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ABSTRACT 

We study the inflationary hypersurface-homogeneous cosmological models with massless scalar field with a flat 

potential. The characteristic feature of inflationary era is found by considering a flat region of a constant potential V. 

We have shown that exact solutions of Einstein’s field equations are solvable for any arbitrary cosmic scale function. 

The physical and kinematical behavior of the models are also discussed and studied. 
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1. INTRODUCTION: 

 

In cosmology, inflation is based on the assumption that there was a period in the very early universe during which 

space underwent accelerated, exponential expansion. Inflation provides a plausible explanation for several puzzles of 

standard big-bang cosmology. In trying to understand the universe, the standard big-bang model faces two well-known 

problems – the horizon problem and the flatness problem. To solve these, the big-bang theory is modified by the 

inflation theory, which state that the universe is expanded rapidly after it was created. The horizon problem is that the 

cosmic microwave background radiation temperatures throughout the universe are almost exactly the same temperature 

in every direction. In flatness problem, the universe appears to have a flat geometry. Guth1 proposed the inflation 

theory to solve these major problems. Several versions of the inflationary models are studied by Linde2, La and 

Steinhardt3, Abbott and Wise4. In these models, flatness problem is well understood and solved, but this is not so clear 

about isotropy and homogeneity to solve such problem. 

 

In inflationary universe scenarios, it is assumed that general relativity is the correct theory of gravitation, and the matter 

is generally taken to be a homogeneous scalar field ϕ  , with a potential )(ϕV  acting as the vacuum energy to drive 

the accelerated expansion. In general relativity, for example, if the potential is simply a constant, 0)( VV =ϕ  , then 

the space time is deSitter and the expansion is exponential. If the potential is exponential, 
ϕλϕ −= eVV 0)( . Then 

there is a power-law inflationary solution. In general relativity, scalar fields help in explaining the creation of matter in 

cosmological theories, and can  also describe the uncharged field. Wald5, Burd and Barrow6, Barrow7, Stein-Schabes8, 

Ellis and Madsen9, Heusler10, Bhattacharjee and Baruah11, Bali and Jain12 and Rahaman et al.13 have studied different 

aspect of scalar fields in inflationary cosmology. Recently, Reddy et al.14 Reddy and Naidu15, Reddy et al.16 Katore and 

Rane17 have discussed the inflationary universe models in different space-time in general relativity. Therefore we 

propose to study of such inflation theory in general relativity. 

 

In this paper, we study the inflationary-homogeneous cosmological models in the presence of massless scalar field with 

a flat potential in general relativity. To get an inflationary solution, a flat region is assumed in which the potential V is 

considered to be constant. We have shown that Einstein field equations are solvable for any arbitrary cosmic scale 

function. The physical and kinematical properties of the investigated models are studied. 

 

2. THE METRIC AND FIELD EQUATIONS:  

 

The general form of a hypersurface-homogeneous space-time can be described by the metric 

               ])([ 22222222 dzyfdyBdxAdtds K+−−= ,                                                                                   (2.1) 
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where A and B are functions of time t. The function Kf depends on the geometry of 3-D hypersurfaces. The function 

)(2
yf K  is associated with the group acting on hypersurface-homogeneous space-time and )(2

yf K  = 

)sinh,,(sin yyy for )1,0,1( −=K with K is the curvature. 

 

In the case of gravity minimally coupled to a scalar field )(ϕV , the Langrangian L is 

               xdVgRgL ji
ij 4

,, )](
2

1
[ ϕϕϕ −−� −= , 

 

where g is the determinant of the space-time metric, and )(ϕV  is the effective potential that describes the self-

interaction of the scalar field. The variation of L with respect to dynamical fields lead to Einstein field equations 

            ijijij TRgR −=−
2

1
                                                                                                                                       (2.2) 

 

with stress-energy tensor associated with L has the form 

            ij
k

kjiij gVT )](
2

1
[ ,

,,, ϕϕϕϕϕ +−=                                                                                                        (2.3) 

and      
ϕ

ϕ
ϕ

d

dV
g

g

i
i

)(
)(

1 ,
, −=∂−∂

−
,                                                                                                             (2.4) 

 

where comma (,) indicates the ordinary differentiation. The function ϕ  depends on t only due to homogeneity. Units 

are taken such that 18 == cGπ . 

