ON SOME NEW INEQUALITIES FOR s-CONVEX FUNCTIONS

M. A. Latif*

College of Science, Department of Mathematics, University of Hail, Hail 2440, Saudi Arabia E-mail: m_amer_latif@hotmail.com

(Received on: 23-12-11; Accepted on: 12-01-12)

ABSTRACT

In this paper some new Hadamard-type inequalities for s-convex functions are estalished by using fairly elementary analysis.

1. INTRODUCTION:

The following definition for convex functions is well known in the mathematical literature:

A function $f: I \to \mathbb{R}$, $\emptyset \neq I \subseteq \mathbb{R}$, is said to be convex on I if inequality

$$f(tx+(1-t)y) \le tf(x)+(1-t)f(y),$$

holds for all $x, y \in I$ and $t \in [0,1]$.

Many inequalities have been established for convex functions but the most famous is the Hermite-Hadamar's inequality, due to its rich geometrical significance and applications, which is stated as follows:

Let $f: I \subseteq \mathbb{R} \to \mathbb{R}$ be a convex mapping and $a, b \in I$ with a < b. Then

$$f\left(\frac{a+b}{2}\right) \le \frac{1}{b-a} \int_{a}^{b} f(x) dx \le \frac{f(a) + f(b)}{2}.$$
 (1)

Both the inequalities hold in reversed direction if f is concave. Since its discovery in 1883, Hermite-Hadamard's inequality [3] has been considered the most useful inequality in mathematical analysis. Some of the classical inequalities for mean can be derived from (1) for particular choices of the function f. A number of papers have been written on this inequality providing new proofs, noteworthy extensions, generalizations and numerous applications, see [1]-[9] and the references therein.

In the paper [4], Hudzik and Maligranda considered, among others, the class of functions which are s-convex in the second sense. This class is defined as follows:

A function $f:[0,\infty)\to\mathbb{R}$ is said to be s-convex in the second sense if

$$f(tx+(1-t)y) \le t^s f(x)+(1-t)^s f(y),$$

holds for all $x, y \in [0, \infty)$, $t \in [0,1]$ and $s \in (0,1]$.

The class of s-convex functions in the second sense is usually denoted by K_s^2 . It is easy to observe that for s=1, the class of s-convex functions in the second sense is merely the class of convex functions defined on $[0,\infty)$. It was also proved in [4] that the functions from K_s^2 , $s \in (0,1)$ are non-negative.

In [2], Dragomir and Fitzpatrick proved a vartiant of Hermite-Hadamard's inequality which holds for s-convex functions in the second sense:

Theorem: 1 [2] Suppose $f:[0,\infty) \to [0,\infty)$ is an s-convex function in the second sense, where $s \in (0,1)$, and let $a, b \in [0,\infty)$, a < b. If $f \in L^1([a,b])$, then the following inequalities hold:

$$2^{s-1} f\left(\frac{a+b}{2}\right) \le \frac{1}{b-a} \int_{a}^{b} f(x) dx \le \frac{f(a) + f(b)}{s+1}.$$
 (2)

The constant $k = \frac{1}{s+1}$ is the best possible in the second inequality in (2).

For the new inequalities for convex and s-convex functions in the second sense we refer the interested readers to [8] and [9], the recent work of M. Tunç. The main purpose of this paper is to establish new integral inequalities like those established in [8] but for the class of s-convex functions in the second sense by using the same techniques as used in [8] and we believe that inequalities proved in the present paper are of independent interest.

