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ABSTRACT 

The notion of dislocated metric is one of the various generalizations of metric that retains a variant of the illustrious 

Banach’s Contraction principle and has useful applications in the semantic analysis of logic programming. The 

purpose of this note is to study topological  aspects of a dislocated metric space and prove a dislocated metric version 

of Seghal’s fixed point theorem which ultimately implies existence(and uniqueness in some cases) of a fixed point for 

self maps that satisfy conditions analogous to those of Banach, Kannan, Bianchini, Reitch and Rakotch [4]. 
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INTRODUCTION:  

 

Pascal Hitzler [1] presented variants of Banach’s Contraction principle for various modified forms of a metric space 

including dislocated metric space and applied them to semantic analysis of logic programs. In this context Hitzler 

raised some related questions on the topological aspects of dislocated metrics.         

 

In this paper we present results that establish existence of a topology induced by a dislocated metric and show that this 

topology is amortizable, by actually showing a metric that induces the topology. 

 

Rhoades [4] collected a large number of variants of Banach’s Contractive conditions on self maps on a metric space 

and proved various implications or otherwise among them. We pick up a good number of these conditions which 

ultimately imply Seghal’s condition [4]. We prove that these implications hold good for self maps on a dislocated 

metric space and prove the dislocated metric version of Seghal’s result there by deriving the dislocated analogue’s of  

fixed point theorems of  Banach, Kannan, Bianchini, Reich and others[4]. 

 

1. THE d -TOPOLOGY: 

 

Definition 1.1: Let X  be a set and d : X  × X   R  be a mapping satisfying the following conditions for x , y , z   

in X .      

 

(i) d ( x  , y ) � o   

(ii) d  ( x , y ) = d  ( y  , x ) 

(iii) d  ( x , y ) = 0 implies x = y  and 

(iv) d  ( x , y ) � d  ( x  , z ) + d  ( z  , y )  

 

Then d  is called dislocated (simply d -) metric on X  and the pair ( X , d ) is called a dislocated ( d  -) metric space. 

In what follows ( X , d ) stands for a d  metric space. 

 

If x ∈ X   and  ∈>0  the set, 

 

B ∈ ( x ) = { y / y ∈ X  and d ( x , y ) <∈} is called the open ball with centre at  x  and radius∈ . 
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Definition 1.2: We say that a net ( x α  / �∈ ∆ ) in X  converges to x  in ( X , d ) and write 
α

lim ( x α  / �∈ ∆ ) = x    

if  
α

lim d ( x α , x ) = 0. 

 

Remark: The limit of a net in ( X , d ) is unique. 

 

Notation: For  A ⊂ X   we write D ( A ) = { x ∈ X  / x  is a limit of a net in ( X , d )} 

 

Proposition 1.3: Let  A ⊆ X   and  B ⊆ X  .Then 

(i) D  ( A ) = φ  if A  = φ  

(ii) D  ( A ) ⊆  D  ( B )  if  A  ⊆  B  

(iii) D  ( A  ∪  B ) = D  ( A ) ∪  D  ( B )   and 

(iv) D  ( D  ( A ) ) ⊆  D  ( A ) 

 

Proof: (i) and (ii) are clear. That D ( A ) ∪ D ( B ) ⊆ D ( A ∪ B )  follows from (ii). To prove the reverse 

inclusion, Let  x ∈ D  ( A  ∪  B ) and x = 
∆∈α

lim ( x α ) where ( x α / �∈ ∆ ) is a net in A  ∪  B . If ∃   λ ∈ ∆  

such that  x α ∈  A   for  �∈ ∆    and  � �λ  then  ( x α / � �λ  , �∈ ∆ ) is a cofinal subnet of  ( x α /  �∈ ∆ ) and 

is in A   and 
λα ≥

lim d ( x , x α ) =
∆∈α

lim d ( x , x α ) =0  so that x ∈  D  ( A ). If no such λ exists in ∆ then for every 

�∈ ∆ , choose  �(�) ∈ ∆  such that �(�)��  and   x ( )αβ ∈ B .Then  ( x ( )αβ / �∈ ∆ )  is a cofinal subnet in B  of 