 

The Einstein field equations (2.2) with the help of (2.3) for the metric (2.1) lead to the following set of equations 

              )](
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1
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,                                                                                                          (2.5) 
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and the equation ( 2.4) for scalar field is 

 

             
ϕ

ϕ
ϕϕ

d

dV

B

B

A

A )(
)2( −=++
��

���  ,                                                                                                                     (2.8) 

 

where the dot (.) denotes the differentiation with respect to t. 

 

The average scale factor for the metric (2.1) is defined by 

             
3/12 )()( ABta = .                                                                                                                                         (2.9) 

 

A volume scale factor is given by 

              
23 )( ABtaV == .                                                                                                                                     (2.10) 

 

The expansion scalar θ  and shear scalar σ  are defined as 

                )2(
B

B

A

A ��

+=θ                                                                                                                                           (2.11) 

and          )(
3

1

B

B

A

A ��

−=σ .                                                                                                                                    (2.12) 
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The deceleration parameter q is defined as 

              
2

V

VV
q

�

��

−=  .                                                                                                                                                  (2.13) 

 

3. INFLATIONARY MODELS:  

 

Katore and Rane17 have obtained the inflationary Kantowski-Sachs cosmological model in the presence of a massless 

scalar field with a flat potential. They have shown that the field equations are solvable for any arbitrary cosmic scale 

function. We follow the same approach to find exact solutions of the field equations (2.5) to (2.8). 

 

The flat part of the potential is associated with a vacuum energy with an effective cosmological constant. Therefore we 

assume the flat region when the potential is constant, i.e. 

 

                           =)(ϕV  constant = 0V  (say).                                                                                                            (3.1) 

 

 The equation (2.8) on integration gives 

                           
2AB

d
=ϕ�  ,                                                                                                                                       (3.2) 

 

where d is a constant of integration. 

 

The field equations (2.5) and (2.6) in view of (3.1) lead to  

 

                           0
22

2

=+−+−
B

K

AB
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B

B

A
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B
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i.e.                      KABABABd −=+− )( 2 ��      

 

which on integration gives 

 

                        � +−=+− 1
2

dAdtKBABAB �� ,                                                                                                    (3.3) 

where 1d  is the constant of integration. 

 

Considering equation (3.3) as a linear differential equation for )(tB where )(tA  is an arbitrary function. Therefore 

equation (3.3) becomes 

 

                          � +−=+− ][
2

][
2

1
2

dAdtK
A

BABAB
A

��           

i.e.                     )(2)( 22
tFB

A

A
B

dt

d
=−

�

 ,                                                                                                            (3.4) 

where                   [ ]� +−= 1
2

)( dAdtK
A

tF  .                                           

 

The linear differential equation (3.4) has the general solution given by 

                            �
�

�
�
�

�
+�= 22

22 )(
ddt

A

tF
AB  ,                                                                                                          (3.5) 

where 2d  is the constant of integration.  

 

We now obtain the solution for a simple choice of the function )(tA . We choose  

                           
n

ttA =)(  ,                                                                                                                                         (3.6) 

where n is real number )1( −≠n . 
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Equation (3.5) yields 

                         
nn

tdt
n

d
t

n

K
B

2
2

112

2

2
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2

1
+

−
+

−
= −

.                                                                                       (3.7) 

 

Without loss of generality, we take 021 == dd , the solution (3.7) becomes 

                        
2

2

2

1
t

n

K
B

−
= .                                                                                                                                 (3.8) 

 

Hence the geometry of the inflationary hypersurface-homogeneous metric corresponding to the solutions (3.6) and (3.8) 

takes the form 

                        ])([
1

2222

2

2222 dzyfdyt
n

K
dxtdtds K

n +
−

−−= .                                                               (3.9) 

This model is well-defined when 012 >−n . 

