aull studied some separation axioms between the T_1 and T_2 spaces, namely, S_1 and S_2 . Next, in 1982, S.P. Arya et al have introduced and studied the concept of semi-US spaces and also they made study of s-convergence, sequentially semi-closed sets, sequentially s-compact notions. G.B. Navlagi studied P-Normal Almost-P-Normal, Mildly-P-Normal and Pre-US spaces. Recently S. Balasubramanian and P. Aruna Swathi Vyjayanthi studied ν -Normal Almost- ν -Normal, Mildly- ν -Normal and ν -US spaces. Inspired with these we introduce $g\alpha$ -Normal Almost- $g\alpha$ -Normal, Mildly- $g\alpha$ -Normal, $g\alpha$ -US, $g\alpha$ -S₁ and $g\alpha$ -S₂. Also we examine $g\alpha$ -convergence, sequentially $g\alpha$ -compact, sequentially $g\alpha$ -continuous maps, and sequentially sub $g\alpha$ -continuous maps in the context of these new concepts. All notions and symbols which are not defined in this paper may be found in the appropriate references. Throughout the paper X and Y denote Topological spaces on which no separation axioms are assumed explicitly stated.

2. Preliminaries:

Definition 2.1: $A \subset X$ is called

- (i) g-closed if cl $A \subseteq U$ whenever $A \subseteq U$ and U is open in X.
- (ii) $g\alpha$ -closed if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.

Definition 2.2: A function f is said to be almost–pre-irresolute if for each x in X and each pre-neighborhood Y of f(x), $pcl(f^{-1}(Y))$ is a pre-neighborhood of x.

Definition 2.3: A space X is said to be

- (i) $T_1(T_2)$ if for any $x \neq y$ in X, there exist (disjoint) open sets U; V in X such that $x \in U$ and $y \in V$.
- (ii) weakly Hausdorff if each point of X is the intersection of regular closed sets of X.
- (iii) normal[resp: mildly normal] if for any pair of disjoint [resp: regular-closed]closed sets F_1 and F_2 , there exist disjoint open sets U and V such that $F_1 \subset U$ and $F_2 \subset V$.

*Corresponding author: S. Balasubramanian*¹,*E-mail: mani55682@rediffmail.com

S. Balasubramanian* and M. Lakshmi Sarada2/ On ga-Separation Axioms/ IJMA- 2(12), Dec.-2011, Page: 2818-2830

- (iv) almost normal if for each closed set A and each regular closed set B such that $A \cap B = \emptyset$, there exist disjoint open sets U and V such that $A \subset U$ and $B \subset V$.
- (v) weakly regular if for each pair consisting of a regular closed set A and a point x such that $A \cap \{x\} = \emptyset$, there exist disjoint open sets U and V such that $x \in U$ and $A \subset V$.
- (vi) A subset A of a space X is S-closed relative to X if every cover of A by semiopen sets of X has a finite subfamily whose closures cover A.
- (vii) R_0 if for any point x and a closed set F with $x \notin F$ in X, there exists a open set G containing F but not x.
- (viii) R_1 iff for $x, y \in X$ with $cl\{x\} \neq cl\{y\}$, there exist disjoint open sets U and V such that $cl\{x\} \subset U$, $cl\{y\} \subset V$.
- (ix) US-space if every convergent sequence has exactly one limit point to which it converges.
- (x) pre-US space if every pre-convergent sequence has exactly one limit point to which it converges.
- (xi) pre-S₁ if it is pre-US and every sequence $\langle x_n \rangle$ pre-converges with subsequence of $\langle x_n \rangle$ pre-side points.
- (xii) pre- S_2 if it is pre-US and every sequence $\langle x_n \rangle$ in X pre-converges which has no pre-side point.
- (xiii) is weakly countable compact if every infinite subset of X has a limit point in X.
- (xiv) Baire space if for any countable collection of closed sets with empty interior in X, their union also has empty interior in X.

Definition 2.4: Let $A \subset X$. Then a point x is said to be a

- (i) limit point of A if each open set containing x contains some point y of A such that $x \neq y$.
- (ii) T_0 -limit point of A if each open set containing x contains some point y of A such that $cl\{x\} \neq cl\{y\}$, or equivalently, such that they are topologically distinct.
- (iii) pre-T₀-limit point of A if each open set containing x contains some point y of A such that $pcl\{x\} \neq pcl\{y\}$, or equivalently, such that they are topologically distinct.
- Note 1: Recall that two points are topologically distinguishable or distinct if there exists an open set containing one of the points but not the other; equivalently if they have disjoint closures. In fact, the T_0 -axiom is precisely to ensure that any two distinct points are topologically distinct.
- **Example 1:** Let $X = \{a, b, c, d\}$ and $\tau = \{\{a\}, \{b, c\}, \{a, b, c\}, X, \phi\}$. Then b and c are the limit points but not the T_0 -limit points of the set $\{b, c\}$. Further d is a T_0 -limit point of $\{b, c\}$.
- **Example 2:** Let X = (0, 1) and $\tau = \{\phi, X, \text{ and } U_n = (0, 1-1/n), n = 2, 3, 4, ... \}$. Then every point of X is a limit point of X. Every point of $X \sim U_2$ is a T_0 -limit point of X, but no point of U_2 is a T_0 -limit point of X.
- **Definition 2.5:** A set A together with all its T_0 -limit points will be denoted by T_0 -clA.

Note 2:

- (i) Every T_0 -limit point of a set A is a limit point of the set but the converse is not true in general.
- (ii) In T₀-space both are same.
- **Note 3:** R_0 -axiom is weaker than T_1 -axiom. It is independent of the T_0 -axiom. However $T_1 = R_0 + T_0$
- **Note 4:** Every countable compact space is weakly countable compact but converse is not true in general. However, a T_1 -space is weakly countable compact iff it is countable compact.

3. ga-T₀ LIMIT POINT:

Definition 3.01: In X, a point x is said to be a $g\alpha$ -T₀-limit point of A if each $g\alpha$ -open set containing x contains some point y of A such that $g\alpha cl\{x\} \neq g\alpha cl\{y\}$, or equivalently; such that they are topologically distinct with respect to $g\alpha$ -open sets.

Example 3: regular open set \Rightarrow open set \Rightarrow α -open set \Rightarrow $g\alpha$ -open set we have r- T_0 -limit point \Rightarrow T_0 -limit point

Definition 3.02: A set A together with all its $g\alpha$ -T₀-limit points is denoted by T₀- $g\alpha$ cl(A)

Lemma 3.01: If x is a $g\alpha$ - T_0 -limit point of a set A then x is $g\alpha$ -limit point of A.

Lemma 3.02: If X is $g\alpha$ - T_0 -space then every $g\alpha$ - T_0 -limit point and every $g\alpha$ -limit point are equivalent.

Corollary 3.03: If X is r- T_0 -space then every $g\alpha$ - T_0 -limit point and every $g\alpha$ -limit point are equivalent.

Theorem 3.04: For $x \neq y \in X$,

- (i) x is a $g\alpha$ - T_0 -limit point of $\{y\}$ iff $x \notin g\alpha cl\{y\}$ and $y \in g\alpha cl\{x\}$.
- (ii) x is not a $g\alpha$ - T_0 -limit point of $\{y\}$ iff either $x \in g\alpha cl\{y\}$ or $g\alpha cl\{x\} = g\alpha cl\{y\}$.
- (iii) x is not a $g\alpha$ - T_0 -limit point of $\{y\}$ iff either $x \in g\alpha cl\{y\}$ or $y \in g\alpha cl\{x\}$.

