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ABSTRACT 

In this paper we introduce the concept of non-Archimedean G-fuzzy metric space and obtain some results for two semi-

compatible mappings in this newly defined space. Our results improve and generalize the results of Mustafa et. al. [13] 

and Abbas & Rhoades [1] in non-Archimedean G-fuzzy metric space. Moreover, we prove that these mappings satisfy 

Properties P and Q. 
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________________________________________________________________________________________________ 

 

1. INTRODUCTION AND PRELIMINARIES: 

 

In 1965, Zadeh [18] introduced the concept of Fuzzy set. Since that time a substantial literature has been developed on 

this subject. Several authors [2, 4, 7, 10] proved fixed point theorems for fuzzy metric space in different ways. In 1975, 

Kramosil and Michalek [11] introduced the fuzzy metric space by generalizing the concept of probabilistic metric space 

to fuzzy situtation. After that George and Veeramani[4-6] modified the concept of fuzzy metric space introduced by 

Kramosil and Michalek [11]. They also showed that every metric induces a fuzzy metric. Grabiec [7] proved fuzzy 

Banach contraction theorem on fuzzy metric space. Singh and Chauhan [17] proved some common fixed point 

theorems in fuzzy metric spaces in the sense of George and Veeramani. Recently, Dorel Mihet [12] introduced the 

concept of non-Archimedean fuzzy metric space and proved Banach Contraction theorem in this space. In 2006, 

Mustafa and Sims [15] introduced the concept of G-metric space by generalizing the concept of metric space. Then, 

based on the notion of generalized metric spaces, several authors have obtained some fixed point results for a self-

mapping under various contractive conditions, (see[1,3,13]).  

 

Motivated by the concepts of G-metric space, Non-Archimedean metric space and Fuzzy metric space, we introduce 

the concept of non-Archimedean G-fuzzy metric space and obtain two common fixed point theorems for two semi-

compatible mappings. Our results improve and generalize the results of Mustafa et. al.[13] and  Abbas & Rhoades [1] 

in non-Archimedean G-fuzzy metric space. We also establish properties P and Q for these mappings. An interesting 

fact about maps satisfying properties P and Q is that they have no nontrivial periodic points. Some papers dealing with 

properties P and Q are ([8, 9, 16]).  

 

We first give some definitions and results that will be needed in the sequel. 

 

Definition: 1.1([15]) Let X be a nonempty set and G : X ×X ×X � R+ a function satisfying the following axioms: 

(G1) G(x, y, z) = 0 if x = y = z, 

(G2) 0 < G(x, x, y) for all x, y � X with x � y, 

(G3) G(x, x, y) ≤  G(x, y, z), for all x, y, z ∈  X, with z �y, 

(G4) G(x, y, z) = G(x, z, y) = G(y, z, x) = ·  · ·  (symmetry in all three variables), 

(G5) G(x, y, z) ≤  G(x, a, a) + G (a, y, z), for all x, y, z, a ∈  X, (rectangle inequality). 

 

Then the function G is called a G-metric on X, and the pair (X, G) is called a G-metric space. 
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Definition: 1.2 ([15]) Let (X, G) be a G-metric space, let {xn} be a sequence of points of X. We say that {xn} is G-

convergent to x if 0),,(lim
,

=
→∞

mn
mn

xxxG ; that is, for any ε  > 0, there exists a k � N such that G(x, xn, xm) < ε  for 

all n, m ≥  k (throughout this paper we mean by N the set of all natural numbers). We call x the limit of the sequence 

and write xn →x or lim xn = x. 

 

Proposition: 1.3 ([15]) Let (X, G) be a G-metric space. Then the following are equivalent: 

(1) {xn} is G-convergent to x, 

(2) G(xn, xn, x) →  0, as n → ∞ , 

(3) G(xn, x, x) →  0, as n → ∞ , 

(4) G(xm, xn, x) →  0, as m, n → ∞ . 

 

Example: 1.4 ([15]). Let (X, d) be a usual metric space, then (X,GS) and (X,Gm) are G-metric spaces, where 

 

GS(x, y, z) = d(x, y) + d(y, z) + d(x, z), for all x, y, z ∈  X, 

 

Gm(x, y, z) = max{d(x, y), d(y, z), d(x, z)}, for all x, y, z  ∈  X. 

