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ABSTRACT 

In this paper the concepts of Gδ-Hausdorff space, Gδ-extremally disconnected spaces, Gδ-θ continuous mappings are 

introduced. In this connection,Gδ-Hausdorff extension of spaces and the Aleksandrov-Uryson δ-compactness criterion 

are established. 
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1. INTRODUCTION: 

 

The method of centered systems was introduced and established by S. Illiadis and S. Fomin [1]. In this paper making 

use of Gδ-sets, we introduce the concept of Gδ-Hausdorff space, Gδ-extremally disconnected spaces, Gδ-θ-continuous 

mappings, and Aleksandrov-Uryson Gδ-compactness in the centered systems.  

 

2. PRELIMINARIES: 

 

Definition: 2.1 [3] A set A ⊂ X in a topological space (X, T) is called a Gδ-set if A = 
∞

=1n

� An where each An ∈ T. The 

complement of Gδ-set is called a Fσ set.  

 

Definition: 2.2 For any set A in (X, T), define the σ-closure of A denoted by σ-cl A, to be the intersection of all Fσ-sets 

containing A.  

 

That is σ-cl A = � {U: U is a Fσ-set and U ⊇ A} 

 

Definition: 2.3 For any set A in (X, T), define the σ-interior of A denoted by σ-int A,  to be  the union of all Gδ - sets 

contained in A.  

 

That is σ-int A = � {U : U is a Gδ - set and U ⊆ A} 

 

Definition: 2.4 [2] A topological space is a Hausdorff space iff whenever x and y are distinct points of the space there 

exists disjoint neighbourhoods of x and y. 

 

Definition: 2.5 [1] Let R be a Hausdorff space. A system p = {Uα} of open sets of R is called centered if any finite 

collection of sets of the system has a non-empty intersection. The system p is called a maximal centered system or 

briefly an end if it cannot be included in any larger centered system of open sts.  

 

Definition: 2.6 [1] Let f be a mapping of a space X into a space Y with f(x) = y. The f is called θ-continuous at x if for 

every neighbourhood Oy of y there exists neighbourhood Ox of x such that f ( xO ) ⊂ 
y

O . The mapping is called  

θ - continuous if it is θ-continuous at every point of X. A mapping that is one-to-one and θ-continuous in both 

directions is called a θ-homeomorphism.  

________________________________________________________________________________________________ 
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It is clear that a continous mapping is θ-continuous. An example of a θ-continuous mapping that is not continuous. Let 

I be the interval [0, 1] with the usual topology, and I′ the same interval with the following topology: the 

neighbourhoods of every point x � 0 are the same as those in the half-open interval (0, 1], but the neighbourhoods of  

x = 0 are the sets of the form [0, ε)\D, where D is the set of all points 1/n (n=1, 2, …;0 < ε < 1). It is easy to see that the 

space obtained is not regular at 0. Let f be the identity mapping of [0,1] onto itself. It is easy to verify that this mapping 

of I onto I′ is θ-continuous, we have also obtained a θ-homeomorphism that is not a homeomorphism. It is essential 

here that the space I ′ is not regular, since it is easy to show that if the image is regular, then a θ-continuous mapping is 

automatically continuous.  

 

Remark: 2.1 The canonical open sets (sets of the form I (�) where U is open) form a base. 

 

3. THE SPACES OF MAXIMAL CENTERED SYSTEM: 

 

Definition: 3.1 A topological space (X, T) is said to be Gδ-Hausdorff iff for any two distinct points x1, x2 ∈ X, there 

exist Gδ sets U and V with x1 ∈ U and x2 ∈ V such that U � V = φ.  

 

Notation: 3.1 Gδ -Hausdorff space is denoted by R. 

 

Definition: 3.2 Let R be a Gδ -Hausdorff space. A system p* = {Sα} of Gδ sets of R is called centered if any finite 

collection of sets of the system has a non-empty intersection. The system p* is called a maximal centered system, or 

briefly, an end if it cannot be included in any larger centered system of Gδ sets.  