Corollary 3.05:

- (i) If x is a $g\alpha$ - T_0 -limit point of $\{y\}$, then y cannot be a $g\alpha$ -limit point of $\{x\}$.
- (ii) If $g \alpha cl\{x\} = g \alpha cl\{y\}$, then neither x is a $g \alpha T_0$ -limit point of $\{y\}$ nor y is a $g \alpha T_0$ -limit point of $\{x\}$.
- (iii) If a singleton set A has no $g\alpha$ - T_0 -limit point in X, then $g\alpha clA = g\alpha cl\{x\}$ for all $x \in g\alpha cl\{A\}$.

Lemma 3.06: In X, if x is a $g\alpha$ -limit point of a set A, then in each of the following cases x becomes $g\alpha$ - T_0 -limit point of $A(\{x\} \neq A)$.

- (i) $g \alpha c l\{x\} \neq g \alpha c l\{y\}$ for $y \in A$, $x \neq y$.
- (ii) $g \alpha c l\{x\} = \{x\}$
- (iii) X is a $g\alpha$ - T_0 -space.
- (iv) $A \sim \{x\}$ is $g\alpha$ -open

Corollary 3.07: In X, if x is a limit point of a set A, then in each of the following cases x becomes $g\alpha$ - T_0 -limit point of $A(\{x\} \neq A)$.

- (i) $g\alpha cl\{x\} \neq g\alpha cl\{y\}$ for $y \in A$, $x \neq y$.
- (ii) $g \alpha c l\{x\} = \{x\}$
- (iii) X is a $g\alpha$ - T_0 -space.
- (iv) $A \sim \{x\}$ is $g\alpha$ -open

4. $g\alpha$ -T₀ AND $g\alpha$ -R_i AXIOMS, i = 0, 1:

In view of Lemma 3.6(iii), $g\alpha$ -T₀-axiom implies the equivalence of the concept of limit point of a set with that of $g\alpha$ -T₀-limit point of the set. But for the converse, if $x \in g\alpha cl\{y\}$ then $g\alpha cl\{x\} \neq g\alpha cl\{y\}$ in general, but if x is a $g\alpha$ -T₀-limit point of $\{y\}$, then $g\alpha cl\{x\} = g\alpha cl\{y\}$

Lemma 4.01: In a space X, a limit point x of $\{y\}$ is a $g\alpha$ - T_0 -limit point of $\{y\}$ iff $g\alpha cl\{x\} \neq g\alpha cl\{y\}$.

This lemma leads to characterize the equivalence of $g\alpha$ -T₀-limit point and $g\alpha$ -limit point of a set as the $g\alpha$ -T₀-axiom.

Theorem 4.02: The following conditions are equivalent:

- (i) X is a $g\alpha$ - T_0 space
- (ii) Every $g\alpha$ -limit point of a set A is a $g\alpha$ - T_0 -limit point of A
- (iii) Every r-limit point of a singleton set $\{x\}$ is a $g\alpha$ - T_0 -limit point of $\{x\}$
- (iv) For any x, y in X, $x \neq y$ if $x \in g \alpha cl\{y\}$, then x is a $g \alpha$ - T_0 -limit point of $\{y\}$

Note 5: In a $g\alpha$ -T₀–space X if every point of X is a r-limit point of X, then every point of X is $g\alpha$ -T₀–limit point of X. But a space X in which each point is a $g\alpha$ -T₀–limit point of X is not necessarily a $g\alpha$ -T₀–space

Theorem 4.03: The following conditions are equivalent:

- (i) X is a $g\alpha$ - R_0 space
- (ii) For any x, y in X, if $x \in g\alpha cl\{y\}$, then x is not a $g\alpha T_0$ —limit point of $\{y\}$
- (iii) A point $g\alpha$ -closure set has no $g\alpha$ - T_0 -limit point in X
- (iv) A singleton set has no $g\alpha$ - T_0 -limit point in X.

Since every r-R₀-space is $g\alpha$ -R₀-space, we have the following corollary

Corollary 4.04: The following conditions are equivalent:

- (i) X is a r- R_0 space
- (ii) For any x, y in X, if $x \in g \alpha cl\{y\}$, then x is not a $g \alpha T_0$ —limit point of $\{y\}$
- (iii) A point $g\alpha$ -closure set has no $g\alpha$ - T_0 -limit point in X
- (iv) A singleton set has no $g\alpha$ - T_0 -limit point in X.

Theorem 4.05: In a $g\alpha$ - R_0 space X, a point x is $g\alpha$ - T_0 -limit point of A iff every $g\alpha$ -open set containing x contains infinitely many points of A with each of which x is topologically distinct

If $g\alpha$ -R₀ space is replaced by rR₀ space in the above theorem, we have the following corollaries:

Corollary 4.06: In an rR_0 -space X,

- (i) If a point x is rT_0 -limit point of a set then every $g\alpha$ -open set containing x contains infinitely many points of A with each of which x is topologically distinct.
- (ii) If a point x is $g\alpha$ - T_0 -limit point of a set then every $g\alpha$ -open set containing x contains infinitely many points of A with each of which x is topologically distinct.

Theorem 4.07: X is $g\alpha - R_0$ space iff a set A of the form $A = \bigcup g\alpha cl\{x_{i \ i \ = \ l \ to \ n}\}$ a finite union of point closure sets has no $g\alpha - T_0$ —limit point.

Corollary 4.08: If X is rR_0 space and

- (i) If $A = \bigcup g \alpha cl\{x_{i, i=1 \text{ to } n}\}$ a finite union of point closure sets has no $g\alpha$ - T_0 -limit point.
- (ii)If $X = \bigcup g \alpha cl\{x_{i, i=1 \text{ to } n}\}\$ then X has no $g\alpha$ - T_0 -limit point.

Theorem 4.09: The following conditions are equivalent:

- (i) X is $g\alpha$ - R_0 -space
- (ii) For any x and a set in X, x is a $g\alpha$ - T_0 -limit point of A iff every $g\alpha$ -open set containing x contains infinitely many points of A with each of which x is topologically distinct.

Various characteristic properties of $g\alpha$ -T₀-limit points studied so far is enlisted in the following theorem for a ready reference.

Theorem 4.10: In a $g\alpha$ - R_0 -space, we have the following:

- (i) A singleton set has no $g\alpha$ - T_0 -limit point in X.
- (ii) A finite set has no $g\alpha$ - T_0 -limit point in X.
- (iii) A point $g\alpha$ -closure has no set $g\alpha$ - T_0 -limit point in X
- (iv) A finite union point $g\alpha$ -closure sets have no set $g\alpha$ - T_0 -limit point in X.
- (v) For $x, y \in X$, $x \in T_0$ $g \alpha cl\{y\}$ iff x = y.
- (vi) For any $x, y \in X$, $x \neq y$ iff neither x is $g\alpha T_0$ —limit point of $\{y\}$ nor y is $g\alpha T_0$ —limit point of $\{x\}$
- (vii) For any $x, y \in X$, $x \neq y$ iff $T_0 g \alpha cl\{x\} \cap T_0 g \alpha cl\{y\} = \phi$.
- (viii)Any point $x \in X$ is a $g\alpha$ - T_0 -limit point of a set A in X iff every $g\alpha$ -open set containing x contains infinitely many points of A with each which x is topologically distinct.

Theorem 4.11: X is $g\alpha$ - R_1 iff for any $g\alpha$ -open set U in X and points x, y such that $x \in X \sim U$, $y \in U$, there exists a $g\alpha$ -open set V in X such that $y \in V \subset U$, $x \notin V$.

Lemma 4.12: In $g\alpha$ - R_I space X, if x is a $g\alpha$ - T_0 -limit point of X, then for any non empty $g\alpha$ -open set U, there exists a non empty $g\alpha$ -open set V such that $V \subset U$, $x \notin g\alpha cl(V)$.

Lemma 4.13: In a $g\alpha$ -regular space X, if x is a $g\alpha$ - T_0 -limit point of X, then for any non empty $g\alpha$ -open set U, there exists a non empty $g\alpha$ -open set V such that $g\alpha cl(V) \subset U$, $x \notin g\alpha cl(V)$.