 

Definition: 1.5 A binary operation� : [0, 1] × [0, 1]� [0, 1] is a continuous t-norm if it satisfies the following 

conditions: 

(a) � is associative and commutative; 

(b) � is continuous; 

(c) � � 1 = a for all a � [0, 1]; 

(d) � � b � c � d  whenever a � c and b � d, for each a, b, c, d � [0, 1]. 

 

Now, we introduce the concept of Non-Archimedean G-fuzzy metric space (briefly as N. A. G-fuzzy metric space) as 

follows: 

 

Definition: 1.6 A 3-tuple (X, MG, �) is called a non-Archimedean G-fuzzy metric space if X is an arbitrary(non-empty) 

set, � is a continuous t-norm and MG is a G-fuzzy set on X3 × (0, �), satisfying the following conditions for each x, y, z, 

a � X and t, s > 0 

 

(MG1) MG(x, x, y, t) > 0 with x � y; 

(MG2) MG(x, x, y, t) � MG(x, y, z, t) > 0 with z � y; 

(MG3) MG(x, y, z, t) = 1 iff x= y= z; 

(MG4) MG(x, y, z, t) = MG(p{x, y, z}, t) (symmetry)  where p is a permutation function; 

(MG5) MG(x, a, a, t) � MG(a, y, z, s) � MG(x, y, z, max{t, s}); 

(MG6) MG(x, y, z, .) : (0,	�) � [0, 1] is continuous.  

 

Example: 1.7 Let X =R with G-metric on X defined by 

 

   G(x, y, z) = 
� � 

+

 � �
+
� � �
.  
 

Denote a � b = ab for all a, b � [0, 1]. For all x, y, z ∈X and t > 0, define MG on  

X3 × (0, �) as follows: 

   MG(x, y, z, t) = � �
����

��������
. 

 

Then, (X, MG, �) is a non -Archimedean G-fuzzy metric space. 

 

Definition: 1.8 Let (X, MG, �) be a non-Archimedean G-fuzzy metric space. Then, 

 

(1) A sequence {xn} in X is said to be convergent to x iff MG(xm, xn, x, t) � 1  

as n � �� ���	��� 	! " #. 

(2) A sequence {xn} in X is said to be a cauchy sequence if for each 0 < � < 1 and t > 0, there exists n0 � N such 

that MG(xm, xn, xl, t) > 1- � for each 

 l, m, n � n0.  

(3) The G-fuzzy metric space is called complete if every cauchy sequence is convergent. 

 

Following similar argument in G-metric space, the sequence {xn} in X also converges to x iff MG(xn, xn, x, t) � 1 as  

n � �� ���	��� 	! " # and it is Cauchy sequence if for each 0 < � < 1 and t > 0, there exists n0 � N such that  
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MG(xm, xn, xn, t) > 1- � for each m, n � n0.  

 

Definition: 1.9 Denote by Φ the class of continuous functions	$: [0, 1] → [0, 1] such that $(t) > t  for all 0�t<1 and 

$(1) = 1. 

 

Lemma: 1.10 Let (X, MG, �) be a non-Archimedean G-fuzzy metric space. Then MG(x, y, z, t) is non-decreasing with 

respect to t for all x, y, z in X. 

 

Throughout this paper, we assume that %&'���(���� 
� �� !� = 1and that N is the set of all natural numbers. 

 

Lemma: 1.11 Let (X, MG, �) be a non-Archimedean G-fuzzy metric space. Let {yn} be a sequence in X, where � is a 

continuous t-norm satisfying t � t � t for all t � [0, 1]. If there exists t > 0 and $ � Φ such that 

 

MG(yn+1, yn+2, yn+2, t) � $(MG(yn, yn+1, yn+1, t)), n � N, then {yn} is a Cauchy sequence in X. 

 

Proof: If we define rn = MG (yn+1, yn+2, yn+2, t), then  

 

(1.11.1)              rn � $(rn-1 )" rn-1 . 

