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ABSTRACT 

 

In this paper, a free surface flow of a liquid poured from a container is calculated analytically for various 

configurations of the lip. The flow is assumed to be steady, two dimensional, and irrotational. The liquid is treated as 

inviscid and incompressible. The effect of gravity is neglected. It is shown that there are jet like flows and other flows 

with one free surface which follow along the underside of the lip or spout. Some of the results are applicable also to 

flows over weirs and spillways. We use the method of Kirchhoff based on the hodograph method and Schwartz-

Christoffel transformation technique to solve the problem for various values � of the inclination angle between the 

horizontal bottom and the inclined wall. 
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1. INTRODUCTION: 

 

We consider a steady two dimensional potential channel flow against a wall of semi infinite length making an angle � 

with the horizontal. The flow domain is bounded below by an infinite rigid wall and above by a free surface. The fluid 

is assumed to be inviscid, incompressible and the flow is irrotationnal. The classical problem of a free streamline flow 

of an ideal fluid has been studied by many authors [4-12]. Toison et al. [10] used an iterative method and Vanden-

Broeck et al. [11-12] used a series truncation. Jets impinging on walls were studied by many authors. Peng and Parker 

[9] considered a fluid jet impinging on an uneven wall. In their work, they considered different smooth geometry of the 

wall. Dias, Elcart and Trefethen [3] considered a jet emerging from a polygonal nozzle. Despite that the problem could 

theoretically be solved by the hodograph and Schwartz-Christoffel transform if the gravity and the surface tension are 

neglected, but when the nozzle has many corners, the Schwartz-Christoffel transform is obsolete. To remedy this 

mathematical limitation, the authors described an efficient mathematical procedure for computing two dimensional 

ideal jets issuing from an arbitrary polygonal container. Vanden Broeck and Tuck [11] calculated flow near the 

intersection of a vertical wall with a free surface taking into account only the gravity.  In our case far upstream the flow 

is uniform with a constant velocity U and a constant depth H. The first step in this type of problem is characterized by 

the use of the method of Kirchhoff. The latter can treat the flows of border, which combines rectilinear wall and 

unknown free surface. 

 

2. FORMULATION OF PROBLEM: 

 

Let us consider the motion of a two-dimensional potential flow in a channel against a wall of semi infinite length. The 

inclined wall meets the horizontal bottom at the point O making an angle �. We assume that the fluid is inviscid, 

incompressible and the flow is irrotational and steady. Since the flow is considered to be potential the normal velocity 

vanishes on the rigid boundaries: the horizontal and the inclined walls. Far upstream, we assume that the flow is 

uniform so that the velocity approaches a constant U and the depth of  the fluid tends to a constant H. The flow is 

limited by the free streamline ABC, the horizontal wall AO and the inclined wall OC. In the absence of gravity, the 

main flow extends to infinity in the direction of the bottom wall far upstream and in the direction of the inclined wall 

OC far downstream (Fig.1). Our formulation is made for a flow over various inclinations of the wall. We choose the 

Cartesian coordinates such that the x-axis is along the bottom streamline and passes through the point O and y-axis is 

vertically upward through the point O.  
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Since the flow is irrotationnal and the fluid is incompressible, we define the complex variable z = x+ iy and the 

complex potential function f = �+ i�  where � and � are the potential and the stream functions respectively. Since � 

and � are conjugate solution of Laplace’s equation, f(z) is an analytic function of z within the flow region. The complex 

conjugate velocity is given by 

                                  
22 vuqandivu

dz

df
+=−==ξ                                              (1) 

 

Where u and v are the horizontal and vertical components of the fluid velocity, respectively, and may be expressed as   
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Figure 1. Sketch of the flow in the z-plan 

 

 

Without loss of generality, we choose �=0 on the streamline AOC and �=0 at the origin O(x,y)=(0, 0). The complex 

potential f maps the flow domain conformally onto the infinite strip of width UH as shown in figure 2. 

 

On the free streamline (free surface) ABC, the Bernoulli equation is to be satisfied, that is  

 

                         Cteq =2

2

1
      On      +∞∞−= �� φψ ,UH                                  (3) 

 

 
Figure 2. The flow configuration in the complex potential plan. 

                 

The physical flow problem as formulated above can be formulated as a boundary value problem in the potential 

function �
  
which checks the following conditions: 

 

(a) 0=∆φ  In the flow domain  

(b)  Cte
P

yx
=+

�
�

�

�

�
�

�

�

��
�

�
��
�

�

∂

∂
+�

�

�
�
�

�

∂

∂

ρ

φφ
22

2

1
   On the free surface. 
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∂
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φ
  On   AO. 

(d)  � (0, 0) = 0. 
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3. METHODOLOGY: 

 

To solve our problem, we initially use the method of the free surface streamline theory introduced by Kirchhoff [1-2], 

based on the hodograph transformation to find the form of the free surface. The complex transformation is defined by: 
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Where z= x+ iy, q and θ  are the module speed and the angle between the velocity vector and the x-axis, respectively. 

By this last transformation, the field occupied by the fluid in the z-plan is transformed into an infinite band in the �-

plan   (see Fig.3). 

 
 

Figure 3. The flow domain in the �-plan 

 

• The conform transformation of a  semi-infinite band in the plan to the lower half-plan of another complex �-

plan, is given by the theorem of Schwartz-Christoffel, by respecting the direction and the orientation of the 

flow (see Fig.4). 

 
Figure 4. The flow domain in the �-plan 

 

This transformation is given by: 
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After integration we obtain    

21 )12(arg2 kchk ++−=Ω λ  

 

We have � = 0 on A, from or � = 0 and � = 1 on C, with � = -i� 

        

Finally we obtain  
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•  The transformation which transforms the interior of the infinite band of the f-plan towards the lower half-plan of 

the �-plan is: 

                                                  
11)1( −−−= λλ

λ
k

d

df
 

 

After calculations, we find a relation between �  and  f: 
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By integrating (8) 
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Where  0z  is a constant, we have z0 = (x0, y0) = (x(�), y(�)) = ( x0, 0) at B. 

 

We give the shape of the free surface in the different following cases:  

 

Case 1:  � =�/4,   the relation (9) becomes 
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Case 2:  �= 3�/4, we obtain     
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Case 3:  �= -�/4, then     
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Case 4:  � =5�/4, we have     
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By integrating these equations, we obtain the form of the free surface for the different considered values of �. Figures 

5-8 show the profiles of the free surface for the considered cases. 

β

 
Figure 5. The form of the free surface with �= �/4 
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Figure 6.  The form of the free surface with �=3 �/4 

 

β−π

 
Figure 7.  The form of the free surface with �=� + �/4 

 

π−β

 
 

Figure 8.   The form of the free surface with � =- �/4 
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