Corollary 4.14: In a regular space X,

- (i) if x is a $g\alpha$ - T_0 -limit point of X, then for any non empty $g\alpha$ -open set U, there exists a non empty $g\alpha$ -open set V such that $g\alpha cl(V) \subset U$, $x \notin g\alpha cl(V)$.
- (ii) if x is a T_0 -limit point of X, then for any non empty $g\alpha$ -open set U, there exists a non empty $g\alpha$ -open set V such that $g\alpha cl(V) \subset U$, $x \notin g\alpha cl(V)$.

Theorem 4.15: If X is a $g\alpha$ -compact $g\alpha$ - R_I -space, then X is a Baire Space.

Proof: Let $\{A_n\}$ be a countable collection of $g\alpha$ -closed sets of X, each A_n having empty interior in X. Take A_1 , since A_1 has empty interior, A_1 does not contain any $g\alpha$ -open set say U_0 . Therefore we can choose a point $y \in U_0$ such that

 $y \notin A_1$. For X is $g\alpha$ -regular, and $y \in (X \sim A_1) \cap U_0$, a $g\alpha$ -open set, we can find a $g\alpha$ -open set U_1 in X such that $y \in U_1$, $g\alpha cl(U_1) \subset (X \sim A_1) \cap U_0$. Hence U_1 is a non empty $g\alpha$ -open set in X such that $g\alpha cl(U_1) \subset U_0$ and $g\alpha cl(U_1) \cap A_1 = \emptyset$. Continuing this process, in general, for given non empty $g\alpha$ -open set U_{n-1} , we can choose a point of U_{n-1} which is not in the $g\alpha$ -closed set A_n and a $g\alpha$ -open set U_n containing this point such that $g\alpha cl(U_n) \subset U_{n-1}$ and $g\alpha cl(U_n) \cap A_n = \emptyset$. Thus we get a sequence of nested non empty $g\alpha$ -closed sets which satisfies the finite intersection property. Therefore $G\alpha cl(U_n) \neq \emptyset$. Then some $G\alpha cl(U_n)$ which in turn implies that $G\alpha cl(U_n) \subset U_{n-1}$ and $G\alpha cl(U_n) \subset$

Corollary 4.16: If X is a compact $g\alpha$ - R_1 -space, then X is a Baire Space.

Corollary 4.17: Let X be a $g\alpha$ -compact $g\alpha$ - R_1 -space. If $\{A_n\}$ is a countable collection of $g\alpha$ -closed sets in X, each A_n having non-empty $g\alpha$ -interior in X, then there is a point of X which is not in any of the A_n .

Corollary 4.18: Let X be a $g\alpha$ -compact R_I -space. If $\{A_n\}$ is a countable collection of $g\alpha$ -closed sets in X, each A_n having non-empty $g\alpha$ - interior in X, then there is a point of X which is not in any of the A_n .

Theorem 4.19: Let X be a non empty compact $g\alpha$ - R_1 -space. If every point of X is a $g\alpha$ - T_0 -limit point of X then X is uncountable.

Proof: Since X is non empty and every point is a $g\alpha$ -T₀-limit point of X, X must be infinite. If X is countable, we construct a sequence of $g\alpha$ - open sets $\{V_n\}$ in X as follows:

Let $X = V_1$, then for x_1 is a $g\alpha$ - T_0 -limit point of X, we can choose a non empty $g\alpha$ -open set V_2 in X such that $V_2 \subset V_1$ and $x_1 \notin g\alpha$ cl V_2 . Next for x_2 and non empty $g\alpha$ -open set V_2 , we can choose a non empty $g\alpha$ -open set V_3 in X such that $V_3 \subset V_2$ and $x_2 \notin g\alpha$ cl V_3 . Continuing this process for each x_n and a non empty $g\alpha$ -open set V_n , we can choose a non empty $g\alpha$ -open set V_{n+1} in X such that $V_{n+1} \subset V_n$ and $x_n \notin g\alpha$ cl V_{n+1} .

Now consider the nested sequence of $g\alpha$ -closed sets $g\alpha clV_1 \supset g\alpha clV_2 \supset g\alpha clV_3 \supset \dots \supset g\alpha clV_n \supset \dots$

Since X is $g\alpha$ -compact and $\{g\alpha clV_n\}$ the sequence of $g\alpha$ -closed sets satisfies finite intersection property. By Cantors intersection theorem, there exists an x in X such that $x \in g\alpha clV_n$. Further $x \in X$ and $x \in V_1$, which is not equal to any of the points of X. Hence X is uncountable.

Corollary 4.20: Let X be a non empty $g\alpha$ -compact $g\alpha$ - R_1 -space. If every point of X is a $g\alpha$ - T_0 -limit point of X then X is uncountable

5. $g\alpha$ -T₀-IDENTIFICATION SPACES AND $g\alpha$ -SEPARATION AXIOMS:

Definition 5.01: Let (X, τ) be a topological space and let \Re be the equivalence relation on X defined by $x\Re y$ iff $g \alpha c l\{x\} = g \alpha c l\{y\}$

Problem 5.02: show that $x\Re y$ iff $g \alpha c l\{x\} = g \alpha c l\{y\}$ is an equivalence relation

Definition 5.03: The space $(X_0, Q(X_0))$ is called the $g\alpha$ - T_0 -identification space of (X, τ) , where X_0 is the set of equivalence classes of \Re and $Q(X_0)$ is the decomposition topology on X_0 .

Let P_X : $(X, \tau) \rightarrow (X_0, Q(X_0))$ denote the natural map

Lemma 5.04: If $x \in X$ and $A \subset X$, then $x \in g \alpha clA$ iff every $g\alpha$ -open set containing x intersects A.

Theorem 5.05: The natural map $P_X:(X,\tau)\to (X_0,Q(X_0))$ is closed, open and $P_X^{-1}(P_X(O))=O$ for all $O\in PO(X,\tau)$ and $(X_0,Q(X_0))$ is $g\alpha - T_0$

Proof: Let $O \in PO(X, \tau)$ and let $C \in P_X(O)$. Then there exists $x \in O$ such that $P_X(x) = C$. If $y \in C$, then $g \alpha c l\{y\} = g \alpha c l\{x\}$, which, by lemma, implies $y \in O$. Since $\tau \subset PO(X, \tau)$, then $P_X^{-1}(P_X(U)) = U$ for all $U \in \tau$, which implies P_X is closed and open.

Let G, $H \in X_0$ such that $G \ne H$ and let $x \in G$ and $y \in H$. Then $g \alpha c l\{x\} \ne g \alpha c l\{y\}$, which implies that $x \notin g \alpha c l\{y\}$ or $y \notin g \alpha c l\{x\}$, say $x \notin g \alpha c l\{y\}$. Since P_X is continuous and open, then $G \in A = P_X\{X \sim g \alpha c l\{y\}\} \notin PO(X_0, Q(X_0))$ and $H \notin A$

Theorem 5.06: The following are equivalent:

(i) X is $g \alpha R_0$ (ii) $X_0 = \{ g \alpha cl\{x\}: x \in X \}$ and (iii) $(X_0, Q(X_0))$ is $g \alpha T_1$

Proof: (i) \Rightarrow (ii) Let $C \in X_0$, and let $x \in C$. If $y \in C$, then $y \in g \alpha cl\{y\} = g \alpha cl\{x\}$, which implies $C \in g \alpha cl\{x\}$. If $y \in g \alpha cl\{x\}$, then $x \in g \alpha cl\{y\}$, since, otherwise, $x \in X \sim g \alpha cl\{y\} \in PO(X, \tau)$ which implies $g \alpha cl\{x\} \subset X \sim g \alpha cl\{y\}$, which is a contradiction. Thus, if $y \in g \alpha cl\{x\}$, then $x \in g \alpha cl\{y\}$, which implies $g \alpha cl\{y\} = g \alpha cl\{x\}$ and $y \in C$. Hence $X_0 = \{g \alpha cl\{x\} : x \in X\}$