 

The following are the properties of maximal centered systems:  

1. If Si ∈ p* (i = 1, 2 … n) then �
n

1  i =

Si ∈ p*. 

2. If S ⊂ H, S ∈ p* and H is Gδ - set then H ∈ p*. 

3. If H is Gδ - set, then H ∉ p*, iff there exists S ∈ p* such that  S �  H is empty.  

4. If S1 � S2 = S3 ∈ p*, S1 and S2 are Gδ - sets and S1 �  S2 = φ, then either S1 ∈ p* or S2 ∈ p*. 

5. If σ-cl (S) = R, then S ∈ p* for any end p*. 

 

Remark: 2.1 Every centered system of Gδ  - sets can be extended in atleast one way to a maximal one.  

 

4. MAXIMAL STRUCTURE IN θθθθ (R): 

 

Definition: 4.1 A set U in a topological space (X, T) is a Gδ - neighbourhood of a point x iff U contains a Gδ - set to 

which x belongs. 

 

Definition: 4.2 A family � is a Gδ - cover of a Gδ - set B iff each member of B belongs to some member of �����

 

Definition: 4.3 A topological space is Gδ -compact iff each Gδ - cover has a finite subcover. 

 

Notation: 4.1 Let θ (R) denote the collection of all end belonging to a given space R. We introduce maximal 

structure θθθθ (R) in the following way: 

 

Let OS be the set of all ends that contain S as an element, where S is a Gδ -set of R. Now OS is to be a Gδ - 

neighbourhood of each end contained in OS. Thus to each Gδ - set S ⊂ R there corresponds a Gδ - neighbourhood OS in 

θ (R). 

 

Proposition: 4.1 If S and T are two Gδ-sets, then  

(a) S  TO
�

 = OS � OT 

(b) OS = θ (R) \ OR\ σ-cl (S) 

 

Proof: (a) Let p* ∈ OS, ie., S ∈ p*. Then by property (2), S �  T ∈ p*,  

 

ie., p* ∈ S  TO
�

. Hence OS �  OT ⊂ S  TO
�

. Now, let p*∈ S  TO
�

, ie., S  T�  ∈ p*. If p* ∉ OS, ie., S ∉ p*, then R\σ-

cl (S) ∈ p* and hence, (R\σ-cl (S) )� ( TS� )∈ p*.  But ( R \ σ-cl (S)) � ( TS�  ) ⊂ T. Hence T ∈ p*, that is,  

p* ∈ OT. Thus S  TO
�

 ⊂ OS �  OT. Hence, S  TO
�

= OS � OT. 
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(b) put T = R\σ-cl (S) in (a) then we have S  R \ - cl (S)O σ�
 = OS �  (S) cl- \ RO σ . By using, S  R \ - cl (S)O σ�

= θ (R). We 

have θ (R) = OS �  (S) cl- \ RO σ  

Hence OS = θ (R) \ (S) cl- \ RO σ .  

 

Notation: 4.2 Gδ Fσ denote a set which is both Gδ and Fσ 

 

Definition: 4.4 A topological space ( X, T ) is said to be zero dimensional if X has a base of Gδ - neighbourhoods that 

are both Gδ and Fσ.  

 

Definition: 4.6 A topological space is a Gδ - T1 space if for given any two distinct points a and b of X, each has a Gδ - 

neighbourhood not containing the other. 

 

Proposition: 4.2 The maximal structure θ (R) described above is a Gδ - compact, Gδ - Hausdorff space and has a base 

of Gδ - neighbourhoods that are Gδ Fσ.  

