International Journal of Mathematical Archive-3(1), 2012, Page: 118-125 Available online through <u>www.ijma.info</u> ISSN 2229 - 5046

Z^{*}-Open Sets And Z^{*}-Continuity In Topological Spaces

Ali Mubarki*

Department of Mathematics, Faculty of Science, Taibah University E-mail: alimobarki@hotmail.com

(Received on: 26-12-11; Accepted on: 12-01-12)

ABSTRACT

T he aim of this paper is to introduce and study the notion of Z*-open sets and Z*-continuity. Some characterizations of these notions are presented. Also, some topological operations such as: Z*-boundary, Z*-border, Z*-exterior, Z*-limit point are introduced.

AMS Subject Classification: Primary 54D10, 54C05, 54C08.

Keyword:. Z*-open sets, Z*-boundary, Z*-border, Z*-exterior, Z*-limit point, Z*-nbd and Z*-continuity.

1. INTRODUCTION:

In 1963, N. Levine [11] introduced semiopen sets and semi-continuous mappings in topological spaces. The concept of δ -preopen sets and δ -almost continuity introduced by S.Raychaudhuri and M.N. Mukheriee in 1993 [16]. Also, in 1996 Andrijevi'c [3] (resp. J. Dontchev and M. Przemski [4], A. A. El-Atik [8]) introduced the notion b-open (resp. sp-open, γ -open) sets. In 2008, Ekici [5] introduced e-open sets and e-continuous map in topological spaces. The purpose of this paper is to introduce and study the notion of Z*-open sets and Z*-continuity. Some topological operations such as: Z*-limit point, Z*-boundary and Z*-exterior...atc are introduced. Also, some characterizations of these notions are presented.

2. PRELIMINARIES:

A subset A of a topological space (X,τ) is called regular open (resp. regular closed) [18] if A=int(cl(A)) (resp. A= cl(int(A))). The delta interior [18] of a subset A of X is the union of all reg ular open sets of X contained in A is denoted by δ -int(A). A subset A of a space X is called δ -open if it is the union of regular open sets. The complement of δ -open set is called δ -closed. Alternatively, a set A of (X, τ) is called δ -closed [18] if A= δ -cl(A), where δ -cl(A) = $\{x \in X : A \cap int(cl(U)) \neq \emptyset, U \in \tau \text{ and } x \in U\}$. Throughout this paper (X, τ) and (Y, σ) (simply X and Y) represent nonempty topological spaces on which no separation axioms are assumed unless otherwise mentioned. For a subset A of a space (X, τ) , cl(A), int(A) and X \ A denote the closure of A, the interior of A and the complement of A respectively. A subset A of a space X is called a-open[6] (resp. α -open [14], δ -semiopen [15], semiopen [11], δ -preopen [16], preopen [12], b-open [3] or γ -open [8] or sp-open [4], e-open [5], β -open [1] or semi-preopen [2], e*-open [7] or δ - β -open [10]) if $A \subseteq int(cl(\delta-int(A)))$, (resp. $A \subseteq int(cl(int(A)))$, $A \subseteq cl(\delta-int(A))$, $A \subseteq cl(int(A))$, $A \subseteq int(\delta-cl(A))$, $A \subseteq int(cl(A))$, A $\subseteq int(cl(A)) \cup cl(int(A)), A \subseteq cl(\delta - int(A)) \cup int(\delta - cl(A)), A \subseteq cl(int(cl(A))), A \subseteq cl(int(\delta - cl(A))).$ The complement of a δ -semiopen (resp. semiopen, δ -preopen, preopen) set is called δ -semi-closed (resp. semi-closed, δ -pre-closed, preclosed). The intersection of all δ -semi-closed (resp. semi-closed, δ -pre-closed, pre-closed) sets containing A is called the δ -semi-closure (resp. semi-closure, δ -pre-closure, pre-closure) of A and is denoted by δ -scl(A) (resp. scl(A), δ pcl(A), pcl(A)). The union of all δ -semiopen(resp. semiopen, δ -preopen, preopen) sets contained in A is called the δ semi-interior (resp. semi-interior, δ -pre-interior) of A and is denoted by δ -sint(A) (resp. sint(A), δ -pint(A), pint(A)). The family of all δ -open (resp. α -open, α -open, δ -semiopen, semiopen, δ -preopen, preopen, b-open, e-open, β -open, e*-open) is denoted by $\delta O(X)$ (resp. aO(X), $\alpha O(X)$, $\delta SO(X)$, SO(X), $\delta PO(X)$, BO(X), eO(X), $\beta O(X)$, e*O(X)).

