ALEKSANDROV-URYSON G_δ COMPACTNESS CRITERION IN MAXIMAL CENTERED SYSTEMS

G. Vasuki*, E. Roja and M. K. Uma

Department of Mathematics, Sri Sarada College for Women, Salem - 636 016, Tamil Nadu, India E-mail: vasukigj@yahoo.in

(Received on: 19-12-11; Accepted on: 09-01-12)

ABSTRACT

In this paper the concepts of G_{δ} -Hausdorff space, G_{δ} -extremally disconnected spaces, G_{δ} - θ continuous mappings are introduced. In this connection, G_{δ} -Hausdorff extension of spaces and the Aleksandrov-Uryson $_{\delta}$ -compactness criterion are established.

Keywords: G_{δ} Hausdorff space, G_{δ} extremally disconnected spaces, G_{δ} θ continuous mappings.

Mathematics Subject classification (2000): 54A05, 54A10, 54A20.

1. INTRODUCTION:

The method of centered systems was introduced and established by S. Illiadis and S. Fomin [1]. In this paper making use of G_{δ} -sets, we introduce the concept of G_{δ} -Hausdorff space, G_{δ} -extremally disconnected spaces, G_{δ} -continuous mappings, and Aleksandrov-Uryson G_{δ} -compactness in the centered systems.

2. PRELIMINARIES:

Definition: 2.1 [3] A set $A \subset X$ in a topological space (X, T) is called a G_{δ} -set if $A = \bigcap_{n=1}^{\infty} A_n$ where each $A_n \in T$. The complement of G_{δ} -set is called a F_{σ} set.

Definition: 2.2 For any set A in (X, T), define the σ -closure of A denoted by σ -cl A, to be the intersection of all F_{σ} -sets containing A.

That is σ -cl A = $\bigcap \{U: U \text{ is a } F_{\sigma}\text{-set and } U \supseteq A\}$

Definition: 2.3 For any set A in (X, T), define the σ -interior of A denoted by σ -int A, to be the union of all G_{δ} - sets contained in A.

That is σ -int $A = \bigcup \{U : U \text{ is a } G_{\delta}\text{- set and } U \subseteq A\}$

Definition: 2.4 [2] A topological space is a Hausdorff space iff whenever x and y are distinct points of the space there exists disjoint neighbourhoods of x and y.

Definition: 2.5 [1] Let R be a Hausdorff space. A system $p = \{U_{\alpha}\}$ of open sets of R is called centered if any finite collection of sets of the system has a non-empty intersection. The system p is called a maximal centered system or briefly an end if it cannot be included in any larger centered system of open sts.

Definition: 2.6 [1] Let f be a mapping of a space X into a space Y with f(x) = y. The f is called θ -continuous at x if for every neighbourhood O_y of y there exists neighbourhood O_x of x such that $f(\overline{O_x}) \subset \overline{O_y}$. The mapping is called

 θ - continuous if it is θ -continuous at every point of X. A mapping that is one-to-one and θ -continuous in both directions is called a θ -homeomorphism.

It is clear that a continuous mapping is θ -continuous. An example of a θ -continuous mapping that is not continuous. Let I be the interval [0, 1] with the usual topology, and I' the same interval with the following topology: the neighbourhoods of every point $x \neq 0$ are the same as those in the half-open interval (0, 1], but the neighbourhoods of x = 0 are the sets of the form $[0, \epsilon)\setminus D$, where D is the set of all points 1/n (n=1, 2, ...; $0 < \epsilon < 1$). It is easy to see that the space obtained is not regular at 0. Let f be the identity mapping of [0,1] onto itself. It is easy to verify that this mapping of I onto I' is θ -continuous, we have also obtained a θ -homeomorphism that is not a homeomorphism. It is essential here that the space I' is not regular, since it is easy to show that if the image is regular, then a θ -continuous mapping is automatically continuous.

Remark: 2.1 The canonical open sets (sets of the form $I(\bar{U})$ where U is open) form a base.

3. THE SPACES OF MAXIMAL CENTERED SYSTEM:

Definition: 3.1 A topological space (X, T) is said to be G_{δ} -Hausdorff iff for any two distinct points $x_1, x_2 \in X$, there exist G_{δ} sets U and V with $x_1 \in U$ and $x_2 \in V$ such that $U \cap V = \emptyset$.