2. MAIN RESULTS:

We begin this section with the following result:

Theorem: 2 Let $f,g:[a,b] \to \mathbb{R}$, $a,b \in [0,\infty)$, a < b, be functions such that such that $f,g,fg \in L^1([a,b])$. If f is s_1 -convex function in the second sense and g is s_2 -convex function in the second sense for some fixed s_1 , $s_2 \in (0,1]$, then we have the following inequality:

$$\frac{g(a)}{(b-a)^{s_2+1}} \int_a^b (b-x)^{s_2} f(x) dx + \frac{f(a)}{(b-a)^{s_1+1}} \int_a^b (b-x)^{s_1} g(x) dx
+ \frac{g(b)}{(b-a)^{s_2+1}} \int_a^b (a-x)^{s_2} f(x) dx + \frac{f(b)}{(b-a)^{s_1+1}} \int_a^b (a-x)^{s_1} g(x) dx
\leq \frac{1}{b-a} \int_a^b f(x) g(x) dx + \frac{M(a,b)}{s_1 + s_2 + 1} + N(a,b) \frac{\Gamma(s_1 + 1) \Gamma(s_2 + 1)}{\Gamma(s_1 + s_2 + 2)}, \tag{3}$$

where M(a,b) = f(a)g(a) + f(b)g(b) and N(a,b) = f(a)g(b) + f(b)g(a).

Proof: Since f is s_1 -convex function in the second sense and g is s_2 -convex function in the second sense for some fixed s_1 , $s_2 \in (0,1]$, we have that

$$f(ta+(1-t)b) \le t^{s_1} f(a) + (1-t)^{s_1} f(b)$$

and

$$g(ta+(1-t)b) \le t^{s_2}g(a)+(1-t)^{s_2}g(b),$$

for $t \in [a,b]$.

By using the elementary inequality $e \le f$ and $p \le r$ then $er + fp \le ep + fr$ for $e, f, p, r \in \mathbb{R}$, we get from the above inequalities that

$$f(ta+(1-t)b)\left[t^{s_2}g(a)+(1-t)^{s_2}g(b)\right]+g(ta+(1-t)b)\left[t^{s_1}f(a)+(1-t)^{s_1}f(b)\right]$$

$$\leq f(ta+(1-t)b)g(ta+(1-t)b)+\left[t^{s_1}f(a)+(1-t)^{s_1}f(b)\right]\left[t^{s_2}g(a)+(1-t)^{s_2}g(b)\right]$$

which gives the following inequality:

$$t^{s_2}g(a)f(ta+(1-t)b)+(1-t)^{s_2}g(b)f(ta+(1-t)b) +t^{s_1}f(a)g(ta+(1-t)b)+(1-t)^{s_1}f(b)g(ta+(1-t)b) \leq f(ta+(1-t)b)g(ta+(1-t)b)+t^{s_1+s_2}f(a)g(a)+t^{s_1}(1-t)^{s_2}f(a)g(b)$$

$$+t^{s_2}(1-t)^{s_1}f(b)g(a)+(1-t)^{s_1+s_2}f(b)g(b).$$

Integrating the above inequality over [0,1], we get that

$$\begin{split} g(a) \int_{0}^{1} t^{s_{2}} f(ta + (1-t)b) dt + g(b) \int_{0}^{1} (1-t)^{s_{2}} f(ta + (1-t)b) dt \\ &+ f(a) \int_{0}^{1} t^{s_{1}} g(ta + (1-t)b) dt + f(b) \int_{0}^{1} (1-t)^{s_{1}} g(ta + (1-t)b) dt \\ &\leq \int_{0}^{1} f(ta + (1-t)b) g(ta + (1-t)b) dt + f(a) g(a) \int_{0}^{1} t^{s_{1}+s_{2}} dt \\ &+ f(a) g(b) \int_{0}^{1} t^{s_{1}} (1-t)^{s_{2}} dt + f(b) g(a) \int_{0}^{1} t^{s_{2}} (1-t)^{s_{1}} dt + f(b) g(b) \int_{0}^{1} (1-t)^{s_{1}+s_{2}} dt. \end{split}$$