Lemma: 2.1 [18] Let A, B be two subsets of (X, τ) . Then:

(1) A is δ -open if and only if $A = \delta$ -int(A), (2) X \ (δ -int(A)) = δ -cl(X \ A) and δ -int(X \ A) = X \ (δ -cl(A)), (3) cl(A) $\subseteq \delta$ -cl (A) (resp. δ -int(A) \subseteq int(A)), for any subset A of X, (4) δ -cl (AUB) = δ -cl(A) U δ -cl (B), δ -int(A \cap B) = δ -int(A) $\cap \delta$ -int(B). **Proposition: 2.1** Let A be a subset of a space (X, τ) . Then: (1) $scl(A) = A \cup int(cl(A))$, $sint (A) = A \cap cl(int(A))$ [3], (2) $pcl(A) = A \cup cl(int(A))$, $pint (A) = A \cap int(cl(A))$ [3], (3) δ -scl(X \ A) = X \ δ -sint(A), δ -scl(AUB) $\subseteq \delta$ -scl(A) U δ -scl(B) [15], (4) δ -pcl(X \ A) = X \ δ -pint(A), δ -pcl(AUB) $\subseteq \delta$ -pcl(A) U δ -pcl(B) [16].

Lemma: 2.2 The following hold for a subset H of a space (X, τ) . (1) δ -pcl(H) = H cl(δ -int(H)) and δ -pint (H) = H \cap int(δ -cl(H)) [16], (2) δ -scl(H) = H Uint(δ -cl(H)) and δ -sint(H) = H \cap cl(δ -int(H)) [15], (3) cl(δ -int(H)) = δ -cl(δ -int(H)) and int(δ -cl(H)) = δ -int(δ -cl(H) [5].

Definition: 2.1 A function $f:(X, \tau) \to (Y, \sigma)$ is called α -continuous [13] (resp. pre-continuous [12], δ -almost continuous [16], γ -continuous [8], e-continuous [5], e*-continuous [7]) if $f^{-1}(V)$ is α -open(resp. preopen, δ -preopen, γ -open, e-open, e*-open) in X for each $V \in \sigma$.

3. Z*-open sets and Z*-closed:

Definition: 3.1 A subset A of a topological space (X, τ) is said to be: (1) Z*-open if A \subseteq cl(int(A)) \cup int(δ -cl(A)), (2) Z*-closed if int(cl(A)) \cap cl(δ -int(A)) \subseteq A.

The family of all Z*-open (resp. Z*-closed) subsets of a space (X, τ) will be as always denoted by Z*O(X) (resp. Z*C(X)).

Remark: 3.1 The following holds for a space (X, τ).
(1) Every γ-open (resp. e-open) set is Z*-open,
(2) Every Z*-open set is e*-open.

But the converse of the a bovine are not necessarily true in general as shown by the following examples.

Example: 3.1 Let $X = \{a, b, c, d\}$, with topology $\tau = \{\emptyset, \{a\}, \{c\}, \{a, b\}, \{a, c\}, \{a, b, c\}, \{a, c, d\}, X\}$. Then: (1) the subset $\{a, d\}$ is a Z*-open set but not e-open, (2) the subset $\{b, c\}$ is a Z*-open set but not γ -open.

Example: 3.2 Let $X = \{a, b, c, d, e\}$ with topology $\tau = \{\emptyset, \{a, b\}, \{c, d\}, \{a, b, c, d\}, X\}$. Then, the subset $\{a, e\}$ is e*-open set but not Z*-open.