Notation: 3.1 G_{δ} -Hausdorff space is denoted by R.

Definition: 3.2 Let R be a G_{δ} -Hausdorff space. A system $p^* = \{S_{\alpha}\}$ of G_{δ} sets of R is called centered if any finite collection of sets of the system has a non-empty intersection. The system p^* is called a maximal centered system, or briefly, an end if it cannot be included in any larger centered system of G_{δ} sets.

The following are the properties of maximal centered systems:

1. If
$$S_i \in p^*$$
 (i = 1, 2 ... n) then $\bigcap_{i=1}^{n} S_i \in p^*$.

2. If $S \subset H$, $S \in p^*$ and H is G_{δ} - set then $H \in p^*$.

3. If H is G_{δ} - set, then $H \notin p^*$, iff there exists $S \in p^*$ such that $S \cap H$ is empty.

4. If $S_1 \cup S_2 = S_3 \in p^*$, S_1 and S_2 are G_δ - sets and $S_1 \cap S_2 = \emptyset$, then either $S_1 \in p^*$ or $S_2 \in p^*$.

5. If σ -cl (S) = R, then S \in p^{*} for any end p^{*}.

Remark: 2.1 Every centered system of G_{δ} - sets can be extended in at least one way to a maximal one.

4. MAXIMAL STRUCTURE IN θ (R):

Definition: 4.1 A set U in a topological space (X, T) is a G_{δ} - neighbourhood of a point x iff U contains a G_{δ} - set to which x belongs.

Definition: 4.2 A family α is a G_{δ} -cover of a G_{δ} -set B iff each member of B belongs to some member of α

Definition: 4.3 A topological space is G_{δ} -compact iff each G_{δ} -cover has a finite subcover.

Notation: 4.1 Let θ (R) denote the collection of all end belonging to a given space R. We introduce maximal structure θ (R) in the following way:

Let O_S be the set of all ends that contain S as an element, where S is a G_δ -set of R. Now O_S is to be a G_δ -neighbourhood of each end contained in O_S . Thus to each G_δ - set $S \subset R$ there corresponds a G_δ - neighbourhood O_S in θ (R).

Proposition: 4.1 If S and T are two G_{δ} -sets, then

(a)
$$O_{S \cup T} = O_S \bigcup O_T$$

(b) $O_S = \theta(R) \setminus O_{R \setminus \sigma\text{-cl}(S)}$

Proof: (a) Let $p^* \in O_S$, ie., $S \in p^*$. Then by property (2), $S \cup T \in p^*$,

$$\begin{split} &\text{ie., } p^* \in \ O_{S \ \cup \ T} \text{ . Hence } O_S \ \bigcup \ O_T \subset O_{S \ \cup \ T} \text{ . Now, let } p^* \in O_{S \ \cup \ T} \text{ , ie., } S \ \bigcup \ T \ \in p^*. \text{ If } p^* \notin O_S \text{, ie., } S \notin p^* \text{, then } R \backslash \sigma \text{-cl } (S) \in p^* \text{ and hence, } (R \backslash \sigma \text{-cl } (S)) \bigcap (S \bigcup T) \in p^*. \text{ But } (R \backslash \sigma \text{-cl } (S)) \bigcap (S \bigcup T) \subset T. \text{ Hence } T \in p^* \text{, that is, } p^* \in O_T. \text{ Thus } O_{S \ \cup \ T} \subset O_S \bigcup O_T. \text{ Hence, } O_{S \ \cup \ T} = O_S \bigcup O_T. \end{split}$$

(b) put T = R\sigma-cl (S) in (a) then we have $O_{S \ \cup \ R \ \circ \ -cl (S)} = O_S \ \cup \ O_{R \ \circ \ -cl (S)}$. By using, $O_{S \ \cup \ R \ \circ \ -cl (S)} = \theta$ (R). We have θ (R) = $O_S \ \cup \ O_{R \ \circ \ -cl (S)}$.

