International Journal of Mathematical Archive-3(1), 2012, Page: 8-11 MA Available online through <u>www.ijma.info</u> ISSN 2229 – 5046

STRONGLY GENERALIZED b-CLOSED MAPS IN TOPOLOGICAL SPACES

Bharathi.S.^{1*}, Bhuvaneswari.K² and Chandramathi.N³

¹Angel College of Engineering and Technology, P. K. Palayam post, Dharapuram Road, Tiruppur-641665, Tamilnadu, India E-mail: bharathikamesh6@gmail.com

> ²Mother Teresa University for Women,Kodaikanal, Tamilnadu. India E-mail: drkbmaths@gmail.com

³Hindusthan College of Engineering and Technology,Coimbatore, TamilNadu, India E-mail: mathi.chandra303@gmail.com

(Received on: 23-11-11; Accepted on: 17-12-11)

ABSTRACT

In this paper, we introduce and investigate a new class of sets and maps between topological spaces called strongly generalized b closed sets and g*b continuous maps, respectively. Furthermore, we introduce the concepts of strongly generalized b closed maps and investigate several properties of them.

2000 Mathematics Subject Classifications: 54A10, 54A20

Key Words and Phrases: strongly generalized b closed set, strongly generalized b continuity, strongly generalized bopen map, strongly generalized b b-closed maps

1. INTRODUCTION:

Andrijevic introduced b-open [3] sets in 1996. This is a subclass of semi preopen [2] sets and superset of the class of semi-open sets. Andrejevic studied several fundamental and interesting properties and showed that a rare b-open set is preopen. Variants of continuity related to this concept, studied in [4, 6, 7, 8, 10, 14, 15]. The purpose of the present paper is to introduce and investigate some of the fundamental properties of strongly generalized *b* continuous functions. We obtain characterizations of strongly generalized *b*-continuous functions and investigate relationships between other variants of continuity.

2. PRELIMINARIES:

Throughout this paper (X, τ) and (Y, σ) (or simply X and Y) represent nonempty topological spaces on which no separation axioms are assumed, unless otherwise mentioned. For a subset S of (X, τ) , cl(S) and int(S) represent the closure of S with respect to τ and the interior of S with respect to τ , respectively.

A subset *S* of a space (*X*, τ) is called semi-open [7] (resp.preopen [2], *a*-open [12], semi-preopen [2] or β -open [1], *b*-open [3] or *sp*-open [3])if $S \subset cl(int(S))$;(resp. $S \subset int(cl(S))$, $S \subset int(cl(int(S)))$, $S \subset cl(int(cl(S)))$, $S \subset cl(int(S))$, U *int(cl(S))*) The family of all semi-open (resp.preopen, α - open, β -open, *b*-open) sets of *X* denoted by *SO(X)* (resp. *PO(X)*, $\alpha O(X)$, $\beta O(X)$, *BO(X)*) The complement of a semi-open (resp.preopen, α -open, β -open, *b*-open) set is said to be semi-closed (resp. preclosed, α -closed, β -closed,*b*-closed). If *S* is a subset of a space *X*, then the *b*-closure of *S*, denoted by *bcl(S)*, is the smallest *b*-closed set containing *S*. The *b*-interior of *S*, denoted by *bint(S)* is the largest *b*-open set contained in *S*. The semiclosure, preclosure, α -closure, β -closure of *S* are similarly defined and are denoted by *scl(S)*, *pcl(S)*, $\alpha Cl(S)$, $\beta Cl(S)$. The family of all *b*-closed sets of *X* is denoted by *BC(X)* and the family of all *b*-open (resp. α -open) sets of *X* containing apoint $x \in X$ is denoted by *BO(X, x)* (resp. $\alpha O(X, x)$).

Our next definition contains some types of functions used throughout this paper.