Remark: 3.2 The following diagram holds for a subset of a space X:

Proposition: 3.1 Let (X, τ) be a topological space .Then the δ -closure of a Z*-open subset of (X, τ) is δ -semiopen.

Proof: Let $A \in Z^*O(X)$. Then δ -cl(A) $\subseteq \delta$ -cl (cl(int(A)) \cup int(δ -cl(A))) $\subseteq \delta$ -cl(cl(int(A))) $\cup \delta$ -cl(int(δ -cl(A))) $\subseteq \delta$ -cl(int(A))) $\cup \delta$ -cl(int(δ -cl(A))) = δ -cl(int(δ -cl(A))) = δ -cl(δ -int(δ -cl(A))). Therefore δ -cl(A) $\in \delta$ SO(X).

Lemma: 3.1 Let (X, τ) be a topological space .Then the following statements are hold.

(1) The union of arbitrary Z^* -open sets is Z^* -open,

(2) The intersection of arbitrary Z*-closed sets is Z*-closed.

Proof: (1) It is clear.

Remark: 3.2 By the following we show that the intersection of any two Z^* -open sets is not Z^* -open.

Example: 3.3 Let $X = \{a, b, c\}$ with topology $\tau = \{\emptyset, \{b\}, \{c\}, \{b, c\}, X\}$. Then $A = \{a, c\}$ and $B = \{a, b\}$ are Z^* -open sets, but $A \cap B = \{a\}$ is not Z^* -open.

Definition: 3.2 Let (X, τ) be a topological space. Then:

- (1) The union of all Z*-open sets of X contained in A is called the Z*-interior of A and is denoted by Z*-int(A),
- (2) The intersection of all Z*-closed sets of X containing A is called the Z*-closure of A and is denoted by Z*-cl(A).

Theorem: 3.1 Let A, B be two subsets of a topological space (X, τ) . Then the following are hold: (1) Z^* -cl $(X \setminus A) = X \setminus Z^*$ -int(A),

(1) $Z = cit(X \setminus A) = X \setminus Z = int(A),$ (2) $Z^*-int(X \setminus A) = X \setminus Z^*-cl(A),$ (3) If $A \subseteq B$, then $Z^*-cl(A) \subseteq Z^*-cl(B)$ and $Z^*-int(A) \subseteq Z^*-int(B),$ (4) $x \in Z^*-cl(A)$ if and only if for each a Z^* -open set U contains $x, U \cap A \neq \emptyset,$ (5) $x \in Z^*-int(A)$ if and only if there exist a Z^* -open set W such that $x \in W \subseteq A,$ (6) A is Z^* -open set if and only if $A = Z^*-int(A),$ (7) A is $Z^*-closed$ set if and only if $A = Z^*-cl(A),$ (8) $Z^*-cl(Z^*-cl(A)) = Z^*-cl(A)$ and $Z^*-int(Z^*-int(A)) = Z^*-int(A),$ (9) $Z^*-cl(A) \cup Z^*-cl(B) \subseteq Z^*-cl(A \cup B)$ and $Z^*-int(A) \cup Z^*-int(B) \subseteq Z^*-int(A \cup B),$ (10) $Z^*-int(A \cap B) \subseteq Z^*-int(A) \cap Z^*-int(B)$ and $Z^*-cl(A \cap B) \subseteq Z^*-cl(B).$

Remark: 3.3 By the following example we show that the inclusion relation in parts (9) and (10) of the above theorem cannot be replaced by equality.

Example: 3.4 Let $X = \{a, b, c, d\}$, with topology $\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}$. Then: (1) If $A = \{a, d\}, B = \{b, d\}$, then Z^* -cl(A) = A, Z^* -cl(B) = B and Z^* -cl($A \cup B$) = X.