 

So that the sequence {rn} is an increasing sequence of positive real numbers in [0, 1] and tends to a limit r � 1. We 

claim that r =1. If r <1, on taking  ) � � in (1.11.1), we get � � $(r) > r, which is a contradiction. Hence r =1. 

 

Now, for any positive integer p, we have 

 

MG(yn, yn+p, yn+p, t) � MG(yn, yn+1, yn+1, t) * . . . * MG(yn+p-1, yn+p, yn+p, t). 

 

Taking the limit as n � �, we get 

 

%&'*��(�+
*� 
*�,� 
*�,� !- = 1. Hence, {yn} is a Cauchy sequence. 

 

Now, we introduce the concept of weakly compatible maps and semi-compatible maps in non-Archimedean G-fuzzy 

metric space as follows: 

 

Definition: 1.12 Let f and g be self maps on a non-Archimedean G-fuzzy metric space (X, MG, �). Then the mappings 

are said to be weakly compatible if they commute at their coincidence point, that is, fx = gx implies that fgx = gfx. 

 

Definition1.13. A pair (f, g) of self mappings of a non-Archimedean G-fuzzy metric space is said to be semi-

compatible if %&'*�� �.�* = gx, whenever {xn} is a sequence in X such that %&'*�� ��* = %&'*�� .�* = x, for some x 

�X. 

 

It follows that (f, g) is semi-compatible and fy = gy, then fgy = gfy. 

 

Note that every pair of semi-compatible maps is weakly compatible but converse need not be true. 

 

 

Example: 1.14 Let X =[0, 1] with G-metric on X defined by 

 

   G(x, y, z) = 
� � 

+

 � �
+
� � �
.  
 

Denote a � b = ab for all a, b � [0, 1]. For all x, y, z �	X and t > 0, define MG on  X3 × (0, �) as follows: 

 

   MG(x, y, z, t) = � �
����

��������
. 

 

Then, (X, MG, �) is a non -Archimedean G-fuzzy metric space. Define a self map on X as follows: 

 

Sx = 

�
�

�
�

�

�
�

�
�

�

≥

<≤

2

1
1

2

1
0

x

xx
 and let I be the identity map on X. 



����
 ��!�
�
�
"��#
��$��
�

�
�
��#��
�!!��%�	

�&

��#
'������
(�#���

)
*
+��,�����$
+
��#
-
��
.����������#���
/�0�112
������


3,���$*
�����
�����
����������
+�!�4
�������


5
�����
�����
�		
��!��$
��$����#





































































































































































��8��

 

If xn = 
�
/ - 

�
* .Then {Ixn} = xn� �

/ and {Sxn}� �
/ . Again {ISxn}� �

/ � S��/�. 

 

Thus (I, S) is not semi-compatible. But (I, S) is weakly compatible.  

 

Definition: 1.15 ([1]) Let f and g be self maps on a set X and if w = fx = gx for some x in X, then x is called a 

coincidence point of  f and g and w is called a point of coincidence of f and g. 

 

Proposition: 1.16 Let f and g be semi-compatible self-maps of a set X. If f and g have a unique point of coincidence fx 

= gx = w, then w is the unique common fixed point of f and g. 

 

Proof: Since fx = gx = w and f and g are semi-compatible, we have 

 

fw = fgx = gfx =gw, implies that, fw = gw. Thus, w is a point of coincidence of f and g. But w is the only point of 

coincidence of f and g, so w = fw = gw. Moreover, if z = fz = gz, then z is a point of coincidence of f and g. Therefore, 

z = w, by uniqueness. Thus, w is the unique common fixed point of f and g. 

 

Definition: 1.17 Let (X, MG, �)  be a non-Archimedean G-fuzzy metric space and T : X � X be a mapping with fixed 

point set F(T ) �	$ . Then T has property P if F(Tn) = F(T ), for each n � N.  

 

Definition: 1.18 Let (X, MG, �)  be a non-Archimedean G-fuzzy metric space and T, S : X � X be two mappings with 

F(S) � F(T ) �	$0 Then, S and T have property Q if F(Sn) � F(Tn) = F(S) � F(T ), for each n � N. 