Notation: 4.2 G_{δ} F_{σ} denote a set which is both G_{δ} and F_{σ}

Definition: 4.4 A topological space (X, T) is said to be zero dimensional if X has a base of G_{δ} -neighbourhoods that are both G_{δ} and F_{σ} .

Definition: 4.6 A topological space is a G_{δ} - T_1 space if for given any two distinct points a and b of X, each has a G_{δ} -neighbourhood not containing the other.

Proposition: 4.2 The maximal structure θ (R) described above is a G_{δ} - compact, G_{δ} - Hausdorff space and has a base of G_{δ} - neighbourhoods that are G_{δ} F_{σ} .

Proof: Each set O_S is G_δ - by definition and by equation (b), of Proposition 4.1 it is also F_σ . Thus θ (R) has a base of G_δ -neighbourhoods that are G_δ F_σ , that is, θ (R) is zero dimensional. Since θ (R) has a base of G_δ -neighbourhoods that are G_δ F_σ and G_δ - T_1 space it follows that it is G_δ -Hausdorff. Finally to prove that θ (R) is G_δ -compact. Suppose that there is a G_δ -covering of θ (R). By replacing each element of the covering by the union of the appropriate sets O_S , we

may assume that the covering has the from $\left(O_{s_{\alpha}}\right)$. If it is impossible to take a finite subcovering from this G_{δ} -

covering, then no set of the form R \ $\bigcup_{i=1}^n \sigma$ -cl $\left(S_{\alpha_i}\right)$ is empty. Since otherwise the G_δ - sets $\left(O_{S_{\alpha_i}}\right)$ would form a

 $\text{finite } G_{\delta}\text{-covering of }\theta \text{ (R)}. \text{ Hence the } G_{\delta}\text{-sets }R \setminus \bigcup_{i=1}^{n} \quad \sigma\text{-cl }\left(S_{\alpha_{_{i}}}\right) \text{form a centered system. It may be extended to a}$

maximal system p*. This maximal system is not contained in any $O_{s_{\alpha}}$, since it contains, in particular all the R\ σ -cl

 (s_{α}) . This contradiction proves that θ (R) is G_{δ} -compact. Thus with each G_{δ} -Hausdorff space R we have associated a G_{δ} -Hausdorff space θ (R)-the space of maximal centered systems of G_{δ} -sets.

5. G_δ-EXTREMALLY DISCONNECTED SPACES:

Definition: 5.1 A G_{δ} -Hausdorff space R is called G_{δ} -extremally disconnected if the σ-closure of any G_{δ} -set is G_{δ} . It is clear that a space is G_{δ} -extremally disconnected iff two disjoint G_{δ} - sets have disjoint σ-closures.

Proposition: 5.1 An everywhere G_{δ} -dense subset R' of G_{δ} -extremally disconnected space R is itself G_{δ} -extremally disconnected.

Proof: We prove this by contradiction. Suppose that there exists two G_{δ} -sets S_1 and S_2 in R' such that $S_1 \cap S_2 = \emptyset$. But σ -cl $(S_1) \cap \sigma$ -cl $(S_2) \neq \emptyset$. Let T_1 and T_2 be any two G_{δ} -sets in R such that $T_1 \cap R' = S_1$ and $T_2 \cap R' = S_2$. Then $T_1 \cap T_2 = \emptyset$ for if $T \subset T_1 \cap T_2$, then $T \cap R' \neq \emptyset$ and T is contained in $S_1 \cap S_2$ which is impossible. On the otherhand, σ -cl $(T_1) \cap \sigma$ -cl $(T_2) \supset \sigma$ -cl $(S_1) \cap \sigma$ -cl $(S_2) \neq \emptyset$, contradicting the fact that R is G_{δ} -extremally disconnected. Hence the Lemma.

Proposition: 5.2 The space θ (R) of maximal centered systems of an arbitrary G_{δ} -Hausdorff space R is G_{δ} -extremally disconnected.