Thus $Z^*-cl(A \cup B) \nsubseteq Z^*-cl(A) \cup Z^*-cl(B)$,

(2) If $E = \{a, b\}$, $F = \{a, c\}$, then $Z^*-cl(E) = X$, $Z^*-cl(F) = F$ and $Z^*-cl(E \cap F) = \{a\}$.

Thus Z^* -cl(E) \cap Z^* -cl(F) \nsubseteq Z^* -cl(E \cap F).

(3) If $M = \{c, d\}$, $N = \{b, d\}$, then Z^* -int(M) = \emptyset , Z^* -int(N) = N and Z^* -int($M \cup N$) = $\{b, c, d\}$.

Thus Z^* -int($M \cup N$) $\not\subseteq Z^*$ -int(M) $\cup Z^*$ -int(N).

Theorem: 3.2 Let A , B be two subsets of a topological space (X, τ) . Then the following are hold: (1) Z*-cl(cl(A) \cup B) = cl(A) \cup Z*-cl(B), (2) Z*-int(int(A) \cap B) = int(A) \cap Z*-int(B).

Proof: (1) Z^* -cl(cl(A) \cup B) $\supseteq Z^*$ -cl(cl(A)) $\cup Z^*$ -cl(B) \supseteq cl(A) $\cup Z^*$ -cl(B).

The other inclusion, $cl(A) \cup B \subseteq cl(A) \cup Z$ -cl(B) which is Z*-closed. Hence,

 Z^* -cl(cl(A) \cup B) \subseteq cl(A) \cup Z*-cl(B). Therefore, Z*-cl(cl(A) \cup B) = cl(A) \cup Z*-cl(B), (2) It is follows from (1).

Theorem: 3.3 Let (X, τ) be a topological space and $A \subseteq X$. Then A is a Z*-open set if and only if $A = sint(A) \cup \delta$ -pint(A).

Proof: It is clear.

Proposition: 3.2 Let (X, τ) be a topological space and $A \subseteq X$. Then A is a Z*-closed set if and only if $A = scl(A) \cap \delta$ -pcl(A).

Proof: It follows from Theorem 3.3.

Proposition: 3.3 Let A be a subset of a space (X, τ) . Then: (1) Z*-cl(A) = scl(A) $\cap \delta$ -pcl(A), (2) Z*-int(A) = sint(A) $\cup \delta$ -pint(A).

Lemma: 3.2 Let A be a subset of a topological space (X, τ) . Then the following are hold: (1) $pcl(\delta-pint(A)) = \delta-pint(A) \cup cl(int(A)),$ (2) $pint(\delta-pcl(A)) = \delta-pcl(A) \cap int(cl(A)).$

Proof: (1) By Lemma 2.2 and Proposition 2.1, $pcl(\delta-pint(A)) = \delta-pint(A) \cup cl(int(\delta-pint(A))) = \delta-pint(A) \cup cl(int(A \cap \delta-cl(int(A)))) = \delta-pint(A) \cup cl(int(A)),$ (2) It follows from (1).

© 2012, IJMA. All Rights Reserved

Proposition: 3.4 Let A be a subset of a topological space (X, τ) . Then: (1) Z*-cl(A) = A \cup pint(δ -pcl(A)), (2) Z*-int(A) = A \cap pcl(δ -pint(A)).

Proof: (1) By Lemma 3.2, $A \cup pint(\delta - pcl(A)) = AU(\delta - pcl(A) \cap int(cl(A))) = (A \cup \delta - pcl(A)) \cap (A \cup int(cl(A))) = \delta - pcl(A) \cap scl(A) = Z^* - cl(A).$

(2) It follows from (1).

Theorem: 3.4 Let A be a subset of a topological space (X, τ) . Then the following are equivalent: (1) A is a Z*-open set, (2) A \subseteq pcl(δ -pint(A)), (3) there exists U $\in \delta$ -PO(X) such that U \subseteq A \subseteq pcl(U), (4) pcl(A) = pcl(δ -pint(A)).