(ii) \Rightarrow (iii) Let $A \neq B \in X_0$. Then there exists $x, y \in X$ such that $A = g \alpha c l\{x\}$; $B = g \alpha c l\{y\}$, and $g \alpha c l\{y\} = \emptyset$. Then $A \in C = P_X(X \sim g \alpha c l\{y\}) \in PO(X_0, Q(X_0))$ and $B \notin C$. Thus $(X_0, Q(X_0))$ is $g \alpha \cdot T_1$

(iii) \Rightarrow (i) Let $x \in U \in g\alpha O(X)$. Let $y \notin U$ and C_x , $C_y \in X_0$ containing x and y respectively. Then $x \notin g\alpha cl\{y\}$, which implies $C_x \neq C_y$ and there exists $g\alpha$ -open set A such that $C_x \in A$ and $C_y \notin A$. Since P_X is continuous and open, then $y \in B = P_X^{-1}(A) \in x \in g\alpha O(X)$ and $x \notin B$, which implies $y \notin g\alpha cl\{x\}$. Thus $g\alpha cl\{x\} \subset U$. This is true for all $g\alpha cl\{x\}$ implies $\bigcap g\alpha cl\{x\} \subset U$. Hence X is $g\alpha$ - R_0

Theorem 5.07: (X, τ) is $g\alpha$ - R_1 iff $(X_0, Q(X_0))$ is $g\alpha$ - T_2

The proof is straight forward from using theorems 5.05 and 5.06 and is omitted

Theorem 5.08: X is $g\alpha$ - T_i ; i = 0, 1, 2. iff there exists a $g\alpha$ -continuous, almost-open, 1-1 function from (X, τ) into a $g\alpha$ - T_i space; i = 0, 1, 2. respectively.

Proof: If X is $g\alpha$ - T_i ; i = 0, 1, 2, then the identity function on X satisfies the desired properties. The converse is (ii) part of Theorem 2.13.

The following example shows that if $f: (X, \tau) \to (Y, \sigma)$ is continuous, $g\alpha$ -open, bijective, $A \in PO(Y, \sigma)$, and (Y, σ) $g\alpha$ - T_i ; i = 0,1,2, then $f^{-1}(A)$ need not be αg -open and (X, τ) need not be $g\alpha$ - T_i ; i = 0,1,2

Theorem 5.09: If $f: (X, \tau) \to (Y, \sigma)$ is $g\alpha$ -continuous, $g\alpha$ -open, and $x, y \in X$ such that $g\alpha cl\{x\} = g\alpha cl\{y\}$, then $g\alpha cl\{f(x)\} = g\alpha cl\{f(y)\}$.

Theorem 5.10: The following are equivalent

- (i) (X, τ) is $g\alpha T_0$
- (ii) Elements of X_0 are singleton sets and
- (iii) There exists a ga-continuous, ga-open, 1-1 function $f:(X, \tau) \to (Y, \sigma)$, where (Y, σ) is $ga-T_0$

Proof: (i) is equivalent to (ii) and (i) \Rightarrow (iii) are straight forward and is omitted.

(iii) \Rightarrow (i) Let x, y \in X such that $f(x) \neq f(y)$, which implies $g \alpha c l\{f(x)\} \neq g \alpha c l\{f(y)\}$. Then by theorem 5.09 $g \alpha c l\{x\} \neq g \alpha c l\{y\}$. Hence (X, τ) is $g \alpha - T_0$

Corollary 5.11: A space (X, τ) is $g\alpha$ - T_i ; i = 1,2 iff (X, τ) is $g\alpha$ - T_{i-1} ; i = 1,2, respectively, and there exists a $g\alpha$ -continuous, $g\alpha$ -open, 1-1 function $f:(X, \tau)$ into a $g\alpha$ - T_0 space.

Definition 5.04: $f:X \to Y$ is point— $g\alpha$ -closure 1–1 iff for $x, y \in X$ such that $g\alpha \operatorname{cl}\{x\} \neq g\alpha \operatorname{cl}\{y\}$, $g\alpha \operatorname{cl}\{f(x)\} \neq g\alpha \operatorname{cl}\{f(y)\}$.

Theorem 5.12:

(i) If $f: (X, \tau) \rightarrow (Y, \sigma)$ is point— $g\alpha$ -closure l-1 and (X, τ) is $g\alpha$ - T_0 , then f is l-1(ii) If $f: (X, \tau) \rightarrow (Y, \sigma)$, where (X, τ) and (Y, σ) are $g\alpha$ - T_0 then f is point— $g\alpha$ -closure l-1 iff f is l-1

Proof: omitted

The following result can be obtained by combining results for $g\alpha$ -T₀- identification spaces, $g\alpha$ -induced functions and $g\alpha$ -T_i spaces; i = 1,2.

Theorem 5.13: X is $g\alpha$ - R_i ; i = 0,1 iff there exists a $g\alpha$ -continuous, almost-open point- $g\alpha$ -closure 1-1 function $f: (X, \tau)$ into a $g\alpha$ - R_i space; i = 0,1 respectively.

6. $g\alpha$ -Normal; Almost $g\alpha$ -normal and Mildly $g\alpha$ -normal spaces:

Definition 6.1: A space X is said to be $g\alpha$ -normal if for any pair of disjoint closed sets F_1 and F_2 , there exist disjoint $g\alpha$ -open sets U and V such that $F_1 \subset U$ and $F_2 \subset V$.

Example 4: Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{a\}, \{b, c\}, X\}$. Then X is $g\alpha$ -normal.

Example 5: Let $X = \{a, b, c, d\}$ and $\tau = \{\phi, \{b, d\}, \{a, b, d\}, \{b, c, d\}, X\}$. Then X is not $g\alpha$ -normal and is not normal. We have the following characterization of $g\alpha$ -normality.

Theorem 6.1: For a space X the following are equivalent:

- (i) X is $g\alpha$ -normal.
- (ii) For every pair of open sets U and V whose union is X, there exist $g\alpha$ -closed sets A and B such that $A \subset U$, $B \subset V$ and $A \cup B = X$.
- (iii) For every closed set F and every open set G containing F, there exists a $g\alpha$ -open set U such that $F \subset U \subset g\alpha cl(U) \subset G$.

Proof: (a) \Rightarrow (b): Let U and V be a pair of open sets in a $g\alpha$ -normal space X such that $X = U \cup V$. Then X-U, X-V are disjoint closed sets. Since X is $g\alpha$ -normal there exist disjoint $g\alpha$ -open sets U_1 and V_1 such that $X - U \subset U_1$ and $X - V \subset V_1$. Let $A = X - U_1$, $B = X - V_1$. Then A and B are $g\alpha$ -closed sets such that $A \subset U$, $B \subset V$ and $A \cup B = X$.

(b) \Rightarrow (c): Let F be a closed set and G be an open set containing F. Then X-F and G are open sets whose union is X. Then by (b), there exist $g\alpha$ -closed sets W_1 and W_2 such that $W_1 \subset X$ -F and $W_2 \subset G$ and $W_1 \cup W_2 = X$. Then $F \subset X$ - W_1 , X-G $\subset X$ - W_2 and (X- $W_1) \cap (X$ - $W_2) = \phi$. Let U = X- W_1 and V = X- W_2 . Then U and V are disjoint $g\alpha$ -open sets such that $F \subset U \subset X$ - $V \subset G$. As X-V is $g\alpha$ -closed set, we have $g\alpha cl(U) \subset X$ -V and $F \subset U \subset g\alpha cl(U) \subset G$.