Definition: 2.1 A subset A of a space (X, τ) is called (1) a generalized closed set (briever g-closed) [11] if Cl(A) \subseteq U whenever A \subseteq U and U is open;

Corresponding author: Bharathi.S.^{1}, *E-mail: bharathikamesh6@gmail.com

Bharathi.S.^{1*}, Bhuvaneswari.K² and Chandramathi.N³/ STRONGLY GENERALIZED b-CLOSED MAPS IN TOPOLOGICAL SPACES/ IJMA- 3(1), Jan.-2012, Page: 8-11

(2) a generalized b- closed set (briev g*b -closed) [11] if $bCl(A) \subseteq U$ whenever $A \subseteq U$ and U is open.

(3) a b-generalized set (briefly bg-closed) if $bcl(A) \subseteq U$ whenever $A \subseteq U$ and U is b-open.

(4) A subset of a topological space (X, τ) is said to be g*b-closed set in (X, τ) if $bcl(A) \subseteq G$ whenever $A \subseteq G$ where G is g-open. The collection of all g*b-closed sets of (X, τ) is denoted by $G*bC(X, \tau)$.

3. STRONGLY GENERALIZED b-CONTINUOUS MAPS:

Definition: 3.1 A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is called:

(a) b-continuous [5] (resp. b-irresolute [6]) if $f^{-1}(V)$ is b-open in (X, τ) for every open set (resp. b-open set) V of (Y, σ) ;

Definition: 3.2 A map $f: (X, \tau) \to (Y, \sigma)$ is called strongly generalized b-continuous (g*b-continuous) if the inverse image of every closed set V of (Y, σ) is g*b-closed in (X, τ) .

Proposition: 3.3 Every continuous map is g*b-continuous but not conversely.

The class of all g*b-continuous maps properly contains the class of all continuous maps.

Proposition: 3.4 If $f:(X,\tau) \to (Y,\sigma)$ is g*b-irresolute, then f is g*b -continuous.

Proof: Let F be any closed set in Y. Since every closed set is g^{*b} -closed, F is g^{*b} -closed in Y. Since f is g^{*b} -irresolute, $f^{1}(F)$ is g^{*b} -closed in X. Therefore f is g^{*b} -continuous.

The converse is not true as seen from the following example.

Example: 3.5 Let $X = \{a, b, c, d\}, \tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\} = \sigma$. Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be defined as f(a) = b, f(b) = a, f(c) = d, f(d) = a. Then f is g*b continuous but not g*b irresolute, since $f^{-1}(d) = \{a\}$ is not g*b-closed in X.

Remark: 3.6 (i) Every g-continuous function is g*b-continuous. (ii) Every super-continuous map is g*b-continuous. The converse need not be true as shown from the following examples.

Example: 3.7 Consider X= { a, b, c}= Y, $\tau = \{ X, \phi, \{a\}, \{a,b\} \}$ and $\sigma = \{ Y, \phi, \{a\}\}$. Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be defined as f (a) = a, f (b) = c, f(c) = b, then f is g*b continuous but not super continuous. Since $f^1\{b, c\} = \{b, c\}$ is not b-closed in X.

Example: 3.8 Let $X = \{a, b, c, d\} = Y$, $\tau = \{X, \phi, \{a\}, \{b\}, \{a,b\}, \{a,b,c\}\} = \sigma$. Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be a map defined as f(a) = a, f(b) = b, f(c) = d, f(d) = c. Then the map is g*b-continuous, but not g-closed in X.

Remark: 3.9 The concept of b-continuity and g*b-continuity are independent concepts. From the above example 3.7,

we find that f is g*b-continuous but not b-continuous. For the b-open set in

Definition: 3.10 A map $f: (X, \tau) \to (Y, \sigma)$ is called strongly g*b-continuous, if the inverse image of every g*b-open set is open in X.

Proposition: 3.11 A map $f: X \to Y$ is strongly g*b-continuous, if and only if the inverse image of every g*b-closed set in Y is closed in X.

Proof: Let F be any g*b-closed set in Y. Then Y\F is g*b-open in Y. By assumption $f^{1}(Y\setminus F)$ is open in X. But $f^{1}(Y\setminus F) = X \setminus f^{1}(F)$ and so $f^{1}(F)$ is closed in X. Conversely assume the condition holds. Let V be any g*b-open set in Y. Then Y\V is g*b-closed in Y. Hence $f^{1}(Y\setminus V)$ is closed in X. Therefore $f^{1}(V)$ is open in X. Thus f is strongly g*b-continuous.