Proof: (1) \rightarrow (2). Let A be a Z*-open set. Then, A = Z*-int(A) and by Proposition 3.4, A = A \cap pcl(δ -pint(A)) and hence, A \subseteq pcl(δ -pint(A)).

(3) \rightarrow (1). Let $A \subseteq pcl(\delta-pint(A))$. Then by Proposition 3.4, $A \subseteq A \cap pcl(\delta-pint(A)) = Z^*-int(A)$ and hence $A = Z^*-int(A)$. Thus A is Z^* -open,

(2) \rightarrow (3). It follows from putting U= δ -pint(A),

(3) →(2). Let there exists $U \in \delta$ -PO(X) such that $U \subseteq A \subseteq pcl(U)$. Since $U \subseteq A$, then $pcl(U) \subseteq pcl(\delta$ -pint(A)) therefore $A \subseteq pcl(U) \subseteq pcl(\delta$ -pint(A)),

(4) \leftrightarrow (4). It is clear.

Theorem: 3.5 Let A be a subset of a topological space X. Then the following are equivalent: (1) A is a Z*-closed set, (2) δ -pint(pcl(A)) \subseteq A, (3) there exists $U \in \delta$ -PC(X) such that pint(U) \subseteq A \subseteq U, (4) pint(A) = pint(δ -pcl(A)).

Proof: It follows from Theorem 3.4.

Proposition: 3.5 If A is a Z*-open subset of a topological space (X, τ) such that $A \subseteq B \subseteq pcl(A)$, then B is Z*-open.

4. SOME TOPOLOGICAL OPERATIONS.

Definition: 4.1 Let (X, τ) be a topological space and $A \subseteq X$. Then the Z*-boundary of A(briefly, Z*-b(A)) is defined by $Z^*-b(A) = Z^*-cl(A) \cap Z^*-cl(X \setminus A)$.

Theorem: 4.1 If A is a subsets of a topological space (X, τ) , then the following statement are hold:

(1) $Z^{*}-b(A)$ is $Z^{*}-closed$, (2) $Z^{*}-b(A) = Z^{*}-b(X \setminus A)$, (3) $Z^{*}-b(A) = Z^{*}-cl(A) \setminus Z^{*}-int(A)$, (4) $Z^{*}-b(A) \cap Z^{*}-int(A) = \emptyset$, (5) $Z^{*}-b(A) \cap Z^{*}-int(A) = Z^{*}-cl(A)$, (6) $Z^{*}-b(Z^{*}-b(A)) \subseteq Z^{*}-b(A)$, (7) $Z^{*}-b(Z^{*}-int(A)) \subseteq Z^{*}-b(A)$, (8) $Z^{*}-b(Z^{*}-cl(A)) \subseteq Z^{*}-b(A)$, (9) $Z^{*}-int(A) = A \setminus Z^{*}-b(A)$, (10) $Z^{*}-b(A \cap B) \subseteq Z^{*}-b(A) \cup Z^{*}-b(B)$.

Proof: (1) It is clear.

Theorem: 4.2 If A is a subset of a space X, then the following statement are hold:

(1) A is a Z*-open set if and only if $A \cap Z^*-b(A) = \emptyset$, (2) A is a Z*-closed set if and only if Z*-b (A) \subset A, (3) A is a Z*-clopen set if and only if Z*-b (A) = \emptyset .

Proof: (1) It follows from Theorem 4.1. © 2012, IJMA. All Rights Reserved **Definition:** 4.2 Z^* -Bd(A) = A \ Z^* -int(A) is said to be Z^* -border of A.

Theorem: 4.2 For a subset A of a space X, the following statements hold:

(1) Z*-Bd(A) ⊆ A, for any A ⊆ X,
(2) A = Z*-int(A) U Z*-Bd(A),
(3) Z*-int(A) ∩ Z*-Bd(A) = Ø,
(4) A is Z*-open if and only if Z*-Bd(A) = Ø,
(5) Z*-Bd(Z*-int(A)) = Ø,
(6) Z*-int(Z*-Bd(A)) = Ø,
(7) Z*-Bd(Z*-Bd(A)) = Z*-Bd(A),
(8) Z*-Bd(A) = A ∩ Z*-cl(X \ A).