(c) \Rightarrow (a): Let F_1 and F_2 be any two disjoint closed sets of X. Put $G = X - F_2$, then $F_1 \cap G = \emptyset$. $F_1 \subset G$ where G is an open set. Then by (c), there exists a $g\alpha$ -open set U of X such that $F_1 \subset U \subset g\alpha cl(U) \subset G$. It follows that $F_2 \subset X - g\alpha cl(U) = V$, say, then V is $g\alpha$ -open and $U \cap V = \emptyset$. Hence F_1 and F_2 are separated by $g\alpha$ -open sets U and V. Therefore X is $g\alpha$ -normal.

Theorem 6.2: A regular open subspace of a $g\alpha$ -normal space is $g\alpha$ -normal.

Proof: Let Y be a regular open subspace of a $g\alpha$ -normal space X. Let A and B be disjoint closed subsets of Y. As Y is regular open, A,B are closed sets of X. By $g\alpha$ -normality of X, there exist disjoint $g\alpha$ -open sets U and V in X such that $A \subset U$ and $B \subset V$, $U \cap Y$ and $V \cap Y$ are $g\alpha$ -open in Y such that $A \subset U \cap Y$ and $B \subset V \cap Y$. Hence Y is $g\alpha$ -normal.

Example 6: Let $X = \{a, b, c\}$ with $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$ is $g\alpha$ -normal and $g\alpha$ -regular.

However we observe that every $g\alpha$ -normal $g\alpha$ - R_0 space is $g\alpha$ -regular.

Now, we define the following.

Definition 6.2: A function $f: X \to Y$ is said to be almost $-g\alpha$ -irresolute if for each x in X and each $g\alpha$ -neighborhood V of f(x), $g\alpha cl(f^{-1}(V))$ is a $g\alpha$ -neighborhood of x.

Clearly every $g\alpha$ -irresolute map is almost $g\alpha$ -irresolute.

The Proof of the following lemma is straightforward and hence omitted.

Lemma 6.1: f is almost $g\alpha$ -irresolute iff $f^1(V) \subset g\alpha$ -int $(g\alpha cl(f^1(V))))$ for every $V \in g\alpha O(Y)$. Now we prove the following.

Lemma 6.2: f is almost $g\alpha$ -irresolute iff $f(g\alpha cl(U)) \subset g\alpha cl(f(U))$ for every $U \in g\alpha O(X)$.

Proof: Let $U \in g \alpha O(X)$. Suppose $y \notin g \alpha cl(f(U))$. Then there exists $V \in g \alpha O(y)$ such that $V \cap f(U) = \emptyset$. Hence $f^{-1}(V) \cap U = \emptyset$. Since $U \in g \alpha O(X)$, we have $g \alpha - int(g \alpha cl(f^{-1}(V))) \cap g \alpha cl(U) = \emptyset$. Then by lemma 6.1, $f^{-1}(V) \cap g \alpha cl(U) = \emptyset$ and hence $V \cap f(g \alpha cl(U)) = \emptyset$. This implies that $y \notin f(g \alpha cl(U))$.

S. Balasubramanian* and M. Lakshmi Sarada2/ On ga-Separation Axioms/ IJMA- 2(12), Dec.-2011, Page: 2818-2830

Conversely, if $V \in g \alpha O(Y)$, then $W = X - g \alpha c l(f^1(V))) \in g \alpha O(X)$. By hypothesis, $f(g \alpha c l(W)) \subset g \alpha c l(f(W))$ and hence $X - g \alpha c l(f^1(V)) = g \alpha c l(W) \subset f^1(g \alpha c l(f(W))) \subset f(g \alpha c l(f(W))) \subset f^{-1}[g \alpha c l(Y - V)] = f^{-1}(Y - V) = X - f^1(V)$.

Therefore, $f^1(V) \subset g\alpha$ -int $(g\alpha cl(f^1(V)))$. By lemma 6.1, f is almost $g\alpha$ -irresolute.

Now we prove the following result on the invariance of $g\alpha$ -normality.

Theorem 6.3: If f is an M- $g\alpha$ -open continuous almost $g\alpha$ -irresolute function from a $g\alpha$ -normal space X onto a space Y, then Y is $g\alpha$ -normal.

Proof: Let A be a closed subset of Y and B be an open set containing A. Then by continuity of f, $f^1(A)$ is closed and $f^1(B)$ is an open set of X such that $f^1(A) \subset f^1(B)$. As X is $g\alpha$ -normal, there exists a $g\alpha$ -open set U in X such that $f^1(A) \subset U \subset g\alpha cl(U) \subset f^1(B)$. Then $f(f^1(A)) \subset f(U) \subset f(g\alpha cl(U)) \subset f(f^1(B))$. Since f is M- $g\alpha$ -open almost $g\alpha$ -irresolute surjection, we obtain $A \subset f(U) \subset g\alpha cl(f(U)) \subset B$. Then again by Theorem 6.1 the space Y is $g\alpha$ -normal.

Lemma 6.3: A mapping f is M- $g\alpha$ -closed if and only if for each subset B in Y and for each $g\alpha$ -open set U in X containing $f^1(B)$, there exists a $g\alpha$ -open set V containing B such that $f^1(V) \subset U$. Now we prove the following:

Theorem 6.4: If f is an M- $g\alpha$ -closed continuous function from a $g\alpha$ -normal space onto a space Y, then Y is $g\alpha$ -normal.

Proof of the theorem is routine and hence omitted.

Now in view of lemma 2.2 [9] and lemma 6.3, we prove that the following result.

Theorem 6.5: If f is an M- $g\alpha$ -closed map from a weakly Hausdorff $g\alpha$ -normal space X onto a space Y such that $f^1(y)$ is S-closed relative to X for each $y \in Y$, then Y is $g\alpha$ -T₂.

Proof: Let y_1 and y_2 be any two distinct points of Y. Since X is weakly Hausdorff, $f^{-1}(y_1)$ and $f^{-1}(y_2)$ are disjoint closed subsets of X by lemma 2.2 [9]. As X is $g\alpha$ -normal, there exist disjoint $g\alpha$ -open sets V_1 and V_2 such that $f^{-1}(y_i) \subset V_i$, for i = 1, 2. Since f is M- $g\alpha$ -closed, there exist $g\alpha$ -open sets U_1 and U_2 containing y_1 and y_2 such that $f^{-1}(U_i) \subset V_i$ for i = 1, 2. Then it follows that $U_1 \cap U_2 = \emptyset$. Hence Y is $g\alpha$ -T₂.

Theorem 6.6: For a space *X* we have the following:

- (a) If X is normal then for any disjoint closed sets A and B, there exist disjoint $g\alpha$ -open sets U, V such that $A \subset U$ and $B \subset V$;
- (b) If X is normal then for any closed set A and any open set V containing A, there exists an $g\alpha$ -open set U of X such that $A \subset U \subset g\alpha \subset U$.

Definition 6.2: X is said to be almost $g\alpha$ -normal if for each closed set A and each regular closed set B such that $A \cap B = \phi$, there exist disjoint $g\alpha$ -open sets U and V such that $A \subset U$ and $B \subset V$.

Clearly, every $g\alpha$ -normal space is almost $g\alpha$ -normal, but not conversely in general.

Example 7: Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{a\}, \{a, b\}, \{a, c\}, X\}$. Then X is almost $g\alpha$ -normal and not $g\alpha$ -normal.

Now, we have characterization of almost $g\alpha$ -normality in the following.

Theorem 6.7: For a space X the following statements are equivalent:

- (i) X is almost gα-normal
- (ii) For every pair of sets U and V, one of which is open and the other is regular open whose union is X, there exist $g\alpha$ -closed sets G and H such that $G \subset U$, $H \subset V$ and $G \cup H = X$.
- (iii) For every closed set A and every regular open set B containing A, there is a $g\alpha$ -open set V such that $A \subset V \subset g\alpha cl(V) \subset B$.