By making use if the substitution ta + (1-t)b = x, (a-b)dt = dx, we observe that

$$\int_0^1 t^{s_2} f(ta + (1-t)b) dt = \frac{1}{(b-a)^{s_2+1}} \int_a^b (b-x)^{s_2} f(x) dx,$$

$$\int_0^1 t^{s_1} g(ta + (1-t)b) dt = \frac{1}{(b-a)^{s_1+1}} \int_a^b (b-x)^{s_1} g(x) dx,$$

$$\int_0^1 (1-t)^{s_2} f(ta+(1-t)b)dt = \frac{1}{(b-a)^{s_2+1}} \int_a^b (a-x)^{s_2} f(x)dx,$$

$$\int_0^1 (1-t)^{s_1} g(ta+(1-t)b)dt = \frac{1}{(b-a)^{s_1+1}} \int_a^b (a-x)^{s_1} g(x)dx$$

and

$$\int_0^1 f(ta + (1-t)b)g(ta + (1-t)b)dt = \frac{1}{b-a} \int_a^b f(x)g(x)dx.$$

By using Beta function of Euler type

$$\beta(u,v) = \int_0^1 t^{u-1} (1-t)^{1-v} dt = \frac{\Gamma(u)\Gamma(v)}{\Gamma(u+v)}, u,v > 0,$$

we obtain that

$$\int_0^1 t^{s_2} (1-t)^{s_1} dt = \frac{\Gamma(s_2+1)\Gamma(s_1+1)}{\Gamma(s_1+s_2+2)},$$

$$\int_0^1 t^{s_1} (1-t)^{s_2} dt = \frac{\Gamma(s_1+1)\Gamma(s_2+1)}{\Gamma(s_1+s_2+2)}.$$

Also it can easily be seen that

$$\int_0^1 (1-t)^{s_1+s_2} dt = \int_0^1 t^{s_1+s_2} dt = \frac{1}{s_1+s_2+1}.$$

By taking the above obervations into account we get the desired inequality. This completes the proof of the theorem.

Theorem: 3 Let $f, g: [a,b] \to \mathbb{R}$, $a, b \in [0,\infty)$, a < b, be functions such that such that $f, g, fg \in L^1([a,b])$. If f is s_1 -convex function in the second sense and g is s_2 -convex function in the second sense for some fixed s_1 , $s_2 \in (0,1]$, then we have the following inequality:

M. A. Latif*/ On some new inequalities for S -convex functions / IJMA- 3(1), Jan.-2012, Page: 38-44

$$\frac{2^{s_1-1}f\left(\frac{a+b}{2}\right)}{b-a} \int_{a}^{b} g(x)dx + \frac{2^{s_2-1}g\left(\frac{a+b}{2}\right)}{b-a} \int_{a}^{b} f(x)dx \\
\leq \frac{1}{2(b-a)} \int_{a}^{b} f(x)g(x)dx + \frac{\Gamma(s_2+1)\Gamma(s_1+1)}{2\Gamma(s_1+s_2+2)} \cdot M(a,b) \\
+ \frac{1}{2(s_1+s_2+1)} \cdot N(a,b) + 2^{s_1+s_2-2} f\left(\frac{a+b}{2}\right) g\left(\frac{a+b}{2}\right). \tag{4}$$

where M(a,b) = f(a)g(a) + f(b)g(b) and N(a,b) = f(a)g(b) + f(b)g(a).

Proof: Since f is s_1 -convex function in the second sense and g is s_2 -convex function in the second sense for some fixed s_1 , $s_2 \in (0,1]$, we have that

$$f\left(\frac{a+b}{2}\right) = f\left(\frac{ta + (1-t)b}{2} + \frac{(1-t)a + tb}{2}\right)$$

$$\leq \frac{f\left(ta + (1-t)b\right)}{2^{s_1}} + \frac{f\left((1-t)a + tb\right)}{2^{s_1}}$$

and

$$g\left(\frac{a+b}{2}\right) = g\left(\frac{ta + (1-t)b}{2} + \frac{(1-t)a + tb}{2}\right)$$

$$\leq \frac{g\left(ta + (1-t)b\right)}{2^{s_2}} + \frac{g\left((1-t)a + tb\right)}{2^{s_2}}.$$