Proof: (6) Let $x \in Z^*$ -int(Z^* -Bd(A)). Then $x \in Z^*$ -Bd(A). Since, Z^* -Bd(A) \subseteq A, then $x \in Z^*$ -int(Z^* -Bd(A)) $\subseteq Z^*$ -int(A). Hence, $x \in Z^*$ -int(A) $\cap Z^*$ -Bd(A), which contradicts (3). Thus, Z^* -int(Z^* -Bd(A)) $= \emptyset$, (8) Z^* -Bd(A) = A \ Z^* -int(A) = A \ (X \ Z^*-cl(X \ A)) = A \cap Z^*-cl(X \setminus A).

Definition: 4.3 Let (X, τ) be a topological space and A X. Then the set $X \setminus (Z^*-cl(A))$ is called the Z^* -exterior of A and is denoted by $Z^*-ext(A)$. A point $p \in X$ is called a Z^* - exterior point of A, if it is a Z^* -interior point of $X \setminus A$.

Theorem: 4.3 If A and B are two subsets of a space (X, τ) , then the following statement are hold:

(1) $Z^*-ext(A)$ is Z^*-open , (2) $Z^*-ext(A) = Z^*-int(X \setminus A)$, (3) $Z^*-ext(Z^*-ext(A)) = Z^*-int(Z^*-cl(A))$, (4) $Z^*-ext(X \setminus Z^*-ext(A)) = Z^*-ext(A)$, (5) $Z^*-int(A) \subseteq Z^*-ext(Z^*-ext(A))$, (6) $Z^*-ext(A) \cap Z^*-b(A) = \emptyset$, (7) $Z^*ext(A) \cup Z^*-b(A) = Z^*-cl(X \setminus A)$, (8) $\{Z^*-int(A), Z^*-b(A) = Z^*-cl(X \setminus A)$, (9) If $A \subseteq B$, then $Z^*-ext(B) \subseteq Z^*-ext(A)$, (10) $Z^*-ext(\emptyset) = X$ and $Z^*-ext(A) = \emptyset$, (11) $Z^*-ext(A \cup B) \subseteq Z^*-ext(A) \cup Z^*-ext(B)$, (12) $Z^*-ext(A \cap B) \supseteq Z^*-ext(A \cap B)$.

Proof: It follows from Theorems 3.1 and 4.1.

Remark: 4.1The inclusion relation in parts (11) and (12) of the above theorem cannot be replaced by equality as is shown by the following example.

Example: 4.1 Let $X = \{a, b, c, d\}$ with topology $\tau = \{\emptyset, \{a\}, \{b, c\}, \{a, b, c\}, X\}$.

If A={b, c} and B={a, c}, then $Z^*-ext(A) = \{a, d\}, Z^*-ext(B) = \{b, d\}$. But $Z^*-ext(AUB) = \emptyset$,

Therefore Z*-ext (A) U Z*-ext(B) \nsubseteq Z*-ext(AUB). Also, Z*-ext (A \cap B) = {a, b, d}, hence,

 $Z^*-ext(A \cap B) \nsubseteq Z^*-ext(A) \cap Z^*-ext(B).$

Definition: 4.4 Let A be a subset of a topological space (X, τ) . Then a point $P \in X$ is called a Z*-limit point of a set $A \subseteq X$ if every Z*-open set $G \subseteq X$ containing p contains a point of A other than p. The set of all Z*-limit points of A is called a Z*-derived set of A and is denoted by Z*-d(A).

Theorem: 4.4 If A and B are two subsets of a space X, then the following statement are hold: (1) If $A \subseteq B$, then $Z^*-d(A) \subseteq Z^*-d(B)$, (2) $Z^*-d(A) \cup Z^*-d(B) \subseteq Z^*-d(A \cup B$ (3) $Z^*-d(A \cap B) \subseteq Z^*-d(A) \cap Z^*-d(B)$, (4) A is a Z^* -closed set if and only if it contains each of its Z^* -limit points, (5) $Z^*-cl(A) = A \cup Z^*-d(A)$.