Proof: (a) \Rightarrow (b) Let U be an open set and V be a regular open set in an almost $g\alpha$ -normal space X such that $U \cup V = X$. Then (X-U) is closed set and (X-V) is regular closed set with (X-U) \cap (X-V) = ϕ . By almost $g\alpha$ -normality of X, there

S. Balasubramanian* and M. Lakshmi Sarada / On ga-Separation Axioms/ IJMA- 2(12), Dec.-2011, Page: 2818-2830

exist disjoint $g\alpha$ -open sets U_1 and V_1 such that $X-U \subset U_1$ and $X-V \subset V_1$. Let $G = X-U_1$ and $H = X-V_1$. Then G and H are $g\alpha$ -closed sets such that $G \subset U$, $H \subset V$ and $G \cup H = X$.

(b) \Rightarrow (c) and (c) \Rightarrow (a) are obvious.

One can prove that almost $g\alpha$ -normality is also regular open hereditary.

Almost $g\alpha$ -normality does not imply almost $g\alpha$ -regularity in general. However, we observe that every almost $g\alpha$ -normal $g\alpha$ -R₀ space is almost $g\alpha$ -regular.

Next, we prove the following.

Theorem 6.8: Every almost regular, v-compact space X is almost $g\alpha$ -normal.

Recall that a function $f: X \to Y$ is called rc-continuous if inverse image of regular closed set is regular closed.

Now, we state the invariance of almost $g\alpha$ -normality in the following.

Theorem 6.9: If f is continuous M- $g\alpha$ -open rc-continuous and almost $g\alpha$ -irresolute surjection from an almost $g\alpha$ -normal space X onto a space Y, then Y is almost $g\alpha$ -normal.

Definition 6.3: A space X is said to be mildly $g\alpha$ -normal if for every pair of disjoint regular closed sets F_1 and F_2 of X, there exist disjoint $g\alpha$ -open sets U and V such that $F_1 \subset U$ and $F_2 \subset V$.

Example 8: Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{b\}, \{a, b\}, \{b, c\}, X\}$. Then X is mildly $g\alpha$ -regular.

We have the following characterization of mild $g\alpha$ -normality.

Theorem 6.10: For a space X the following are equivalent.

- (i) X is mildly $g\alpha$ -normal.
- (ii) For every pair of regular open sets U and V whose union is X, there exist $g\alpha$ -closed sets G and H such that $G \subset U$, $H \subset V$ and $G \cup H = X$.
- (iii) For any regular closed set A and every regular open set B containing A, there exists a $g\alpha$ -open set U such that $A \subset U \subset g\alpha cl(U) \subset B$.
- (iv) For every pair of disjoint regular closed sets, there exist $g\alpha$ -open sets U and V such that $A \subset U$, $B \subset V$ and $g\alpha cl(U) \cap g\alpha cl(V) = \phi$.

This theorem may be proved by using the arguments similar to those of Theorem 6.7.

Also, we observe that mild $g\alpha$ -normality is regular open hereditary.

We define the following

Definition 6.4: A space X is weakly $g\alpha$ -regular if for each point x and a regular open set U containing $\{x\}$, there is a $g\alpha$ -open set V such that $x \in V \subset clV \subset U$.

Example 9: Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{b\}, \{a, b\}, \{b, c\}, X\}$. Then X is weakly $g\alpha$ -regular.

Example 10: Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$. Then X is not weakly $g\alpha$ -regular.

Theorem 6.11: If $f: X \to Y$ is an M- $g\alpha$ -open rc-continuous and almost $g\alpha$ -irresolute function from a mildly $g\alpha$ -normal space X onto a space Y, then Y is mildly $g\alpha$ -normal.

Proof: Let A be a regular closed set and B be a regular open set containing A. Then by rc-continuity of f, $f^{-1}(A)$ is a regular closed set contained in the regular open set $f^{1}(B)$. Since X is mildly $g\alpha$ -normal, there exists a $g\alpha$ -open set V such that $f^{1}(A) \subset V \subset g\alpha cl(V) \subset f^{-1}(B)$ by Theorem 6.10. As f is M- $g\alpha$ -open and almost $g\alpha$ -irresolute surjection, it follows that $f(V) \in g\alpha O(Y)$ and $A \subset f(V) \subset g\alpha cl(f(V)) \subset B$. Hence Y is mildly $g\alpha$ -normal.

Theorem 6.12: If $f: X \to Y$ is re-continuous, M- $g\alpha$ -closed map from a mildly $g\alpha$ -normal space X onto a space Y, then Y is mildly $g\alpha$ -normal.

7. gα-US spaces:

Definition 7.1:A sequence $\langle x_n \rangle$ is said to be $g\alpha$ -converges to a point x of X, written as $\langle x_n \rangle \to^{g\alpha} x$ if $\langle x_n \rangle$ is eventually in every $g\alpha$ -open set containing x.

Clearly, if a sequence $\langle x_n \rangle$ r-converges to a point x of X, then $\langle x_n \rangle$ $g\alpha$ -converges to x.

Definition 7.2: X is said to be $g\alpha$ -US if every sequence $\langle x_n \rangle$ in X $g\alpha$ -converges to a unique point.

Theorem 7.1: Every $g\alpha$ -US space is $g\alpha$ -T₁.

Proof: Let X be $g\alpha$ -US space. Let x and y be two distinct points of X. Consider the sequence $\langle x_n \rangle$ where $x_n = x$ for every n. Cleary, $\langle x_n \rangle \to g^{\alpha}$ x. Also, since $x \neq y$ and X is $g\alpha$ -US, $\langle x_n \rangle$ cannot $g\alpha$ -converge to y, i.e, there exists a $g\alpha$ -open set V containing y but not x. Similarly, for the sequence $\langle y_n \rangle$ where $y_n = y$ for all n, and proceeding as above we get a $g\alpha$ -open set U containing x but not y. Thus, the space X is $g\alpha$ -T₁.

Theorem 7.2: Every $g\alpha$ -T₂ space is $g\alpha$ -US.

Proof: Let X be $g\alpha$ -T₂ space and $\langle x_n \rangle$ be a sequence in X. If possible suppose that $\langle x_n \rangle$ $g\alpha$ -converge to two distinct points x and y. That is, $\langle x_n \rangle$ is eventually in every $g\alpha$ -open set containing x and also in every $g\alpha$ -open set containing y. This is contradiction since X is $g\alpha$ -T₂ space. Hence the space X is $g\alpha$ -US.

Definition 7.3: A set F is sequentially $g\alpha$ -closed if every sequence in F $g\alpha$ -converges to a point in F.

Theorem 7.3: X is $g\alpha$ -US iff the diagonal set is a sequentially $g\alpha$ -closed subset of X x X.

Proof: Let X be $g\alpha$ -US. Let $\langle x_n, x_n \rangle$ be a sequence in Δ . Then $\langle x_n \rangle$ is a sequence in X. As X is $g\alpha$ -US, $\langle x_n \rangle \to g^{\alpha} x$ for a unique $x \in X$. i.e., if $\langle x_n \rangle \to g^{\alpha} x$ and y. Thus, x = y. Hence Δ is sequentially $g\alpha$ -closed.

Conversely, let Δ be sequentially $g\alpha$ -closed and let $\langle x_n \rangle \to g^{\alpha} x$ and y. Hence $\langle x_n, x_n \rangle \to g^{\alpha} (x,y)$. Since Δ is sequentially $g\alpha$ -closed, $(x,y) \in \Delta$ which means that x = y implies space X is $g\alpha$ -US.

Definition 7.4: A subset G of a space X is said to be sequentially $g\alpha$ -compact if every sequence in G has a subsequence which $g\alpha$ -converges to a point in G.