Proof: The proof of this theorem follows from the following equation: $O_{\bigcup_{\alpha} S_{\alpha}} = \sigma\text{-cl}\left(\bigcup_{\alpha} O_{S_{\alpha}}\right)$. To verify this, if

$$S \subset T, \text{ it follows that } O_S \subset O_T \text{ and therefore } \bigcup_{\alpha} O_{S_{\alpha}} \subset O_{\bigcup_{\alpha} S_{\alpha}} \text{ , and since } O_{\bigcup_{\alpha} S_{\alpha}} \text{ is } F_{\sigma}, \sigma\text{-cl}\left(\bigcup_{\alpha} O_{S_{\alpha}}\right) \subset O_{\bigcup_{\alpha} S_{\alpha}}.$$

To prove the opposite inclusion, let q be an arbitrary element of $O_{\bigcup_{\alpha} S_{\alpha}}$, i.e., $\bigcup_{\alpha} S_{\alpha} \in q$ and let S be an arbitrary G_{δ} -

set of q. Then $S \cap \bigcup_{\alpha} S_{\alpha} \neq \emptyset$, and hence there exists α such that $S \cap S_{\alpha} \neq \emptyset$. But then $O_S \cap O_{S_{\alpha}} \neq \emptyset$, and since $S \in q$

is arbitrary, This means that
$$q \in \sigma\text{-cl}\left(\bigcup_{\alpha} O_{S_{\alpha}}\right)$$
. That is, $O_{\bigcup_{\alpha} S_{\alpha}} \subset \sigma\text{-cl}\left(\bigcup_{\alpha} O_{S_{\alpha}}\right)$. Hence $O_{\bigcup_{\alpha} S_{\alpha}} = \sigma\text{-cl}\left(\bigcup_{\alpha} O_{S_{\alpha}}\right)$.

 $\left(\bigcup_{lpha} O_{S_lpha} \right)$. Hence the theorem.

Proposition: 5.3 The equation $R = \theta$ (R) holds iff R is a G_{δ} -compact, G_{δ} -extremally disconnected and G_{δ} -Hausdorff space.

Proof: The necessary condition follows from Proposition 5.1 and Proposition 5.2. To prove sufficiency, let R satisfy the condition of the theorem. Now, we construct a homeomorphism π of θ (R) onto R. Let $p = \{S_{\alpha}\} \in \theta(R)$. Then the system of F_{σ} -sets σ -cl $\{S_{\alpha}\}$ is centered and has a non-empty intersection. This intersection consists of a single point.

For suppose that there are two distinct points r_1 and r_2 in \bigcap $\sigma\text{-cl}$ (S_α). Let O_{r_1} and O_{r_2} be two disjoint G_{δ^-}

neighbourhoods of these points. Since $O_{r_1} \cap S_{\alpha} \neq \emptyset$ and $O_{r_2} \cap S_{\alpha} \neq \emptyset$ for all $S_{\alpha} \in p$, which gives that

 $O_{r_1} \in p$ and $O_{r_2} \in p$ which is impossible. Thus $\bigcap \sigma$ -cl (S_α) consists of a single point r. Let $\pi(p) = r$. We shall prove

that the mapping π is one-one and continuous. Since $\theta(R)$ is G_{δ} -compact, this will prove the theorem. The mapping is onto. For let $r \in R$ and let $\{V_{\alpha}\}$ be the system of all G_{δ} -neighbourhoods of r in R. This system can be extended uniquely to a maximal one. For, if $\{V_{\alpha}\}$ is contained in two different maximal systems then there would be two G_{δ} -sets S_1 and S_2 in R such that $S_1 \cap S_2 = \emptyset$, each of them would intersect every V_{α} , that is, $r \in \{(\sigma\text{-cl}(S_1)) \cap (\sigma\text{-cl}(S_2))\}$

but which contradicts the fact that R is extreamally G_{δ} -disconnected. Extending the system $\{V_{\alpha}\}$ to a maximal one, there is a point $p = \{S_{\alpha}\}$ in θ (R). But π (p) = r. Already we have proved that π is one-one. Hence from the definition of π it follows that π (O_{S}) = σ -cl (S).

Let O_r' be any G_{δ} -neighbourhood of r. Let S be a G_{δ} -neighbourhood such that σ -cl(S) $\subset O_r'$. Then O_S is a G_{δ} F_{σ} neighbourhood of p such that π (O_S) $\subset \sigma$ -cl (S) $\subset O_r'$. Thus π is continuous and hence the proof.