 

Proof: Each set OS is Gδ - by definition and by equation (b), of Proposition 4.1 it is also Fσ. Thus θ (R) has a base of Gδ 

- neighbourhoods that are Gδ Fσ , that is, θ (R) is zero dimensional. Since θ (R) has a base of Gδ -neighbourhoods that 

are Gδ Fσand Gδ -T1 space it follows that it is Gδ -Hausdorff. Finally to prove that  θ (R) is Gδ-compact. Suppose that 

there is a Gδ- covering of θ (R). By replacing each element of the covering by the union of the appropriate sets OS, we 

may assume that the covering has the from 
�
�

�

�

�
�

�

�

�s
O . If it is impossible to take a finite subcovering from this Gδ-

covering, then no set of the form R \ �
n

1i=

σ-cl 
�
�

�

�

�
�

�

�

i
�S  is empty. Since otherwise the Gδ - sets 

i
�s

O would form a 

finite Gδ-covering of θ (R). Hence the Gδ-sets R \ �
n

1i=

σ-cl  
�
�

�

�

�
�

�

�

i
�S form a centered system. It may be extended to a 

maximal system p*. This maximal system is not contained in any
�

sO , since it contains, in particular all the R\σ-cl 

(sα). This contradiction proves that θ (R) is Gδ-compact. Thus with each Gδ-Hausdorff space R we have associated a 

Gδ-Hausdorff space θ (R)-the space of maximal centered systems of Gδ-sets. 

 

5. Gδδδδ-EXTREMALLY DISCONNECTED SPACES: 

 

Definition: 5.1 A Gδδδδ-Hausdorff space R is called Gδ-extremally disconnected if the σ-closure of any Gδδδδ-set is Gδδδδ.  

It is clear that a space is Gδ-extremally disconnected iff two disjoint Gδ- sets have disjoint σ-closures.  

 

Proposition: 5.1 An everywhere Gδ-dense subset R′ of Gδ-extremally disconnected space R is itself Gδ-extremally 

disconnected.  

 

Proof: We prove this by contradiction. Suppose that there exists two Gδ-sets S1 and S2 in R′ such that S1 �  S2 = φ. But 

σ-cl (S1) �  σ-cl (S2) ≠ φ. Let T1 and T2 be any two Gδ-sets in R such that T1� R′ = S1 and T2 � R′ = S2. Then T1 

� T2 = φ for if T ⊂ T1 � T2, then T � R′ ≠ φ and T is contained in S1� S2 which is impossible. On the otherhand,  

σ-cl (T1) 
1

� σ -cl (T2) ⊃ σ-cl (S1)
 �  σ-cl (S2)

 ≠ φ, contradicting the fact that R is Gδ-extremally disconnected. Hence 

the Lemma.  

 

Proposition: 5.2 The space θ (R) of maximal centered systems of an arbitrary Gδ-Hausdorff space R is Gδ-extremally 

disconnected. 

 

Proof: The proof of this theorem follows from the following equation: 

��
S

O
�

= σ-cl �
�
��

�
�

�S
�

O� . To verify this, if  
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S ⊂ T, it follows that OS ⊂ OT and therefore 
�S

�
O� ⊂ 

��
S

O
�

, and since 

��
S

O
�

is Fσ, σ-cl �
�
��

�
�

�S
�

O�  ⊂ 

��
S

O
�

. 

To prove the opposite inclusion, let q be an arbitrary element of 

��
S

O
�

, ie., �
�

S�  ∈ q and let S be an arbitrary Gδ-

set of q. Then S �  �
�

S�  ≠ φ, and hence there exists α such that S �  Sα ≠ φ. But then OS �
�S

O ≠ φ, and since S ∈ q 

is arbitrary, This means that q ∈ σ-cl �
�
��

�
�

�S
�

O� . That is, 

��
S

O
�

⊂ σ-cl �
�
��

�
�

�S
�

O� . Hence 

��
S

O
�

= σ-cl 

�
�
��

�
�

�S
�

O� . Hence the theorem.  

 

Proposition: 5.3 The equation R = θ (R) holds iff R is a Gδ-compact, Gδ-extremally disconnected and Gδ-Hausdorff 

space. 

 

Proof: The necessary condition follows from Proposition 5.1 and Proposition 5.2. To prove sufficiency, let R satisfy 

the condition of the theorem. Now, we construct a homeomorphism π of θ (R) onto R. Let p = { Sα } ∈ θ(R). Then the 

system of Fσ-sets σ-cl { Sα } is centered and has a non-empty intersection. This intersection consists of a single point. 