 

The scalar field ϕ  equation (3.2) with the solutions (3.6) and (3.8) on integration gives 

 

                      0
)1()1( ϕϕ +−= +− n

tnd  ,                                                                                                              (3.10) 

where 0ϕ  is the constant of integration. 

 

Model I : For K = 1, the metric (3.9) takes the form                             

                      ]sin[
1

222

2

2
2222

ydzdy
n

t
dxtdtds

n +
−

−−=  .                                                                   (3.11) 

This model is well-defined when 012 >−n . 

 

The physical and kinematical parameters of the model (3.11) are given by the following expressions: 

Spatial Volume 

12

2
3

−
=

+

n

t
V

n

.                                                                                                                                  (3.12) 

 

 
 

Figure: 1 Volume Vs Time. 
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        The average scale factor

3/1
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1
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.                                                                                                 (3.13) 

        Expansion scalar 
t

n 2+
=θ  .                                                                                                                            (3.14)   

 
 

Figure: 2. Expansion Scalar Vs Time 
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σ .                                                                                                                              (3.15) 

 

 
 

Figure: 3 Shear Scalar Vs Time. 

 

The deceleration parameter q is given by  

          
n

n
q

+

−
=

2

1
 ,   if 2−≠n .                                                                                                                                 (3.16) 

 

For model (3.11), we observed that the spatial volume increases with increase of time t when 0)2( >+n  and it 

becomes infinite for large value of t. The expansion scalar and shear scalar become infinite at 0=t but they vanish for  
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large t. Scalar field ϕ  diverges for 0=t and it becomes zero for large t. The deceleration parameter q is positive for 

12 −<<− n . In this case the model (3.11) represents decelerating universe. When 1>n , the deceleration parameter  

 

q is negative and thus the model (3.11) corresponds to inflationary accelerating model of the universe. Universe must 

undergo a phase of acceleration i.e. 0>a�� . Hence the scalar factor of the universe is accelerating. The model (3.11) 

starts with big-bang at 0=t . 

 

Model II:  For 1−=K , the metric (3.9) takes the form                             

                       ]sinh[
1

222

2

2
2222

ydzdy
n

t
dxtdtds

n +
−

−−=  .                                                               (3.17) 

This model is well-defined when 01 2 >− n . 

 

For model (3.17), the expansion scalarθ , shear scalar σ and the deceleration parameter q have the same expressions 

given by an equations (3.14), (3.15) and (3.16) respectively. The spatial volume and the average scale factor are given 

by 

                  Spatial Volume 
2

2
3

1 n

t
V

n

−
=

+

.                                                                                                                (3.18) 

 

 
 

Figure: 4 Volume Vs Time. 

 

The average scale factor
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.                                                                                                         (3.19) 

Where 0)2( >+n . The physical and kinematical behaviors of the model (3.17) are same as that of the model (3.11). 

 

For 0=K , the Einstein field equations are not solvable for any arbitrary cosmic scale function. Therefore we can not 

derive exact solutions of the field equations (2.5) to (2.8) by the method used in this paper. 

 

4. CONCLUSION: 

  

The models (3.11) and (3.17) represent an inflationary hypersurface-homogeneous cosmological models in general 

relativity when the scalar field is minimally coupled to the gravitational field in which the flat region of potential is 

constant which is generally associated with vacuum energy. These models have no singularity at 0=t . The 

characteristic feature of an inflationary era is that space-time expands exponentially. It is also observed that the 

negative value of the deceleration parameter is associated with the inflationary accelerating model of the universe. The 

study of inflationary hypersurface-homogeneous universal model will be astrophysical significance to new researchers 

in view of the scalar fields in general relativity.  
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