6. G_δ-θ CONTINUOUS MAPPINGS:

Definition: 6.1 Let f be a mapping of a space X into a space Y with f(x) = y. Then f is called G_{δ} -θ continuous at x iff for every G_{δ} -neighbourhood O_{y} of y there exists a G_{δ} -neighbourhood O_{x} of x such that $f(\sigma\text{-cl }(O_{x})) \subset \sigma\text{-cl }(O_{y})$. The mapping is called G_{δ} -θ continuous if it is G_{δ} -θ continuous at every point of X. A mapping that is one-one and G_{δ} -θ continuous in both directions is called a G_{δ} -θ homeomorphism. It is clear that a continuous mapping is G_{δ} -θ continuous.

The Realization of R in θ (R):

Consider a G_{δ} -Hausdorff space R and its space θ (R). Let $r \in R$ and x(r) denote the set of all ends p^* of R that contain all the G_{δ} -neighbourhoods of r. Now, the set x(r) is G_{δ} for in θ (R). Since θ (R) is G_{δ} -compact, x (r) is G_{δ} -compact.

Now define a space R^* constructed as follows: Its points are the F_{σ} -sets x (r) and its structure is defined as, let V be a G_{δ} -set of θ (R). Let V^* denote the set of all F_{σ} -sets x(r) that are completely contained in V. By definition, the set of all V^* is to form a base of R^* .

Definition: 6.2 A topological space is G_{δ} -regular iff for each point x and each G_{δ} -neighbourhood U and x there is a F_{σ} -neighbourhood V of x such that $V \subset U$.

Definition: 6.3 If there exists a G_{δ} - θ homeomorphism of one space onto another, the two spaces are said to be G_{δ} - θ -homeomorphic.

Proposition: 6.1 R^* is G_{δ} - θ homeomorphic to R. If R is G_{δ} -regular, then R^* is homeomorphic to R.

Proof: Let π be the mapping of R^* onto R in which π (x(r)) = r. We shall show that π is the required G_{δ} - θ homeomorphism. To prove this the equivalence of the following inclusions are established.

Now, $x(r) \subset O_H = O_{\sigma-int (\sigma-cl(H))}$ and $r \in \sigma-int (\sigma-cl(H))$.

If If $r \in \sigma$ -int (σ -cl (H)), it is clear that $x(r) \subset O_H$. If $x(r) \subset O_{\sigma\text{-int}(\sigma\text{-cl }(H))}$, but $r \notin O_{\sigma\text{-int}(\sigma\text{-cl }(H))}$ then there would be end p^* in x(r) not containing σ -int (σ -cl (H)). But then $p^* \notin O_{\sigma\text{-int}(\sigma\text{-cl }(H))}$, which is impossible. From this equivalence it follows that π^{-1} is continuous. For let V^* be a G_δ -neighbourhood of the set x(r) in R^* . Since x(r) is G_δ -compact, assume that V has the form O_H where H is G_δ -in R. Then π^{-1} (σ -int (σ -cl (H))) $\subset O_H = V^*$. This proves the continuity of π^{-1} . To prove that π is G_δ - θ continuous, it is easy to see that if $x(r') \cap O_H \neq \emptyset$, then $r' \in \sigma$ -cl (H). From the construction of V^* , it is clear that if $x(r') \in (\sigma\text{-cl}(V^*)) = \sigma\text{-cl}(O_H)$ then $x(r') \cap O_H \neq \emptyset$. Let H be an arbitrary G_δ -neighbourhood of r, and let $V = O_H$. Then π (σ -cl (V^*)) $\subset \sigma$ -cl (H), which proves that π is G_δ - θ continuous, since V^* is a G_δ -neighbourhood of x(r) in R^* . Thus the spaces R^* and R are G_δ - θ homeomorphic. If R is G_δ -regular, then π is G_δ - θ continuous and so π a homeomorphism. Hence the lemma.

The absolute $\omega^*(R)$ of a space R:

In $\omega^*(R)$ each point $r \in R$ is represented by ends containing all G_{δ} -neighbourhoods of R. It is obvious that $\omega^*(R) = \bigcup_{r \in R} x(r)$ where x(r) are the sets defined above. The subset $\omega^*(R)$ is mapped in a natural way onto R.