For suppose that there are two distinct points r1 and r2 in �  σ-cl ( Sα ). Let 
1
rO and 

2
rO be two disjoint Gδ-

neighbourhoods of these points. Since 
1
rO �  Sα ≠ φ and 

2
rO � Sα ≠ φ for all Sα∈ p, which gives that  

1
rO ∈ p and 

2
rO ∈ p which is impossible. Thus �  σ-cl (Sα) consists of a single point r. Let π (p) = r. We shall prove 

that the mapping π is one-one and continuous. Since θ(R) is Gδ-compact, this will prove the theorem. The mapping is 

onto. For let r ∈ R and let {Vα} be the system of all Gδ-neighbourhoods of r in R. This system can be extended 

uniquely to a maximal one. For, if {Vα) is contained in two different maximal systems then there would be two Gδ-sets 

S1 and S2 in R such that S1 �  S2 = φ, each of them would intersect every Vα, that is, r ∈ ( )))cl(S-))cl(S-
21

(( σσ �  

but which contradicts the fact that R is extreamally Gδ-disconnected. Extending the system {Vα} to a maximal one, 

there is a point p = {Sα} in θ (R). But π (p) = r. Already we have proved that π is one-one. Hence from the definition of 

π it follows that π (OS) = σ-cl (S).  

 

Let Or′ be any Gδ-neighbourhood of r. Let S be a Gδ-neighbourhood such that σ-cl(S) ⊂ Or′. Then OS is a Gδ Fσ 

neighbourhood of p such that π (OS) ⊂ σ-cl (S) ⊂ Or′. Thus π is continuous and hence the proof.  

 

6. Gδδδδ-θ CONTINUOUS MAPPINGS:  

 

Definition: 6.1 Let f be a mapping of a space X into a space Y with f(x) = y. Then f is called Gδ-θ continuous at x iff 

for every Gδ-neighbourhood Oy of y there exists a Gδ-neighbourhood Ox of x such that f (σ-cl (Ox)) ⊂ σ-cl (Oy). The 

mapping is called Gδ-θ continuous if it is Gδ-θ continuous at every point of X. A mapping that is one-one and Gδ-θ 

continuous in both directions is called a Gδ-θ homeomorphism. It is clear that a continuous mapping is Gδ-θ 

continuous.  

 

The Realization of R in θθθθ (R): 

 

Consider a Gδ-Hausdorff space R and its space θ (R). Let r ∈ R and x(r) denote the set of all ends p* of R that contain 

all the Gδ-neighbourhoods of r. Now, the set x(r) is Gδ Fσ in θ (R). Since θ (R) is Gδ-compact, x (r) is Gδ -compact.  

 

Now define a space R
*
 constructed as follows: Its points are the Fσ-sets x (r) and its structure is defined as, let V be a 

Gδ-set of θ (R). Let V* denote the set of all Fσ-sets x(r) that are completely contained in V. By definition, the set of all 

V* is to form a base of R*.  

 

Definition: 6.2 A topological space is Gδ-regular iff for each point x and each Gδ-neighbourhood U and x there is a Fσ-

neighbourhood V of x such that V ⊂ U. 
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Definition: 6.3 If there exists a Gδ-θ homeomorphism of one space onto another, the two spaces are said to be  

Gδ-θ-homeomorphic.  

 

Proposition: 6.1 R* is Gδ-θ homeomorphic to R. If R is Gδ-regular, then R* is homeomorphic to R.  

 

Proof: Let π be the mapping of R* onto R in which π (x(r)) = r. We shall show that π is the required Gδ-θ 

homeomorphism. To prove this the equivalence of the following inclusions are established.  

 

Now, x(r) ⊂ OH = Oσ-int (σ-cl(H)) and r ∈ σ-int (σ-cl (H)).  