 

2. FIXED POINT RESULTS: 

 

Now, we generalize the results of Abbas & Rhoades [1] to non-Archimedean G-fuzzy metric space for semi-compatible 

maps as follows: 

 

Theorem:  2.1 Let (X, MG, �) be a non-Archimedean G-fuzzy metric space with t � t � t. Suppose f and g be a self-

map of X satisfying for all x, y, z � X 

 

(2.1.1) MG(fx, fy, fz, t) � $(MG(gx, gy, gz, t)) 

 

where $	 � 	, t > 0. If f(X) ⊂ g(X) and g(X) is a complete subspace of X, then f and g have a unique point of 

coincidence in X. Moreover, if f and g are semi-compatible, then f and g have a unique common fixed point. 

 

Proof: Let x0 be an arbitrary point in X. Since f(X) ⊂ g(X), so we choose a point x1 in X such that f(x0) = 

g(x1).Continuing this process, having chosen xn in X, we can find xn+1 in X such that f(xn) = g(xn+1). Inductively, 

construct sequence {yn} in X such that 

 

(2.1.2) yn = fxn = gxn+1, n = 0, 1, 2 . . . 

 

Now, we prove that {yn} is a Cauchy sequence.Then, by (2.1.1), we have 

 

MG(yn, yn+1, yn+1, t) = MG(fxn, fxn+1, fxn+1, t) 

 

                                � $( MG(gxn, gxn+1, gxn+1, t)) = $( MG(yn-1, yn, yn, t)). 

 

Then, by lemma 1.11, {yn} is a cauchy sequence.This implies that {gxn} is a cauchy sequence. Since g(X) is complete,  

so there exists u �g(X) such that  

 

%&'*��

* = %&'*�� ��* = %&'*�� .�* = u. 

 

Since u �g(X), so there exists p �X such that gp = u. Let fp �u. From (2.1.1) 

 

MG(fxn, fp, fp, t) � $( MG(gxn, gp, gp, t)). As n � 	�, we get 

 

MG(u, fp, fp, t) � $( MG(gp, gp, gp, t)) = $(1) = 1. 

 

This implies that MG(u, fp, fp, t) = 1,which is a contradiction, since fp �u. 
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Thus, fp = gp = u. Hence, p is a coincidence point of f and g. 

 

Now, we will show that p is unique. Assume that there exists another point q in X such that fq = gq.If fp �fq, then 

 

MG(fq, fp, fp, t) � $(MG(gq, gp, gp, t)) =  $(MG(fq, fp, fp, t)) > MG(fq, fp, fp, t). 

 

By lemma 1.10, we obtain a contradiction. Hence fp = fq. 

 

Moreover, if f and g are semi-compatible, then from proposition 1.16, f and g have a unique common fixed point. 

 

If we take g = I in Theorem 2.1, we obtain the following result:  

 

Corollary: 2.2 Let (X, MG, �) be a complete non-Archimedean G-fuzzy metric space with t � t � t. Suppose f be a self-

map of X satisfying for all x, y, z � X 

 

MG (fx, fy, fz, t) � $(MG(x, y, z, t)) 

 

where t > 0 and $	 � 	. Then f has a unique fixed point. 

 

Theorem: 2.3 Let (X, MG, �) be a non-Archimedean G-fuzzy metric space with t � t � t. If the mappings f, g : X � X 

satisfy either 

 

(2.3.1) MG(fx, fy, fz, t) � $(min{MG(gx, fx, fx, t), MG(gy, fy, fy, t), MG(gz, fz, fz, t)}) 

 

or 

 

(2.3.2)        MG(fx, fy, fz, t) � $(min{MG(gx, gx, fx, t), MG(gy, gy, fy, t), MG(gz, gz, fz, t)}), 

 

for all x, y, z � X where $	 � 	, t > 0. If f(X) ⊂ g(X) and g(X) is a complete subspace of X, then f and g have a unique 

point of coincidence in X. Moreover, if f and g are semi-compatible, then f and g have a unique common fixed point. 