( x α /  �∈ ∆ )  and 
∆∈α

lim d ( x ( )αβ , x ) =
∆∈α

lim d ( x α , x ) =0  so that x ∈ D  ( B ).It now follows that  D  

( A ∪ B )  ⊆   D  ( A ) ∪  D  ( B ) and hence (iii) holds. To prove (iv)  let x ∈  D ( D ( A )), x =
∆∈α

lim  x α ,  

x α ∈  D  ( A ) for �∈ ∆ , and ∀  �∈ ∆ ,  let ( x
βα /�∈  ∆ (�)) be a net in A  ∋  x α =

( )αβ ∆∈
lim x

βα .For  each 

positive integer i ∃  � i ∈ ∆  such that d ( x
iα , x )< 

i

1
,and � i ∈ ∆ ( � i ) ∋ d ( x

i
iβα , x

iα )< 
i

1
.   Write �

i
iβ

= iγ  ∀  

i , then { ,....2,1 γγ }  is directed set  with  iγ  < jγ  if   i < j,   and d ( x
iγ , x ) � d ( x

iγ , x
iα ) + d  ( x

iα , x )  <  
i

2
 . 

This implies that  x ∈  D  ( A ).  

 

As a corollary, we have the following 

 

Corollary 1.4: If for A ⊂ X  and A = A ∪ D ( A ), then the operation A → A on P( X ) satisfies   Kuratowski’s 

closure axioms [2  ]: 

(i) φ  =φ  

(ii) A ⊂ A  

(iii) A = A  and  

(iv) BA ∪  = A  ∪ B .  

 

Consequently we have the following 

 

Theorem 1.5:  Let ℑ  be the family of all subsets A  of X  for which A = A   and τ  be the complements of members 

of ℑ . Then the ℑ  is a topology for X  and the ℑ -closure of a subset A  of X  is A . 

 

Definition 1.6: The topology ℑ  obtained in Theorem 1.5 is called the topology induced by d   and simply referred to 

as the d -topology of  X   and is denoted by ( X , d , ℑ ). 

 

Proposition 1.7:  Let A ⊆ X . Then x ∈ D  ( A )  iff  for every δ >0 ,  B δ ( x ) ∩ A ≠ φ  
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Proof: If x ∈ D  ( A ),there exist a net   ( x α /  �∈ ∆ )  in A  such that lim x α = x , if δ >0 ∃ δα ∈ ∆  such that 

d  ( x α , x )< δ .If �∈ ∆  and  �≥ δα .Hence x α ∈ B δ ( x ) ∩ A  for �≥ δα . 

Conversely if for every δ >0, B δ ( x ) ∩ A ≠ φ . We choose one nx in 

n

B1 ( x ) ∩ A  for every integer 

1≥n .Clearly ( nx )is a net in A  and d  ( nx , x )<
n

1
,  so that  

n
lim nx = x . Hence  x ∈ A . 

Corollary 1.8: x ∈ A ⇔  x ∈ A   or  B δ ( x ) ∩ A ≠ φ   δ∀ >0. 

 

Corollary 1.9: A  is open in ( X , d , ℑ ) if and only if for every x ∈ A , ∃  δ >0  such that   

{ x } ∪ B δ ( x ) ⊆  A . 

Proposition 1.10: If x ∈ X  and δ >0  then { x } ∪  B δ ( x )  is an open set in( X , d , ℑ ). 

 

Proof: Let A = { x } ∪  B δ ( x )  , y ∈  B δ ( x )  and 0< r <δ - d  ( x , y ) 

Then B r ( y ) ⊆  B δ ( x )  ⊂ A  so that B r ( y ) ∩ ( X - A  ) = φ  

 

Hence ( X - A  ) is closed in ( X , d , ℑ ). 

 

Corollary 1.11: If x ∈ X  and rV ( x )= B r ( x ) ∪ { x }  for  r  >0 then the collection { rV  ( x ) / x ∈ X }  is an 

open base at x  in ( X , d , ℑ ).If  d  is a metric and V = B r ( x ) , ℑ  coincides with the metric topology.  

 

Proposition 1.12: ( X , d , ℑ ) is a  Hausdorff  space. 

 

Proof: If x , y ∈ X  ,  and  d  ( x , y )>0  then  V
2

δ ( x ) ∩  V
2

δ ( y )  = φ . 