 

If If r ∈ σ-int (σ-cl (H)), it is clear that x(r) ⊂ OH. If x (r) ⊂ Oσ-int (σ-cl (H)), but r ∉ Oσ-int (σ-cl (H)) then there would be end p* 

in x(r) not containing σ-int (σ-cl (H)). But then p* ∉ Oσ-int (σ-cl (H)), which is impossible. From this equivalence it follows  

that π−1 is continuous. For let V* be a Gδ-neighbourhood of the set x(r) in R*. Since x(r) is Gδ-compact, assume that V 

has the form OH where H is Gδ-in R. Then π−1 (σ-int (σ-cl (H))) ⊂ OH = V*. This proves the continuity of π−1. To prove 

that π is Gδ-θ continuous, it is easy to see that if x(r′) � OH ≠ φ. then r′∈ σ-cl (H). From the construction of V*, it is 

clear that if x(r′)∈(σ-cl(V*)) = σ-cl(OH) then x( r′)� OH ≠ φ. Let H be an arbitrary Gδ-neighbourhood of r, and let V = 

OH. Then π (σ-cl (V*)) ⊂ σ-cl (H), which proves that π is Gδ-θ continuous, since V* is a Gδ-neighbourhood of x(r) in 

R*. Thus the spaces R* and R are Gδ-θ homeomorphic. If R is Gδ-regular, then π is Gδ-θ continuous and so π a 

homeomorphism. Hence the lemma.   

 

The absolute ωωωω*(R) of a space R: 

 

In ω*(R) each point r ∈ R is represented by ends containing all Gδ-neighbourhoods of R. It is obvious that  

ω*(R) = 
Rr∈
� x(r) where x(r) are the sets defined above. The subset ω*(R) is mapped in a natural way onto R.  

If p ∈ ω*(R), then by definition πR(p) = r, where r is the point whose Gδ-neighbourhoods all belong to p. πR is called the 

natural mapping of ω*(R) onto R.  

 

Proposition: 6.2 ω*(R) is everywhere Gδ-dense in θ (R).  

 

Proof: Let p be an arbitrary end of R and OU be a Gδ-neighbourhood of it. Then OU contains the sets x(r) corresponding 

to any point r ∈ U and so has a non-empty intersection with ω*(R), 

 

Proposition: 6.3 ω*(R) is Gδ-extremally disconnnected. 

 

Proof: From Proposition 6.2 ω*(R) is everywhere Gδ-dense in θ(R). And also from Proposition 5.1 and Proposition 5.2, 

ω*(R) is Gδ-extremally disconnected.  

 

Proposition: 6.4 ω*(R) is Gδ-θ homeomorphic to R iff R is Gδ-extremally disconnected. 

 

Proof: Let ω*(R) be Gδ-θ homeomorphic to R and from Proposition 6.3, ω*(R) is Gδ-extremally disconnected. Now to 

prove the sufficiency, let {Uα(r)} be the collection of all Gδ-sets in R containing r. The system {Uα(r)} can be extended 

to a maximal one in a unique way, for otherwise there exist Gδ-disjoint sets G1 and G2 meeting Uα(r), that is, r ∈ (σ-cl 

(G1)) �  (σ-cl (G2)) ≠ φ, which is impossible for Gδ-extremally disconnected space. Thus, for each point r ∈ R the set 

x(r) consists of a single point. But then the space R constructed above coincides with ω*(R). Hence R is Gδ-θ 

homeomorphic to ω*(R). 

 

Proposition: 6.5 If R is a Gδ-regular, Gδ-extremally disconnected space, then R is a Gδ-homeomorphic to ω*(R). 

 

Proof: From Proposition 6.1, if R is a Gδ-regular, Gδ-extremally disconnected space, then it is Gδ-homeomorphic to R 

and hence to ω*(R).  