Arguing similarly as in Theorem 2, we get that

$$f\left(\frac{a+b}{2}\right)\left[\frac{g(ta+(1-t)b)}{2^{s_2}} + \frac{g((1-t)a+tb)}{2^{s_2}}\right] + g\left(\frac{a+b}{2}\right)\left[\frac{f(ta+(1-t)b)}{2^{s_1}} + \frac{f((1-t)a+tb)}{2^{s_1}}\right] \\ \leq \left[\frac{f(ta+(1-t)b)}{2^{s_1}} + \frac{f((1-t)a+tb)}{2^{s_1}}\right]\left[\frac{g(ta+(1-t)b)}{2^{s_2}} + \frac{g((1-t)a+tb)}{2^{s_2}}\right] + f\left(\frac{a+b}{2}\right)g\left(\frac{a+b}{2}\right)$$

which gives

$$\frac{1}{2^{s_2}} f\left(\frac{a+b}{2}\right) \left[g\left(ta+(1-t)b\right)+g\left((1-t)a+tb\right)\right] \\
+ \frac{1}{2^{s_1}} g\left(\frac{a+b}{2}\right) \left[f\left(ta+(1-t)b\right)+f\left((1-t)a+tb\right)\right] \\
\leq \frac{1}{2^{s_1+s_2}} \left[f\left(ta+(1-t)b\right)g\left(ta+(1-t)b\right)+f\left((1-t)a+tb\right)g\left((1-t)a+tb\right)\right] \\
+ \frac{1}{2^{s_1+s_2}} \left[t^{s_2}(1-t)^{s_1}+t^{s_1}(1-t)^{s_2}\right] f(a)g(a)+f(b)g(b) \\
+ \frac{1}{2^{s_1+s_2}} \left[(1-t)^{s_1+s_2}+t^{s_1+s_2}\right] f(a)g(b)+f(b)g(a)\right]$$

Integrating both sides over [0,1], we obtain

$$\frac{1}{2^{s_2}} f\left(\frac{a+b}{2}\right) \int_0^1 \left[g\left(ta + (1-t)b\right) + g\left((1-t)a + tb\right)\right] dt$$

M. A. Latif*/On some new inequalities for S-convex functions / IJMA-3(1), Jan.-2012, Page: 38-44

$$+\frac{1}{2^{s_{1}}}g\left(\frac{a+b}{2}\right)\int_{0}^{1}\left[f\left(ta+(1-t)b\right)+f\left((1-t)a+tb\right)\right]dt \\
\leq \frac{1}{2^{s_{1}+s_{2}}}\int_{0}^{1}\left[f\left(ta+(1-t)b\right)g\left(ta+(1-t)b\right)+f\left((1-t)a+tb\right)g\left((1-t)a+tb\right)\right]dt \\
+\frac{1}{2^{s_{1}+s_{2}}}\int_{0}^{1}\left[t^{s_{2}}\left(1-t\right)^{s_{1}}+t^{s_{1}}\left(1-t\right)^{s_{2}}\right]f\left(a\right)g\left(a\right)+f\left(b\right)g\left(b\right)\right]dt \\
+\frac{1}{2^{s_{1}+s_{2}}}\int_{0}^{1}\left[\left(1-t\right)^{s_{1}+s_{2}}+t^{s_{1}+s_{2}}\right]f\left(a\right)g\left(b\right)+f\left(b\right)g\left(a\right)dt \\
+f\left(\frac{a+b}{2}\right)g\left(\frac{a+b}{2}\right)\int_{0}^{1}dt \tag{5}$$