If $p \in \omega^*(R)$, then by definition $\pi_R(p) = r$, where r is the point whose G_{δ} -neighbourhoods all belong to p. π_R is called the natural mapping of $\omega^*(R)$ onto R.

Proposition: 6.2 $\omega^*(R)$ is everywhere G_{δ} -dense in θ (R).

Proof: Let p be an arbitrary end of R and O_U be a G_{δ} -neighbourhood of it. Then O_U contains the sets x(r) corresponding to any point $r \in U$ and so has a non-empty intersection with $\omega^*(R)$,

Proposition: 6.3 $\omega^*(R)$ is G_{δ} -extremally disconnected.

Proof: From Proposition 6.2 $\omega^*(R)$ is everywhere G_{δ} -dense in $\theta(R)$. And also from Proposition 5.1 and Proposition 5.2, $\omega^*(R)$ is G_{δ} -extremally disconnected.

Proposition: 6.4 $\omega^*(R)$ is G_{δ} - θ homeomorphic to R iff R is G_{δ} -extremally disconnected.

Proof: Let $\omega^*(R)$ be G_δ - θ homeomorphic to R and from Proposition 6.3, $\omega^*(R)$ is G_δ -extremally disconnected. Now to prove the sufficiency, let $\{U_\alpha(r)\}$ be the collection of all G_δ -sets in R containing r. The system $\{U_\alpha(r)\}$ can be extended to a maximal one in a unique way, for otherwise there exist G_δ -disjoint sets G_1 and G_2 meeting $U_\alpha(r)$, that is, $r \in (\sigma\text{-cl }(G_1)) \cap (\sigma\text{-cl }(G_2)) \neq \emptyset$, which is impossible for G_δ -extremally disconnected space. Thus, for each point $r \in R$ the set x(r) consists of a single point. But then the space R constructed above coincides with $\omega^*(R)$. Hence R is G_δ - θ homeomorphic to $\omega^*(R)$.

Proposition: 6.5 If R is a G_{δ} -regular, G_{δ} -extremally disconnected space, then R is a G_{δ} -homeomorphic to $\omega^*(R)$.

Proof: From Proposition 6.1, if R is a G_{δ} -regular, G_{δ} -extremally disconnected space, then it is G_{δ} -homeomorphic to R and hence to $\omega^*(R)$.

7. G₈-HAUSDORFF EXTENSION OF SPACES:

Definition: 7.1A G_δ -Hausdorff space δ (R) is called an extension of G_δ -Hausdorff space R if R is contained in δ (R) as an everywhere G_δ -dense subset. R is called G_δ -H closed if every extension δ (R) coincides with R itself. An extension δ (R) is called G_δ -H-closed if δ (R) is G_δ -ompact.

Proposition: 7.1 The space R is G_{δ} -H-closed if and only if any centered system $\{U_{\alpha}\}$ of G_{δ} -sets of R satisfies the condition $\bigcap_{\alpha} \sigma - cl \ (U_{\alpha}) \neq \phi$.

Proof: Necessary: If $p = \{U_{\alpha}\}$ were a centered system with \bigcap σ -cl $(U_{\alpha}) = \emptyset$, then we would construct the extension δ (R) which does not coincide with R itself. The points of σ (R) are those of R and a new point p. The G_{δ} -neighbourhoods of each point $r \in R$ in δ (R) are the same as in R. Any set U_{α} together with the point is a G_{δ} -neighbourhood of p. Because of the condition \bigcap σ -cl $(U_{\alpha}) = \emptyset$, the space δ (R) is G_{δ} -Hausdorff and because $\{U_{\alpha}\}$ is a centered system, it contains R as an everywhere G_{δ} -dense subset, that is, R is not G_{δ} -H closed.