Theorem 7.4: In a $g\alpha$ -US space every sequentially $g\alpha$ -compact set is sequentially $g\alpha$ -closed.

Proof: Let X be $g\alpha$ -US space. Let Y be a sequentially $g\alpha$ -compact subset of X. Let $\langle x_n \rangle$ be a sequence in Y. Suppose that $\langle x_n \rangle g\alpha$ -converges to a point in X-Y. Let $\langle x_{np} \rangle$ be subsequence of $\langle x_n \rangle$ that $g\alpha$ -converges to a point $y \in Y$ since Y is sequentially $g\alpha$ -compact. Also, let a subsequence $\langle x_{np} \rangle$ of $\langle x_n \rangle g\alpha$ -converge to $x \in X$ -Y. Since $\langle x_{np} \rangle$ is a sequence in the $g\alpha$ -US space X, x = y. Thus, Y is sequentially $g\alpha$ -closed set.

Next, we give a hereditary property of $g\alpha$ -US spaces.

Theorem 7.5: Every regular open subset of a $g\alpha$ -US space is $g\alpha$ -US.

Proof: Let X be a $g\alpha$ -US space and Y \subset X be an regular open set. Let $< x_n >$ be a sequence in Y. Suppose that $< x_n >$ $g\alpha$ -converges to x and y in Y. We shall prove that $< x_n >$ $g\alpha$ -converges to x and y in X. Let U be any $g\alpha$ -open subset of X containing x and V be any $g\alpha$ -open set of X containing y. Then, U \cap Y and V \cap Y are $g\alpha$ -open sets in Y. Therefore, $< x_n >$ is eventually in U \cap Y and V \cap Y and so in U and V. Since X is $g\alpha$ -US, this implies that x = y. Hence the subspace Y is $g\alpha$ -US.

Theorem 7.6: A space X is $g\alpha$ -T₂ iff it is both $g\alpha$ -R₁ and $g\alpha$ -US.

Proof: Let X be $g\alpha$ -T₂ space. Then X is $g\alpha$ -R₁ and $g\alpha$ -US by Theorem 7.2.

Conversely, let X be both $g\alpha$ -R₁ and $g\alpha$ -US space. By Theorem 7.1, X is both $g\alpha$ -T₁ and $g\alpha$ -R₁ and, it follows that space X is $g\alpha$ -T₂.

Definition 7.5: A point y is a $g\alpha$ -cluster point of sequence $\langle x_n \rangle$ iff $\langle x_n \rangle$ is frequently in every $g\alpha$ -open set containing x. The set of all $g\alpha$ -cluster points of $\langle x_n \rangle$ will be denoted by $g\alpha$ -cl(x_n).

Definition 7.6: A point y is $g\alpha$ -side point of a sequence $\langle x_n \rangle$ if y is a $g\alpha$ -cluster point of $\langle x_n \rangle$ but no subsequence of $\langle x_n \rangle g\alpha$ -converges to y.

Now, we define the following.

Definition 7.7: A space X is said to be

- (i) $g\alpha$ -S₁ if it is $g\alpha$ -US and every sequence $\langle x_n \rangle g\alpha$ -converges with subsequence of $\langle x_n \rangle g\alpha$ -side points.
- (ii) $g\alpha$ -S₂ if it is $g\alpha$ -US and every sequence $\langle x_n \rangle$ in $X g\alpha$ -converges which has no $g\alpha$ -side point.

Lemma 7.1: Every $g\alpha$ -S₂ space is $g\alpha$ -S₁ and Every $g\alpha$ -S₁ space is $g\alpha$ -US.

Using sequentially continuous functions, we define sequentially $g\alpha$ -continuous functions.

Definition 7.8: A function f is said to be sequentially $g\alpha$ -continuous at $x \in X$ if $f(x_n) \to g^{\alpha} f(x)$ whenever $\langle x_n \rangle \to g^{\alpha} x$.

If f is sequentially $g\alpha$ -continuous at all $x \in X$, then f is said to be sequentially $g\alpha$ -continuous.

Theorem 7.7: Let f and g be two sequentially $g\alpha$ -continuous functions. If Y is $g\alpha$ -US, then the set $A = \{x \mid f(x) = g(x)\}$ is sequentially $g\alpha$ -closed.

Proof: Let Y be $g\alpha$ -US and suppose that there is a sequence $\langle x_n \rangle$ in A $g\alpha$ -converging to $x \in X$. Since f and g are sequentially $g\alpha$ -continuous functions, $f(x_n) \to g^{\alpha} f(x)$ and $g(x_n) \to g^{\alpha} g(x)$. Hence f(x) = g(x) and $x \in A$. Therefore, A is sequentially $g\alpha$ -closed.

Next, we prove the product theorem for $g\alpha$ -US spaces.

Theorem 7.8: Product of arbitrary family of $g\alpha$ -US spaces is $g\alpha$ -US.

Proof: Let $X = \prod_{\lambda \in \wedge} X_{\lambda}$ where X_{λ} is $g\alpha$ -US. Let a sequence $< x_n >$ in X $g\alpha$ -converges to x $(= x_{\lambda})$ and y $(= y_{\lambda})$. Then $< x_{n\lambda} > \to^{g\alpha} x_{\lambda}$ and y_{λ} for all $\lambda \in \wedge$. For suppose there exists a $\mu \in \wedge$ such that $< x_{n\mu} >$ does not $g\alpha$ -converges to x_{μ} . Then there exists a τ_{μ} - $g\alpha$ -open set U_{μ} containing x_{μ} such that $< x_{n\mu} >$ is not eventually in U_{μ} . Consider the set $U = \prod_{\lambda \in \wedge} X_{\lambda} x$ U_{μ} . Then U is a $g\alpha$ -open subset of X and $x \in U$. Also, $< x_n >$ is not eventually in U, which contradicts the fact that $< x_n > U$ and $u \in V$. Thus we get $< x_{n\lambda} > U$ and $u \in V$ and $u \in V$. Since $u \in V$ is $u \in V$ is $u \in V$. Thus $u \in V$ is $u \in V$. Thus $u \in V$ is $u \in V$ is $u \in V$. Thus $u \in V$ is $u \in V$. Thus $u \in V$ is $u \in V$. Thus $u \in V$ is $u \in V$. Thus $u \in V$ is $u \in V$. Thus $u \in V$ is $u \in V$. Thus $u \in V$ is $u \in V$.

8. Sequentially sub- $g\alpha$ -continuity:

Definition 8.1: A function f is said to be

- (i) sequentially nearly $g\alpha$ -continuous if for each point $x \in X$ and each sequence $\langle x_n \rangle \to g^{\alpha} x$ in X, there exists a subsequence $\langle x_n \rangle$ of $\langle x_n \rangle$ such that $\langle f(x_{nk}) \rangle \to g^{\alpha} f(x)$.
- (ii) sequentially sub- $g\alpha$ -continuous if for each point $x \in X$ and each sequence $\langle x_n \rangle \to {}^{g\alpha} x$ in X, there exists a subsequence $\langle x_n \rangle$ of $\langle x_n \rangle$ and a point $y \in Y$ such that $\langle f(x_{nk}) \rangle \to {}^{g\alpha} y$.
- (iii) sequentially $g\alpha$ -compact preserving if f(K) is sequentially $g\alpha$ -compact in Y for every sequentially $g\alpha$ -compact set K of X.

Lemma 8.1: Every function f is sequentially sub- $g\alpha$ -continuous if Y is a sequentially $g\alpha$ -compact.

Proof: Let $\langle x_n \rangle \to g^{\alpha} x$ in X. Since Y is sequentially $g\alpha$ -compact, there exists a subsequence $\{f(x_{nk})\}$ of $\{f(x_n)\}$ $g\alpha$ -converging to a point $y \in Y$. Hence f is sequentially sub- $g\alpha$ -continuous.