By making use of the substitution x = at + (1-t)b, dx = (a-b)dt and y = (1-t)a + tb, dy = (b-a)dt, we observe that

$$\int_0^1 f(ta + (1-t)b)dt = \int_0^1 f((1-t)a + tb)dt = \frac{1}{b-a} \int_a^b f(x)dx,$$

$$\int_0^1 g(ta + (1-t)b)dt = \int_0^1 g((1-t)a + tb)dt = \frac{1}{b-a} \int_a^b g(x)dx$$

and

$$\int_{0}^{1} f(ta + (1-t)b)g(ta + (1-t)b)dt = \int_{0}^{1} f((1-t)a + tb)g((1-t)a + tb)dt$$
$$= \frac{1}{b-a} \int_{a}^{b} f(x)g(x)dx.$$

We also notice that

$$\int_0^1 t^{s_2} (1-t)^{s_1} dt = \int_0^1 t^{s_1} (1-t)^{s_2} dt = \frac{\Gamma(s_2+1)\Gamma(s_1+1)}{\Gamma(s_1+s_2+2)}$$

and

$$\int_0^1 (1-t)^{s_1+s_2} dt = \int_0^1 t^{s_1+s_2} dt = \frac{1}{s_1+s_2+1}.$$

Thus (5) reduces to

$$\frac{1}{2^{s_{2}-1}} \cdot \frac{f\left(\frac{a+b}{2}\right)}{b-a} 1 \int_{a}^{b} g(x) dx + \frac{1}{2^{s_{1}-1}} \cdot \frac{g\left(\frac{a+b}{2}\right)}{b-a} \int_{a}^{b} f(x) dx \\
\leq \frac{1}{2^{s_{1}+s_{2}-1}} \cdot \frac{1}{b-a} \int_{a}^{b} f(x) g(x) dx + \frac{1}{2^{s_{1}+s_{2}-1}} \cdot \frac{\Gamma(s_{2}+1)\Gamma(s_{1}+1)}{\Gamma(s_{1}+s_{2}+2)} \cdot M(a,b) \\
+ \frac{1}{2^{s_{1}+s_{2}-1}} \cdot \frac{N(a,b)}{s_{1}+s_{2}+1} + f\left(\frac{a+b}{2}\right) g\left(\frac{a+b}{2}\right). \tag{6}$$

Multiplying both sides of (6) by $2^{s_1+s_2-2}$, we get the desired inequality.

Remark: 1 If we choose $s_1 = s_2 = 1$ in [3] and [4] we get those inequalities proved in [8].

3. APPLICATIONS TO SOME SPECIAL MEANS:

In this section we consider the applications of our result to the following special means:

1. The power mean:
$$M_p = M_p(x_1, ..., x_n) := \left(\frac{1}{n} \sum_{i=1}^n x_i^p\right)^{\frac{1}{p}}, a, b \ge 0,$$

M. A. Latif*/ On some new inequalities for S -convex functions / IJMA- 3(1), Jan.-2012, Page: 38-44

- 2. The arithmetic mean: $A = A(a,b) := \frac{a+b}{2}, a,b \ge 0$,
- 3. The geometric mean $G = G(a,b) := \sqrt{ab}, a,b \ge 0$,
- 4. The Harmonic mean: $H = H(a,b) := \frac{2ab}{a+b}, a,b \ge 0$,
- 5. The quadratic mean: $K = K(a,b) := \sqrt{\frac{a^2 + b^2}{2}}, a,b \ge 0$,
- 6. The logarithmic mean: $L = L(a,b) := \begin{cases} a, & \text{if } a = b \\ \frac{b-a}{\ln b \ln a}, & \text{if } a \neq b, a, b > 0, \end{cases}$
- 7. The identric mean: $I = I(a,b) := \begin{cases} a, & \text{if } a = b \\ \frac{1}{e} \left(\frac{b^b}{a^a} \right)^{\frac{1}{b-a}}, & \text{if } a \neq b, a, b \geq 0, \end{cases}$
- 8. The p -logarithmic mean: $L_p = L_p(a,b) := \begin{cases} a, & \text{if } a = b \\ \left(\frac{b^{p+1} a^{p+1}}{(p+1)(b-a)}\right)^{\frac{1}{p}} & \text{if } a \neq b \end{cases}, \ p \in \mathbb{R} \setminus \{-1,0\}, a,b > 0.$

The following inequality is well know in literature

$$H \le G \le L \le I \le A \le K$$
.