Corollory 1.13: If x ∈ X , the collection  { rV ( x ) / x ∈ X } is an open base at x  for ( X , d , ℑ ).Hence ( X , 

d , ℑ ) is first countable. 

 

Remark: Corollory 1.13 enables us to deal with sequence instead of nets. 

 

Proposition 1.14: Define ρ  on X  x X  by ρ ( x , y ) =

�
�
�

=

≠

yxif

yxifyxd

0

),(
  .Here ρ is a metric on X  . 

For x ∈ X  and  ∈>0 , V ∈ ( x ) ={ y ∈ X / ρ ( x  , y ) < ∈}. 

Moreover a sequence ( x n ) in X  converges to x  in ( X , ρ )  if and only if 

(i) x n = x  except for finitely many  n   or 

(ii) lim d  ( x
kn , x ) =0 for every subsequence( x

kn ) of ( x n ) with  x
kn ≠ x . 

 

2. CONTINUITY: 

 

Definition 2.1: Let ( X , d ) and ( y , d ′ ) be d  metric spaces. f : X → y  is said to be d  continuous at x ∈ X  if 

for every  ∈>0 ∃  δ >0  such that   f ( B δ ( x )  ) ⊆ B ∈ ( f  ( x ) ). f  is  d  continuous  if  f  is d continuous at 

every x  in X  . 

 

Theorem  2.2: f : ( X , d ) → ( y , d ′ ) is d continuous at x  if and only if  f : ( X , d  , ℑ ) → ( y , d ′ , ℑ′ ) is 

continuous at x  where ℑ and ℑ′ are the corresponding induced topologies. 

 

Proof: Assume that f  is d continuous at x . Let V be a neighbourhood of f ( x ) in ( y , d ′ , ℑ′ ).Then 

∃  ∈>0 ∋   B ∈ ( f  ( x ) ) ⊆  V . By hypothesis, ∃   δ >0  ∋  f  ( B δ ( x )  ) ⊆ B ∈ ( f  ( x ) ) 

�  f ({ x } ∪ B δ ( x )) ⊆ B ∈ ({ f ( x )} ∪ f ( x )) ⊆ V  
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Since { x } ∪ B δ ( x ) is open in ( X , d , ℑ ) into ( y , d ′ ℑ′ ). It follows that f from ( X , d , ℑ )  into ( y , d ′ ℑ′ ) is 

continuous at x . And ∈>0,  

B ∈ ( f ( x ) ∪  f  ( x )) ∈ ℑ′ . So ∃  δ >0  ∋  f ({ x } ∪  B δ ( x  )}  ⊆  B ∈ ( f ( x ) ∪ f  ( x )) 

 

Hence   f  ( B δ ( x )) ⊆  B ∈ ( f  ( x )) 

�  f : X → y  is d continuous. 

 

Corollary 2.3:  If ( X , d ) , ( y , d ′ ) are  d metric spaces and ρ , ρ ′ are the induced metrics corresponding to d  and 

d ′ respectively  then, f : ( X , d ) → ( y , d ′ ) is d continuous at x   if and only if  f : ( X , ρ ) → ( Y, ρ ′ ) is 

continuous. 

 

Let ( X , d ) be a d metric space and f : X  →  X   be a mapping. Write V ( x ) = d  ( x  , f  ( x ) ) and Z( f )={ 

x /V  ( x )=0}.Clearly every point of Z( f ) is a fixed point of f but the converse is not necessarily true. We call 

points of Z ( f ) as coincidence points of  f  .The set Z ( f ) is a closed subset of X . Mathew’s theorem [3] states 

that a contraction on a complete d metric space has a unique fixed point. The same theorem has been justified by an 

alternate proof by Pascal Hitzler [1].We present an extension of this theorem for coincidence points.  

 

3.  MAIN RESULTS: 

 

Theorem 2.4: Let ( X , d ) be a complete d  metric space and :f  X → X  be a contraction. Then there is a unique 

coincidence point for f . 