 

7. Gδδδδ-HAUSDORFF EXTENSION OF SPACES: 

 

Definition: 7.1A Gδ-Hausdorff space δ (R) is called an extension of Gδ-Hausdorff space R if R is contained in δ (R) as 

an everywhere Gδ-dense subset. R is called Gδ-H closed if every extension δ (R) coincides with R itself. An extension δ 

(R) is called Gδ-H-closed if δ (R) is Gδ-H-closed and Gδ-compact if δ (R) is Gδ-ompact. 
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Proposition: 7.1 The space R is Gδ-H-closed if and only if any centered system {Uα} of Gδ-sets of R satisfies the 

condition cl−σ
α
�  (Uα)≠ φ. 

Proof: Necessary: If p = {U }α were a centered system with �  σ-cl (U )α = φ, then we would construct the extension 

δ (R) which does not coincide with R itself. The points of σ (R) are those of R and a new point p. The Gδ-

neighbourhoods of each point r ∈ R in δ (R) are the same as in R. Any set Uα together with the point is a Gδ-

neighbourhood of p. Because of the condition �  σ-cl (U )α  = φ, the space δ (R) is Gδ-Hausdorff and because {Uα} is 

a centered system, it contains R as an everywhere Gδ-dense subset, that is, R is not Gδ-H closed.  

 

Sufficiency: Let R be a proper everywhere Gδ-dense subset of δ (R). Consider in δ (R) all the Gδ-neighbourhoods of 

some point p ∈ δ (R)/R. Let this be the system {Uα}. This is centered, for otherwise p would be an isolated point in  

δ (R) and R would not be everywhere Gδ-dense in δ (R). Since δ (R) is a Gδ-Hausdorff, we have �  σ-cl (Uα) = p. But 

then the system }RUV{ �� �= is centered and � σ−cl (Vα) =φ, which contradicts the condition of the lemma. 

 

8. THE ALEKSANDROV – URYSON Gδδδδ-COMPACTNESS CRITERION: 

  

Let R be a Gδ-Hausdorff space, ω*(R) its absolute and πR the natural mapping of ω*(R) onto R. Also Let F be any 

subset of R*. We associate it with a certain subset 
~
F of ω*(R), defined by saying that the point p ∈ 

1

R

−π (x),  

x ∈ R, belongs to 
~
F  if p ∈ OU for every U satisfying the condition x ∈ σ-int (σ-cl(U � F). By construction, 

~
F  is 

contained in the complete inverse image 
1

R

−π (F) of F in ω*(R). Then we call 
~
F the Gδ-reduced inverse image of F in ω 

(R). 

 

Proposition: 8.1 (Alexsandrov-Uryson Gδδδδ-compactness) A Gδ-Hausdorff space R is Gδ-compact iff each of its Fσ-

subsets is Gδ-H closed.  

 

Proof: Since in a Gδ-compact space every Fσ-subset is Gδ-compact and hence Gδ-H closed. The proof of sufficiency, 

based on the following properties of Gδ-reduced inverse images.  

 

Property: I If 1F ⊂ 2F ⊂ . . .  ⊂ nF = R, with 1F non-empty, then 
n

i 1=
�

i

~
F ≠ φ. 

Let x ∈ 
*

1F and let q′ = {G1} be a end of 1F containing a centered system of Gδ-sets G1 in F such that x ∈ σ-int (σ-

cl(G1)). Assume that we have constructed systems qi = {Gi} of iF such that qi contains all the Gδ-sets Gi ⊂ iF  for 

which x ∈ σ-int (σ-cl(Gi)) and all the sets whose intersection with Fi−1 is some Gi-1. By definition qi+1 is to consist of all 

sets Gi+1 ⊂ Fi+1
 for which x ∈ σ-int (σ-cl (Gi+1) and of all sets whose intersection with Fi is some Gi.  Clearly qi+1 is a 

centered system. Thus, for each i, we construct a centred system qi. Let p = {H} denote the end of R containing qn. We 

have to prove that p∈
n

i 1=
�

i

~
F .  It follows from the construction of p, that if we have H i F� ∈ qi for some i and some 

Gδ-set H in R, then H ∈ p. We prove that p ∈
i

~
F . Let H be a Gδ-set of R such that x ∈ σ-int (σ-cl (H i F� )). Then H 

i F� ∈ qi and hence H ∈ p, that is, p ∈ 
i

~
F which proves property I.  