It is also know that L_p is monotonically increasing over $p\in\mathbb{R}$, denoting $L_0=I$ and $L_{-1}=L$.

Now we quote a very important example from [4]:

Let $s \in (0,1)$, a, b, $c \in \mathbb{R}$. We define the function $f:[0,\infty) \to \mathbb{R}$ as

$$f(x) = \begin{cases} a, & \text{if } t = 0, \\ bt^s + c, & \text{if } t > 0. \end{cases}$$

If $b \ge 0$, $0 \le c \le a$ then $f \in K_s^2$. Therefore, for a = c = 0, b = 1, $s = \frac{1}{2}$, we have $f : [0,1] \to [0,1]$, $f(t) = t^{\frac{1}{2}}$, $f \in K_s^2$.

Proposition: 1 Let 0 < a < b and 0 < s < 1. Then we have

$$\frac{A(a^{s},b^{s})A^{s}(a,b)}{2^{s}} \le L_{2s}(a,b) + \frac{2}{2s+1}A(a^{2s},b^{2s}) + 2G^{2s}(a,b) \cdot \frac{\left(\Gamma(s+1)\right)^{2}}{\Gamma(2(s+1))}$$
(7)

Proof: The inequality follows when we take the *s*-convex functions $f,g:[0,1] \to [0,1], \ f(x)=x^s, \ g(x)=x^s, \ x \in [0,1],$ applied to (3) with $x=\frac{a+b}{2}$. The details are let to the interested readers.

Proposition: 2 Let 0 < a < b and 0 < s < 1. Then we have

M. A. Latif*/On some new inequalities for S-convex functions / IJMA-3(1), Jan.-2012, Page: 38-44

$$2^{s} A^{s}(a,b) L_{s}(a,b) \leq \frac{1}{2} L_{2s}(a,b) + \frac{\left(\Gamma(s+1)\right)^{2}}{\Gamma(2(s+1))} \cdot A(a^{2s},b^{2s}) + \frac{1}{2s+1} G^{2s}(a,b) + 2^{2s-2} A^{2s}(a,b)$$
(8)

Proof: The inequality follows when we take the *s*-convex functions $f, g : [0,1] \to [0,1]$, $f(x) = x^s$, $g(x) = x^s$, $x \in [0,1]$, applied to (4), however the details are left to the interested readers.

REFERENCES:

- [1] Dragomir, S. S. and Pearce, C. E. M., Selected Topic on Hermite- Hadamard Inequalities and Applications, Melbourne and Adelaide, December, 2000.
- [2] Dragomir, S. S. and Fitzpatrick, S., The Hadamard,s inequality for s-convex functions in the second sense, Demonstratio Math. 32 (4) (1999), 687-696.
- [3] Hadamard, J., Étude sur les propriétés des fonctions entières et en particulier d'une fonction considerée par Riemann, J. Math Pures Appl., 58 (1893), 171--215.
- [4] Hudzik, H. and Maligranda, L., Some remarks on s-convex functions, Aequationes Math. 48 (1994) 100--111.
- [5] Pachpatte, B. G., On some inequalities for convex functions, RGMIA Research Report Collection, 6(E) (2003).
- [6] Pecari c', J. E. Proschan, F. and Tong, Y. L., Convex Functions, Partial Orderings, and Statistical Applications, Academic Press Inc., 1992.
- [7] Mitrinovi c', D. S., Analytic Inequalities, Springer Verlag, Berlin/New York, 1970.
- [8] Tunç, M., On some new inequalities for convex functions, Turk J Math 35 (2011), 1 --
- [9] Tunç, M., New integral inequalities for *s* -convex functions, RGMIA Research Report Collection Volume 13, Issue 2, 2010 Preprint Available Onlne: http://ajmaa.org/RGMIA/v13n2.php.