 

Proof: For any x ∈ X  the sequence of iterates satisfies 

 

d ( )xf
n(  , ( ))1

xf
n+ ( )( )xfxd

n ,α≤  where α is any contractive constant. Consequently if n  < m  

d  ( ( )xf
n

 , ( )xf
m

) ≤  ( ) ( )( )xfxd
mnn ,..... 11 −+ +++ ααα                                                                                                                              

                                       = 
( )

α
α

α
−

− −

1

1 nm
n

d ( ))(, xfx  

Hence { ( )xf
n

} is Cauchy sequence in X . 

 

If   ξ = ( )xf
n

n
lim  then  )(ξf = ( )xf

n

n

1lim +
  

so d (ξ , f (ξ ) ) = ( ) ( )),(lim 1
xfxfd

nn

n

+
.   Since ( ) ( )),( 1

xfxfd
nn +

< 
nα  d ( ))(, xfx  

 

Since 0< 1<α ;    lim
nα  d ( ))(, xfx = 0    Hence   d  (ξ  , f  (ξ ) )=0 

 

Uniqueness : If d  (ξ  , f  (ξ ) )= d  (η , f  (η ))=0, then f  (ξ ) =ξ  and f(η )=η  so that  

 

d  (ξ  , η ) ≤  d  (ξ  , f  (ξ )) + d  ( f  (ξ ) , f  (η )) + d  ( f  (η ) , η ) 

                   ≤ α  d (ξ  , η )  

so that d (ξ  , η )=0. Hence ξ =η . 

 

Theorem 2.5:  Let ( X , d ) be a d  metric space and  f : X → X   be  continuous .Assume that  d  ( f  ( x ) , f  

( y )) < max { d  ( x  , f ( x )) , d ( y , f ( y )), d ( x , y )} whenever d  ( x  , y ) ≠ 0.Then f has a unique 

coincidence point whenever )(xclO is nonempty for some x ∈ X  . 

 

Proof: Write V( x )= d  ( x  , f  ( x ))  ,  Z={ x / V( x )=0}  ;  )(xO = { )(xnf / 0≥n } 

Since f  is continuous, V is continuous.  
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If x ∉Z then V( f ( x ))= d ( f ( x ) , ))(2
xf  < max { d ( x , f ( x )) , d ( f ( x ) , ))(2

xf , d ( x , f ( x ))} 

                                                                             = max {V ( x ) , V ( f ( x )) } 

 

�  V ( f ( x )) < V ( x )   whenever V ( x )  0≠    i.e.  x ∉Z                                                                                       (1) 

 

If )(xO ∩ Z=φ  then  V (
1+k

f ( x )) <  V (
k

f ( x ))    k∀  

 

Hence V ( ( )xf
n

) is convergent.                                                                                                                                     (2) 

let ξ be a cluster point of )(xO , ∃ ( in ) ↑   ∋   ξ  =lim i
n

f ( x )  

 

� ( )ξk
f  =lim ( )xf

kni +  

� O  (ξ ) ≤  )(xclO .  

 

Since V is continuous V ( ( )ξk
f ) = lim V ( ( )xf

kni + ) 

 

Since O  ( x ) ∩ Z  = φ  by  (2) { V ( ( )xf
n

) } is convergent.       

Let γ  = lim V( i
n

f ( x ) )  =  V  ( lim i
n

f ( x ) )  = V (ξ ) . 

 

Also γ = lim V ( ( )xf in 1+
) = V ( f  (ξ ))   ; k∀  

�V ( f  (ξ )) = V (ξ )                                                                                                                                                   (4) 

 

From (1) and (3) it follows that V (ξ ) =0 

 

If    V (ξ ) =V (η ) = 0 then 

ξ = f  (ξ ),    η  = f  (η )     if d  (ξ  ,η ) 0≠  

d  (ξ  , η ) = d  ( f  (ξ ) , f  (η )) < max {V(ξ ) ,  V(η ) , d  (ξ  , η )}= d  (ξ  , η ) 

 

which is a contradiction. 

 

Hence d  (ξ  , η ) = 0. 

 

B.E Rhodes [4] presented a list of definitions of contractive type conditions for a self map on a metric space ( X , d ) 

and established implications and non implications among them ,there by facilitating to check the implication of any 

new contractive condition any one of the condition mentioned in [4] so as to derive a fixed point theorem. Among the 

conditions in [4], Seghal’s condition is significant as a good number of Contractive conditions imply Seghal’s 

condition. We now present the dislocated versions of these conditions. 