Sufficiency: Let R be a proper everywhere G_δ -dense subset of δ (R). Consider in δ (R) all the G_δ -neighbourhoods of some point $p \in \delta$ (R)/R. Let this be the system $\{U_\alpha\}$. This is centered, for otherwise p would be an isolated point in δ (R) and R would not be everywhere G_δ -dense in δ (R). Since δ (R) is a G_δ -Hausdorff, we have \bigcap σ -cl $(U_\alpha) = p$. But then the system $\{V_\alpha = U_\alpha \cap R\}$ is centered and $\bigcap \sigma$ -cl $(V_\alpha) = \phi$, which contradicts the condition of the lemma.

8. THE ALEKSANDROV – URYSON G_{δ} -COMPACTNESS CRITERION:

Let R be a G_{δ} -Hausdorff space, $\omega^*(R)$ its absolute and π_R the natural mapping of $\omega^*(R)$ onto R. Also Let F be any subset of R^* . We associate it with a certain subset \widetilde{F} of $\omega^*(R)$, defined by saying that the point $p \in \pi_R^{-1}(x)$, $x \in R$, belongs to \widetilde{F} if $p \in O_U$ for every U satisfying the condition $x \in \sigma$ -int (σ -cl($U \cap F$). By construction, \widetilde{F} is contained in the complete inverse image $\pi_R^{-1}(F)$ of F in $\omega^*(R)$. Then we call \widetilde{F} the G_{δ} -reduced inverse image of F in $\omega(R)$.

Proposition: 8.1 (Alexsandrov-Uryson G_{\delta}-compactness) A G_{δ}-Hausdorff space R is G_{δ}-compact iff each of its F_{σ}-subsets is G_{δ}-H closed.

Proof: Since in a G_{δ} -compact space every F_{σ} -subset is G_{δ} -compact and hence G_{δ} -H closed. The proof of sufficiency, based on the following properties of G_{δ} -reduced inverse images.

Property: I If
$$F_1 \subset F_2 \subset \ldots \subset F_n = R$$
, with F_1 non-empty, then $\bigcap_{i=1}^n \widetilde{F_i} \neq \emptyset$.

Let $x \in F_1^*$ and let $q' = \{G^1\}$ be a end of F_1 containing a centered system of G_δ -sets G^1 in F such that $x \in \sigma$ -int (σ -cl(G^1)). Assume that we have constructed systems $q^i = \{G^i\}$ of F_i such that q^i contains all the G_δ -sets $G^i \subset F_i$ for which $x \in \sigma$ -int (σ -cl(G^i)) and all the sets whose intersection with F_{i-1} is some G^{i-1} . By definition q^{i+1} is to consist of all sets $G^{i+1} \subset F_{i+1}$ for which $x \in \sigma$ -int (σ -cl (G^{i+1}) and of all sets whose intersection with F_i is some G^i . Clearly q^{i+1} is a centered system. Thus, for each i, we construct a centred system q^i . Let $p = \{H\}$ denote the end of R containing q^n . We have to prove that $p \in \bigcap_{i=1}^n \widetilde{F}_i$. It follows from the construction of P, that if we have $H \cap F_i \in q^i$ for some P and some

 $G_{\delta}\text{-set }H\text{ in }R\text{, then }H\in p\text{. We prove that }p\in \overset{\sim}{F_{i}}\text{ . Let }H\text{ be a }G_{\delta}\text{-set of }R\text{ such that }x\in \sigma\text{-int }(\sigma\text{-cl }(H\bigcap F_{i}\))\text{. Then }H$ $\bigcap F_{i}\in q^{i}\text{ and hence }H\in p\text{, that is, }p\in \overset{\sim}{F_{i}}\text{ which proves property }I\text{.}$

Remark: 8.1 If O_H is a G_δ -neighbourhood of $\pi_R^{-1}(x) \cap \sigma$ -cl F, where H is the largest of the G_δ -sets H' with the property $O_{H'} = O_H$ then $x \in \sigma$ -int $(\sigma$ -cl $(H \cap F)$. For, otherwise $R \setminus \sigma$ -cl $(H) = V \neq \emptyset$, with $x \in \sigma$ -cl $(V \cap F)$. If some set G, G_δ in G, has the property $G \cap G$ is non-empty. Hence we may consider system $G \cap G$ consisting of all G_δ -neighbourhoods. But, on the otherhand, since $G \cap G$ and $G \cap G$ is non-empty. Hence $G \cap G$ is non-empty. Hence