 

Remark: 8.1 If OH is a Gδ-neighbourhood of 
1

R
−π (x)� σ-cl F, where H is the largest of the Gδ-sets H′ with the 

property OH′ = OH then x ∈ σ-int (σ-cl (H  F)� . For, otherwise R\σ-cl (H) = V ≠ φ, with x ∈ σ-cl (V  F)� . If some 

set G, Gδ in R, has the property x ∈ σ-int (σ-cl (G  F)� ), then V � G is non-empty. Hence we may consider system q 

consisting of all Gδ-neighbourhoods. But, on the otherhand, since p∈ OV and OV �  OH = φ since V �  H = φ, then 

p∈
~
F ⊂ OH, which is a contradiction. Hence x ∈ σ-int (σ-cl (H �  F). 
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We now prove that 
1

R

−π (x) �  
~
F is Gδ-compact. Let q be the system of all the Gδ-sets G in R such that x ∈ σ-int (σ-cl 

(G �  F) and all the Gδ- neighbourhoods of x in r. It is clear that 
1

R

−π (x) �
~
F , consists of all ends p* containing q. If 

p′ is an end belonging to 
1

R

−π (x) and such that any of its Gδ-neighbourhoods OH contains some point p∈
1

R

−π (x) �  
~
F  

then any H ∈ p′ meets an arbitrary element of q, and hence p′∈
1

R

−π (x) �
~
F , that is the latter set Fσ in 

1

R

−π (x) and so 

is Gδ-compact. 

 

Property: II If F is Gδ-H closed, then 
~
F is Gδ-compact. 

Proof: Let {Hα} be any Gδ-covering of 
~
F by Gδ-sets in

~
F . They may be extended to Gδ-sets in ω*(R). Assume that 

each of the extended sets has the form OU, where U is a Gδ-set in R. Otherwise {Hα} may be replaced by a finer Gδ-

covering  for which this condition holds. So we may assume that {Hα} is a Gδ- covering of F by Gδ-sets in ω*(R) of the 

form 
�U

O , where Uα is Gδ-in R. Let x ∈ F. Let 
xHβ denote the union of a finite number of sets Hα Gδ-covering the 

Gδ-compact set 
1

R

−π (x). Clearly 
xHβ  has the form 

x

�
U

O , where 
xUβ  is Gδ-set in R and is maximal among the sets H 

for which OH = 
x

�
U

O . Hence it follows that the system σ-int {
x

�
FU � } is a Gδ-covering of F. 

Since F is Gδ-H closed, choose a finite number of elements of this Gδ-covering such that 
n

i 1=
� σ-cl(σ-int(σ-

cl(
x

�i
FU � ))) = F. We prove that

n

i 1=
�

x

i
UO

β
⊃

~
F . Since the union 

n

i 1=
�

i

xUβ  = U has the property that  

x ∈ σ-int(σ-cl(F� U) for any x, then an arbitrary end p* ∈ 
~
F contains U, and hence belongs to some 

x

�
U

O . Thus, if 

we choose only those Hα that make 
x

i
UO

β
and take their intersections with

~
F , we obtain the required finite covering. 

Hence property II. 

 

Proposition: 8.2 The Gδ-Hausdorff space R is Gδ-compact iff every well-ordered decreasing sequence of non-empty 

Fσ-sets has a non-empty intersection.  

 

Proof: Suppose that the conditions of the theorem are satisfied and that {Fα} is a well-ordered decreasing system of Fσ-

sets of R. Then by property I, the Gδ-set 
~
F  form a centered system in ω*(R). Also since all the Fα are Gδ-H closed, by 

property II, 
~
F are Gδ-compact. Hence  Fα� �  ≠ φ. Let y ∈

~
Fα . Then πR (y) ∈ Fα for every α, that is 

α
�  Fα ≠ φ. 
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