Proposition: 3.12 Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be a map.

(i) If f is strongly g*b-continuous, then it is strongly g-continuous.

Bharathi.S.^{1*}, Bhuvaneswari.K² and Chandramathi.N³/ STRONGLY GENERALIZED b-CLOSED MAPS IN TOPOLOGICAL SPACES/ IJMA- 3(1), Jan.-2012, Page: 8-11

(ii) If f is strongly g*b-continuous, then it is continuous.

(iii) If f is strongly g*b continuous, then it is strongly continuous.

Example: 3.13 Let X= { a, b, c}= Y, $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, \{a, b, d\}\}$ and $\sigma = \{Y, \phi, \{a\}\}$. Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be the identity. Then f is strongly continuous but not strongly g*b-continuous. For if we consider the set {b}, then $f^{-1}\{b\} = \{b\}$ which is closed, but not open in X.

Example: 3.14 Let $X = \{a, b, c\} = Y$, $\tau = \{X, \phi, \{a\}, \{a,b\}\} = \sigma$. Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be defined as f(a) = b, f(b) = a, f(c) = c, f(d) = d, then f is strongly g-continuous but not strongly g*b-continuous. Since for the set $A = \{a, c\}$, $f^{-1}\{a, c\} = \{b, c\}$ is not g*b-closed in X.

Example: 3.15 Let X= { a, b, c}= Y, $\tau = \{X, \phi, \{a\}, \{b\}, \{a,b\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{a, b\}\}$. Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be the identity. Then f is continuous. However f is not strongly g*b-continuous. Since for the g*b-open set {b}, the inverse image {b} is not open in X.

Proposition: 3.16 A map $f:(X,\tau) \to (Y,\sigma)$ is g*b-continuous if and only if $f:(X,\tau^{g^{*b}}) \to (Y,\sigma)$ is continuous.

Proof: Assume that $f:(X,\tau) \to (Y,\sigma)$ is g*b-continuous. Then $f^{-1}(U) \in \tau^{\omega}$ for every $U \in \sigma$. Therefore, $f:(X,\tau^{s^{*b}}) \to (Y,\sigma)$ is continuous.

Conversely, assume that $f:(X,\tau^{g^{*b}}) \to (Y,\sigma)$ is continuous. Then $f^{-1}(G) \in \sigma$. Therefore, $f:(X,\tau) \to (Y,\sigma)$ is g*b-continuous.

Definition: 3.17: A topological space (X, τ) is called $T_{h^{**}}$ - space if every g*b-closed set is b-closed.

Proposition: 3.18 A map $f: X \to Y$ is g*b-irresolute iff the inverse image of every g*b-open set is g*b-open in X.

Proposition: 3.19 Let $f: (X,\tau) \to (Y,\sigma)$ and $g: (Y,\sigma) \to (Z,\eta)$ are two maps. Then

- (i) $g \cdot f$ is g*b-continuous, if g is continuous and g*b-continuous.
- (ii) $g \cdot f$ is g*b-continuous, if g is g*b-continuous and f is g*b-irresolute.
- (iii) $g \cdot f$ is g*b-continuous, if g is continuous and f is strongly g*b-continuous.
- (iv) Let (Y, σ) be almost weakly Housdroff space. Then $g \cdot f$ is if g is g*b-continuous and f is g*b-continuous.
- (v) Let (Y, σ) be a T_b space. Then $g \cdot f$ is super continuous if g is g*b-continuous and f is g*b-continuous.

The following example will show that the composition of two g*b-continuous maps need not always be g*b-continuous.