Theorem 8.1: Every sequentially nearly $g\alpha$ -continuous function is sequentially $g\alpha$ -compact preserving.

Proof: Assume f is sequentially nearly $g\alpha$ -continuous and K any sequentially $g\alpha$ -compact subset of X. Let $\langle y_n \rangle$ be any sequence in f(K). Then for each positive integer n, there exists a point $x_n \in K$ such that $f(x_n) = y_n$. Since $\langle x_n \rangle$ is a sequence in the sequentially $g\alpha$ -compact set K, there exists a subsequence $\langle x_n \rangle$ of $\langle x_n \rangle$ $g\alpha$ -converging to a point $x \in K$. By hypothesis, f is sequentially nearly $g\alpha$ -continuous and hence there exists a subsequence $\langle x_j \rangle$ of $\langle x_n \rangle$ such that

 $f(x_j) \rightarrow g^{\alpha} f(x)$. Thus, there exists a subsequence $\langle y_j \rangle$ of $\langle y_n \rangle g\alpha$ -converging to $f(x) \in f(K)$. This shows that f(K) is sequentially $g\alpha$ -compact set in Y.

Theorem 8.2: Every sequentially α -continuous function is sequentially $g\alpha$ -continuous.

Proof: Let f be a sequentially α -continuous and $\langle x_n \rangle \to^{\alpha} x \in X$. Then $\langle x_n \rangle \to^{\alpha} x$. Since f is sequentially α -continuous, $f(x_n) \to^{\alpha} f(x)$. But we know that $\langle x_n \rangle \to^{\alpha} x$ implies $\langle x_n \rangle \to^{g\alpha} x$ and hence $f(x_n) \to^{g\alpha} f(x)$ implies f is sequentially $g\alpha$ -continuous.

Theorem 8.3: Every sequentially $g\alpha$ -compact preserving function is sequentially sub- $g\alpha$ -continuous.

Proof: Suppose f is a sequentially $g\alpha$ -compact preserving function. Let x be any point of X and x_n any sequence in X $g\alpha$ -converging to x. We shall denote the set $\{x_n \mid n=1, 2, 3 ...\}$ by A and $K = A \cup \{x\}$. Then K is sequentially $g\alpha$ -compact since $\{x_n\} \to g\alpha$ α . By hypothesis, f is sequentially $g\alpha$ -compact preserving and hence f(K) is a sequentially $g\alpha$ -converging to a point $g\alpha$ -converging to $g\alpha$ -convergi

Theorem 8.4: A function $f: X \to Y$ is sequentially $g\alpha$ -compact preserving iff $f_{/K}: K \to f(K)$ is sequentially sub- $g\alpha$ -continuous for each sequentially $g\alpha$ -compact subset K of X.

Proof: Suppose f is a sequentially $g\alpha$ -compact preserving function. Then f(K) is sequentially $g\alpha$ -compact set in Y for each sequentially $g\alpha$ -compact set K of X. Therefore, by Lemma 8.1 above, $f_{K}: K \rightarrow f(K)$ is sequentially $g\alpha$ -continuous function.

Conversely, let K be any sequentially $g\alpha$ -compact set of X. Let $\langle y_n \rangle$ be any sequence in f(K). Then for each positive integer n, there exists a point $x_n \in K$ such that $f(x_n) = y_n$. Since $\langle x_n \rangle$ is a sequence in the sequentially $g\alpha$ -compact set K, there exists a subsequence $\langle x_{nk} \rangle$ of $\langle x_n \rangle g\alpha$ -converging to a point $x \in K$. By hypothesis, $f_{//K}: K \to f(K)$ is sequentially sub- $g\alpha$ -continuous and hence there exists a subsequence $\langle y_{nk} \rangle$ of $\langle y_n \rangle g\alpha$ -converging to a point $y \in f(K)$. This implies that f(K) is sequentially $g\alpha$ -compact set in Y. Thus, f is sequentially $g\alpha$ -compact preserving function.

The following corollary gives a sufficient condition for a sequentially sub- $g\alpha$ -continuous function to be sequentially $g\alpha$ -compact preserving.

Corollary 8.1: If f is sequentially sub- $g\alpha$ -continuous and f(K) is sequentially $g\alpha$ -closed set in Y for each sequentially $g\alpha$ -compact set K of X, then f is sequentially $g\alpha$ -compact preserving function.

Proof: Omitted.

Acknowledgment:

The Authors are thankful to the referees for their comments and suggestions for the development of the paper.

References:

- [1] S.P. Arya and M.P. Bhamini, A note on semi-US spaces, Ranchi Uni. Math. J. Vol. 13 (1982), 60-68.
- [2] Ashish Kar and P.Bhattacharyya, Some weak separation axioms, Bull. Cal. Math. Soc., 82 (1990), 415-422.
- [3] C.E. Aull, Sequences in topological spaces, Comm. Math. (1968), 329-36.
- [4] S. Balasubramanian and P. Aruna Swathi Vyjayanthi, On *v*–separation axioms Inter. J. Math. Archive, Vol 2, No. 8(2011) 1464-1473.
- [5] S. Balasubramanian and M. Lakshmi Sarada, *gpr*–separation axioms, Bull. Kerala Math. Association, Vol 8. No.1 (2011)157 173.
- [6] H.F. Cullen, Unique sequential limits, Boll. UMI, 20 (1965) 123-127.
- [7] Charles Dorsett, semi-T₁, semi-T₂ and semi-R₁ spaces, Ann. Soc. Sci. Bruxelles, 92 (1978) 143-158.
- [8] K.K. Dube and B.L. namdeo, T₀-Limit point of a set and its implications, J. Tripura Math. Soc, Vol.9 (2007)85-96.

S. Balasubramanian* and M. Lakshmi Sarada / On ga-Separation Axioms/ IJMA- 2(12), Dec.-2011, Page: 2818-2830

- [9] G. L. Garg and D. Sivaraj, presemiclosed mappings, Periodica Math. Hung., 19(2)(1988) ,97-106.
- [10] S. R. Malghan and G. B. Navalagi, Almost –p-regular, p-completely regular and almost –p-completely regular spaces, Bull. Math. Soc. Sci. Math., R.S.R. Tome 34(82), nr.4 (1990), 317-326.
- [11] S. N. Maheshwari and R. Prasad, Some new separation axioms, Ann. Soc. Sci., Bruxelles, 89 (1975), 395-402.
- [12] G. B. Navalagi, Further properties of preseparation axioms, (Unpublished)
- [13] G. B. Navalagi, P-Normal Almost-P-Normal, Mildly-P-Normal, Topology Atlas.
- [14] G. B. Navalagi, Pre-US Spaces, Topology Atlas.
- [15] T. Noiri, Almost continuity and some separation axioms, Glasnik Mat., 9(29) (1974), 131-135.
- [16] T. Noiri, Sequentially subcontinuous functions, Accad. Naz. Dei. Lincei. Estratto dei. Rendiconti. Della Classe di Sci. Fis. Mat. Nat. Series. VIII, Vol. LVIII, fase. 3 (1975), 370-376.
- [17] Paul and Bhattacharyya, On p-normal spaces, Soochow Jour.Math., Vol.21. No.3, (1995), 273-289
- [18] M. K. Singal and S. P. Arya, On almost normal and almost completely regular spaces, Glasnik Mat., 5(25) (1970), 141-152.
- [19] M. K. Singal and A. R. Singal, Mildly normal spaces, Kyungpook Math. J., 13(1) (1973) 27-31.
- [20] T. Thompson, S-closed spaces, Proc. Amer. Math. Soc., 60(1976)335-338.
- [21] A. Wilansky, Between T₁ and T₂, Amer. Math. Monthly. 74 (1967), 261-266.