 

Proof: Suppose that f and g satisfy (2.3.1).  Let x0 be an arbitrary point in X. Since f(X) ⊂ g(X), so we choose a point 

x1 in X such that f(x0) = g(x1).Continuing this process, having chosen xn in X, we can find xn+1 in X such that f(xn) = 

g(xn+1).Inductively, construct sequence {yn} in X such that 

 

(2.3.3) yn = fxn = gxn+1, n = 0, 1, 2, . . . 

 

Now, we prove that {yn} is a Cauchy sequence. Then, by (2.3.1), we have 

 

MG(yn, yn+1, yn+1, t) = MG(fxn, fxn+1, fxn+1, t) 

                                 � $(min {MG(gxn, fxn, fxn, t), MG(gxn+1, fxn+1, fxn+1, t), MG(gxn+1, fxn+1, fxn+1, t)}) 

                                 = $(min {MG (yn-1, yn, yn, t), MG(yn, yn+1, yn+1, t), MG(yn, yn+1, yn+1, t)}). 

 

Thus, we obtain  

 

MG(yn, yn+1, yn+1, t) � $(min{MG(yn-1, yn, yn, t), MG(yn, yn+1, yn+1, t)}). 

 

Without loss of generality assume yn � yn+1 for each n. (Since, if there exists an n such that yn = yn+1, then yn = fxn = 

gxn+1 = fxn+1 =gxn+2, implies that, gxn+1 = fxn+1. 

 

Then, f and g have a coincidence point.) Therefore, if in the above inequality 

 

 MG(yn, yn+1, yn+1, t) � $(MG(yn, yn+1, yn+1, t)) > MG(yn, yn+1, yn+1, t). 

 

By lemma 1.10, which is a contradiction. Hence,  

 

MG (yn, yn+1, yn+1, t) � $(MG(yn-1, yn, yn, t)). 

 

Thus, by lemma 1.11, {yn} is a cauchy sequence, which implies that {gxn} is a cauchy sequence. Since g(X) is 

complete, so there exists u �g(X) such that  
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%&'*��

* = %&'*�� ��* = %&'*�� .�* = u. 

 

Since u �g(X), so there exists p �X such that gp = u. Let fp �u. From (2.3.1) 

 

MG(fxn, fp, fp, t) � $(min{MG(gxn, fxn, fxn, t), MG(gp, fp, fp, t), MG(gp, fp, fp, t)}). 

 

As n� 	�, we get MG(u, fp, fp, t) � $(min{MG(u, u, u, t), MG(u, fp, fp, t)}) 

               � $(min {1, MG(u, fp, fp, t)}) 

 

Now, if MG(u, fp, fp, t) � $(1) = 1, this implies that MG(u, fp, fp, t) = 1 

 

which is a contradiction, since fp � u. 

 

Hence MG(u, fp, fp, t) � $(MG(u, fp, fp, t)) > MG(u, fp, fp, t) 

 

By lemma 1.10, which is absurd. Hence, fp = u. Thus, fp = gp = u. 

 

Hence, p is a coincidence point of f and g. 

 

Now, we show that p is unique. Assume that there exists another point q in X such that fq = gq. If fp �fq, then 

 

MG(fq, fp, fp, t) � $ (min{MG(gq, fq, fq, t), MG(gp, fp, fp, t), MG(gp, fp, fp, t)}) 

             � $ ( min{MG(fq, fq, fq, t), MG(fp, fp, fp, t)})� $�1) = 1. 

 

This implies that MG(fq, fp, fp, t) = 1. By lemma 1.10, which is a contradiction as fp �fq. Hence fp = fq. 

 

Moreover, if f and g are semi-compatible, then from proposition 1.16, f and g have a unique common fixed point. The 

proof using (2.3.2) is similar. 

 

If we take g = I in Theorem 2.3, we obtain the following result as a generalization of Theorem 2.3 of Mustafa et. al.[13] 

to non-Archimedean G-fuuzzy metric spaces: 

 

Corollary: 2.4 Let (X, MG, �) be a complete non Archimedean G-fuzzy metric space with t � t � t. If the mappings f : 

X � X satisfy for all x, y, z � X either  

 

MG(fx, fy, fz, t) � $(min{MG(x, fx, fx, t), MG(y, fy, fy, t), MG(z, fz, fz, t)}) 

or 

 

MG(fx, fy, fz, t) � $(min{MG(x, x, fx, t), MG(y, y, fy, t), MG(z, z, fz, t)}) 

 

where t > 0 and $	 � 	. Then f has a unique fixed point. 