 

Let ( X , d ) be a dislocated metric space and f : X → X  be a mapping and x , y  be any elements of X . Consider 

the following conditions 

 

1. (Banach): there exists a number α  , 0 1≤≤ α  such that for each x , y ∈  X 

d ( f ( x ) , f ( y )) ≤  α d ( x , y ) . 

2. (Rakotch): there exists a monotone decreasing function  )1,0[),0(: →∞α such that 

d ( f ( x ) , f ( y )) ≤  α d ( x , y )   whenever  d ( x , y ) .0≠  

3. (Edelstein): d ( f ( x ) , f ( y )) < d ( x  , y )   whenever  d ( x , y ) 0≠  

4. (Kannan): there exists a numberα , 0
2

1
<< α such that  

d ( f ( x ) , f ( y )) < α [ d ( x , f ( x )) + d ( y , f ( y ))  ] 

5. (Bianchini): there exists a number h  ,0 1<≤ h such that  
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d ( f ( x ), f ( y )) ≤ h  max { d ( x , f ( x )) , d ( y , f ( y )) } 

 

6. d ( f ( x ), f ( y )) < max { d ( x , f ( x )), d ( y , f ( y ))} whenever d ( x , y ) 0≠  

7. (Reich): there exist nonnegative numbers a, b, c satisfying a + b + c < 1 such that 

d ( f ( x ), f ( y ) ) ≤ a d ( x , f ( x ))+b d ( y , f ( y )) + c d ( x , y ) 

8. (Reich): there exist monotonically decreasing functions a, b, c from (0, ∞ ) to [0, 1) satisfying  

a(t) + b(t) + c(t) < 1  such that,  

d ( f ( x ), f ( y )) ≤ a d ( x , y ) d ( x , f ( x ))+b d ( x , y ) d ( y , f ( y ))+c d ( x , y ) d ( x , y ) 

where d ( x ,
 
y ) 0≠  

9. There exist  nonnegative functions  a, b, c satisfying , {sup
, Xyx ∈

a( x , y )+b( x , y )+c( x , y ) }< 1 

 such  that d ( f ( x ), f ( y )) ≤  a(t) d ( x , f ( x )) + b(t) d ( y , f  ( y )) + c(t)t , where t=( x  ,
 
y ). 

10. (Sehgal): d ( f ( x ), f ( y )) < max{ d ( x , f ( x )), d ( y , f ( y )) , d ( x , y )}  if d  ( x  ,
 
y ) 0≠  

Theorem 2.6 If f  is a self map on a dislocated metric space ( X , d ) and  f  satisfies any of the conditions (1) through 

(9) then  f  has a unique fixed point provided cl O( x ) is nonempty for some x X∈ . 

 

Proof: In [4] B.E Rhodes proved that when d  is a metric  

(1) �  (2) �  (3) �  (10)  

(4) �  (5) �  (6) �  (10)  

(4) �  (7) �  (8) �  (10)  

(5) �  (7) �  (9) �  (10)  

 

With  d ( x , y ) 0≠  is replaced by x  y≠ .Consequently these implications hold good in a  d metric space as well  

since x y≠   �  d ( x , y ) 0≠    in a  d  metric space .It now follows from 2.5 that f  has a fixed point which is 

unique when O( x ) has a cluster point for some x . 

 

Example 2.7: Define d  ( x , y ) =| x |+| y | For x , y  in R . d  is a dislocated metric on R . 

If ∈>0, B 0 (∈ ) = (-∈  ,∈)  

If x ≠ 0 , ∈>0 ,B ∈ ( x ) =

�
�
�

∈<

∈>−∈∈−

||

||||,||

xif

xifxx

φ
  . Also 0 ≠ x  ∈  B ∈ ( x )  iff  | x  |<

2

∈
 

 

Result 2.6 Define f : R → R  by f  ( x ) = | x  |.Every non negative real number is a fixed point of f , but 0 is the 

only coincidence point. d ( f ( x ), x ) = | x |+| x |=0 ⇔ x =0 .Thus 0 is the only coincidence point while all non 

negative real numbers are fixed points. 
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