We now prove that $\pi_R^{-1}(x) \cap \tilde{F}$ is G_δ -compact. Let q be the system of all the G_δ -sets G in R such that $x \in \sigma$ -int (σ -cl $(G \cap F)$ and all the G_δ -neighbourhoods of x in r. It is clear that $\pi_R^{-1}(x) \cap \tilde{F}$, consists of all ends p^* containing q. If p' is an end belonging to $\pi_R^{-1}(x)$ and such that any of its G_δ -neighbourhoods O_H contains some point $p \in \pi_R^{-1}(x) \cap \tilde{F}$ then any $H \in p'$ meets an arbitrary element of q, and hence $p' \in \pi_R^{-1}(x) \cap \tilde{F}$, that is the latter set F_σ in $\pi_R^{-1}(x)$ and so is G_δ -compact.

Property: II If F is G_{δ} -H closed, then \widetilde{F} is G_{δ} -compact.

Proof: Let $\{H_{\alpha}\}$ be any G_{δ} -covering of \widetilde{F} by G_{δ} -sets in \widetilde{F} . They may be extended to G_{δ} -sets in $\omega^*(R)$. Assume that each of the extended sets has the form O_U , where U is a G_{δ} -set in R. Otherwise $\{H_{\alpha}\}$ may be replaced by a finer G_{δ} -covering for which this condition holds. So we may assume that $\{H_{\alpha}\}$ is a G_{δ} -covering of F by G_{δ} -sets in $\omega^*(R)$ of the form $O_{U_{\alpha}}$, where U_{α} is G_{δ} -in R. Let $x \in F$. Let H_{β}^x denote the union of a finite number of sets H_{α} G_{δ} -covering the

 $G_{\delta}\text{-compact set }\pi_{R}^{-1}\left(x\right).\text{ Clearly }H_{\beta}^{x}\text{ has the form }O_{U_{\beta}}^{x}\text{ , where }U_{\beta}^{x}\text{ is }G_{\delta}\text{-set in }R\text{ and is maximal among the sets }H$

for which $O_H = O_{U_{\beta}}^x$. Hence it follows that the system σ -int { $U_{\beta}^x \cap F$ } is a G_{δ} -covering of F.

Since F is G_{δ} -H closed, choose a finite number of elements of this G_{δ} -covering such that $\bigcup_{i=1}^n \sigma\text{-cl}(\sigma\text{-int}(\sigma\text{-cl}(U_{\beta_i}^x\cap F))) = F$. We prove that $\bigcup_{i=1}^n O_{U_{\beta_i}}^x\supset \widetilde{F}$. Since the union $\bigcup_{i=1}^n U_{\beta_i}^x = U$ has the property that $x\in \sigma\text{-int}(\sigma\text{-cl}(F\cap U))$ for any x, then an arbitrary end $p^*\in \widetilde{F}$ contains U, and hence belongs to some $O_{U_{\beta}}^x$. Thus, if

we choose only those H_{α} that make $O_{U_{\beta_i}}^x$ and take their intersections with \tilde{F} , we obtain the required finite covering. Hence property II.

Proposition: 8.2 The G_{δ} -Hausdorff space R is G_{δ} -compact iff every well-ordered decreasing sequence of non-empty F_{σ} -sets has a non-empty intersection.

Proof: Suppose that the conditions of the theorem are satisfied and that $\{F_{\alpha}\}$ is a well-ordered decreasing system of F_{σ} -sets of R. Then by property I, the G_{δ} -set \widetilde{F} form a centered system in $\omega^*(R)$. Also since all the F_{α} are G_{δ} -H closed, by property II, \widetilde{F} are G_{δ} -compact. Hence $\bigcap \widetilde{F}_{\alpha} \neq \emptyset$. Let $y \in \widetilde{F}_{\alpha}$. Then $\pi_R(y) \in F_{\alpha}$ for every α , that is $\bigcap F_{\alpha} \neq \emptyset$.

REFERENCES:

- [1] S. Illiadis and S. Fomier, The method of centered systems in the theory of topological spaces.
- [2] James R. Munkres, Topology A first course.
- [3] Richard R. Goldberg, Methods of Real Analysis.