 

Example: 2.5 Let (X, MG, �) be a non-Archimedean G-fuzzy metric space defined in example (1.7). Define f, g: X �X 

as follows: 

 fx = 
�
1 and  gx = 

�
2 . and define $ : [0,1] � [0,1] as $(t) = 3!. 

 

Then all of the hypothesis of Theorems (2.1) holds. Also f and g satisfy condition (2.1.1) for all x, y, z � R and 0 is the 

unique common fixed point of f and g. 

 

3. PROPERTIES P AND Q: 

 

In this section, we shall show that maps satisfying the conditions of Theorem 2.1 , 2.3 and corollary 2.2 , 2.4 possess 

Properties Q and P respectively. 

 

Theorem: 3.1 Under the conditions of Theorem 2.1, f and g have Property Q. 

 

Proof: From Theorem 2.1, F(f) 4 F(g) � 	$.Therefore, F(fn)4 F(gn) � 	$ for each positive integer  n. Let n be a fixed 

positive integer greater than 1 and suppose that  

 

u � F(fn)4 F(gn). We claim that u � F (f) 4 F (g). 
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Let u � F(fn) 4 F(gn). Then, for any positive integers i, j,k, r, l, s satisfying  0 � i, r, j, k, l, s � n, we have 

 

MG(figju, frglu, fsgku, t) � $(MG(g(fi-1gju), g(fr-1glu), g(fs-1gku), t)) 

           � $(MG(fi-1gj+1u, fr-1gl+1u, fs-1gk+1u, t)). 

 

Define 5 = '&6789�:�;�<�=�>8*(���9.;?� �:.<?� �=.>?� !� where t > 0. 

 

Assume that 0 < 5 <1, then it follows from (2.1.1) 5 � $(5) > 5, 

 

which is a contradiction and hence 5 = 1. 

 

In particular, MG(fu, u, u, t) = 1 and MG(gu, u, u, t) = 1 for each t > 0 and hence  

 

fu = gu = u, implies that, u � F(f) 4 F(g). Hence f and g have Property Q. 

   

Corollary: 3.2 Under the conditions of Corollary 2.2, f has Property P.  

 

Theorem: 3.3 Under the conditions of Theorem 2.3, f and g have Property Q. 

 

Proof: From Theorem 2.3, F(f) 4 F(g) � 	$.Therefore, F(fn)4 F(gn) � 	$ for each positive integer  n. Let n be a fixed 

positive integer greater than 1 and suppose that  

 

u � F(fn)4 F(gn). We claim that u � F(f) 4 F(g). 

 

Let u � F(fn) 4 F(gn). Then, for any positive integers i, j, r, l, s, k satisfying 0 � i, r, j, l, s, k � n, we have 

 

MG(figju, frglu, fsgku, t) � $(min{MG(g(fi-1gju), f(fi-1gju), f(fi-1gju), t), MG(g(fr-1glu), f(fr-1glu), f(fr-1glu), t), MG(g(fs-1gku),            

                                           f(fs-1gku), f(fs-1gku), t)} 

 

           � $(min{MG(fi-1gj+1u, figju, figju, t),  MG(fr-1gl+1u, frglu, frglu, t), MG(fs-1gk+1u, fsgku, fsgku, t)}. 

 

Define 5 = '&6789�:�;�<�=�>8*(���9.;?� �:.<?� �=.>?� !� where t > 0. 

 

Assume that 0 < 5 <1, then it follows from (2.3.1) 5 � $('&6	@5� 5� 5A)= $�5� > 5, which is a contradiction and hence 

5 = 1. 

 

In particular, MG(fu, u, u, t) = 1 and MG(gu, u, u, t) = 1 for each t > 0 and hence  

 

fu = gu = u, implies that, u � F(f) 4 F(g). Hence f and g have Property Q. 

 

Corollary: 3.4 Under the conditions of Corollary 2.4, f has Property P.  
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