Example: 3.20 Let X={a, b, c, d},Y={a, b, c}=Z, $\tau = \{X,\phi,\{a\},\{b\},\{a, b\},\{a, b, c\},\{a, b, d\}\}, \sigma = \{Y,\phi,\{a\},\{a, b\}\}$ and $\eta = \{Z, \phi, \{b\}, \{a, b\}\}$. Define $f:(X,\tau) \rightarrow (Y,\sigma)$ by f (a) = b = f(c), f(b) = b, f(d) = c and $h:(Y,\sigma) \rightarrow (Z,\eta)$ by h(a) = a, h(b) = c, h(c) = a. Then f and h are g*b closed maps. However $h \circ f$ is not g*b-closed since for the closed sets {d}, $(h \circ f)(d) = h(f(d)) = h(c) = \{a\}$ is not g*b-closed in Z.

Proposition: 3.21 Let $f: (X, \tau) \to (Y, \sigma)$ be b-continuous and closed. Then for every g*b-closed subset A of (X, τ) , f (A) is g*b -closed in (Y, σ) .

Proof: Let $A \subset G$, where G is b-open in (Y, σ) . Then $A \subset f^1(G)$ and $f^1(G)$ is b-open in (X,τ) . Since A is g*b-closed, then $cl(A) \subset f^1(G)$. That is $f(cl(A)) \subset G$. Since f(cl(A)) is closed, then it is g*b-closed. Hence $cl(f(cl(A))) \subset G$. This implies that $cl(f(A)) \subset cl(f(cl(A))) = f(cl(A)) \subset G$. This shows that f(A) is g*b-closed in (Y, σ) .

Bharathi.S.^{1*}, Bhuvaneswari.K² and Chandramathi.N³/ STRONGLY GENERALIZED b-CLOSED MAPS IN TOPOLOGICAL SPACES/ IJMA- 3(1), Jan.-2012, Page: 8-11

From the Propositions, remarks and the examples above, We have the following implications.

REFERENCES:

[1] Abd El-Monsef, M.E., El-Deeb, S.N. and Mahmoud, R.A., β -open sets and β - Continuous mappings, Bull-Fac. Sci. Assiut. Univ., 12 (1983), 77–90.

[2] Andrijevic, D., Semi-preopen sets, Mat. Vesnik., 38 (1986), pp. 24-32.

[3] Andrijevic, D., On b-open sets, Mat. Vesnik., 48 (1996), 59-64.

[4] J. Dontchev and M. Przemski, On the various decompositions of continuous and some weakly continuous functions, Acta Math. Hungary, 71 1–2 (1996), 109–120.

[5] El-Atik AA., A study on some types of mappings on topological spaces, M.Sc. Thesis, Egypt: Tanta University, 1997.

[6] Levine, N., A decomposition of continuity in topological spaces, Am. Math. Mon., 68, (1961), 44-46.

[7] Levine, N., Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70 (1963), 36-41.

[8] Mashhour, A.S., Abd El-Monsef, M.E. and El-Deeb, S.N. On precontinuous and weak precontinuous functions, Proc Math Phys Soc Egypt 53 (1982), 47–53.

[9] Nasef, A.A., On *b*-locally closed sets and related topics, Chaos Solitons Fractals, 12, No.10, (2001), 1909-1915.

[10] Noiri, T. and Popa, V., On almost β -continuous functions, Acta Math. Hung. 79, No.4, (1998).329-339.

[11] Noiri, Takashi, Almost quasi-continuous functions, Bull. Inst. Math., Acad. Sin. 18, No.4, (1990) 321-332.

1480 U. S, eng "ul [12] Noiri, T., Weakly α -continuous functions, Int. J. Math. Math. Sci. 10, (1987) 483-490.

[13] Singal, M.K. and Singal, A. R., Almost-continuous mappings, Yokohama Math. J. 16,(1968) 63-73.

[14] S, eng["]ul, U., Weakly *b*-continuous functions, Chaos, Solitons & Fractals (2008), doi: 10.1016/j. chaos. 2008. 04. 036.

[15] Park, J. H., Strongly *θ*-b-continuous functions, Acta Math. Hungar. 110 (4), (2006), 347-359.

[16] Popa, V. and Noiri, T., Weakly β -continuous functions., An. Univ. Timis., Ser. Mat.-Inform., 32, No.2, (1994), 83-92.