Proof: It is clear.

Definition: 4.5 A subset N of a topological space (X, τ) is called a Z*-neighbourhood (briefly, Z*-nbd) of a point $P \in X$ if there exists a Z*-open set W such that $P \in W \subseteq N$. The class of all Z*-nbds of $P \in X$ is called the Z*-neighbourhood system of P and denoted by Z*-N_p.

Theorem: 4.5 A subset G of a space X is Z^* -open if and only if it is Z^* -nbd, for every point $P \in G$.

Proof: It is clear.

Theorem: 4.6 In a topological space (X, τ) . Let Z^*-N_p be the Z^* -nbd System of a point $P \in X$. Then the following statement is hold:

(1) Z^*-N_p is not empty and p belongs to each member of Z^*-N_p ,

(2) Each superset of members of N_p belongs to Z*-N_p,

(3) Each member $N \in Z^*-N_p$ is a superset of a member $W \in Z^*-N_p$, where W is Z*-nbd of each point $P \in W$.

Proof: Obvious.

5. Z*-continuous mappings.

Definition: 5.1 A function $f:(X, \tau) \rightarrow (Y, \sigma)$ is called Z*-continuous if $f^{-1}(V)$ is Z*-open in X for each $V \in \sigma$.

Remark: 5.1. Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be mapping from a space (X, τ) into a space (Y, σ) , The following hold:

Now, the following examples show that these implication are not reversible.

Example: 5.1 Let $X = Y = \{a, b, c, d\}$, $\tau = \{\emptyset, \{a\}, \{c\}, \{a, b\}, \{a, c\}, \{a, b, c\}, \{a, c, d\}, X\}$, $\sigma = \{\emptyset, \{b, c\}, \{a, d\}, Y\}$. Then, the identity $f : (X, \tau) \rightarrow (Y, \sigma)$ is Z*-continuous but not γ -continuous and not e-continuous.

Example: 5.2 Let $X = Y = \{a, b, c, d, e\}, \tau = \{\emptyset, \{a, b\}, \{c, d\}, \{a, b, c, d\}, X\}, \sigma = \{\emptyset, \{a, e\}, Y\}$. Then the identity f: $(X, \tau) \rightarrow (Y, \sigma)$ is e*-continuous but not Z*-continuous.

Theorem: 5.1 Let $f:(X, \tau) \rightarrow (Y, \sigma)$ be a mapping. Then the following statements are equivalent:

(1) f is Z*-continuous.

(2) For each $x \in X$ and $V \in \sigma$ containing f(X), there exists $U \in Z^*O(X)$ containing x such that $f(U) \subseteq V$,

(3) The inverse image of each closed set in Y is Z^* -closed in X,

(4) $\operatorname{int}(\operatorname{cl}(f^{-1}(B))) \cap \operatorname{cl}(\delta \operatorname{-int}(f^{-1}(B))) \subseteq f^{-1}(\operatorname{cl}(B))$, for each $B \subseteq Y$,

(5) $f^{-1}(int(B)) \subseteq cl(int(f^{-1}(B))) \cup int(\delta - cl(f^{-1}(B)))$, for each $B \subseteq Y$,

(6) If f is bijective, then $int(f(A)) \subseteq f(cl(int(A))) \cup f(int(\delta-cl(A)))$, for each $A \subseteq X$,

(7) If f is bijective, then $f(int(cl(A))) \cap f(cl(\delta-int(A))) \subseteq cl(f(A))$, for each $A \subseteq X$.

Proof: (1) \leftrightarrow (2) and (1) \leftrightarrow (3) are obvious,

 $\begin{array}{l} (3) \rightarrow (4). \ Let \ B \subseteq Y, \ then \ by \ (3) \ f^{-1}(cl(B)) \ is \ Z^*-closed. \ This \ means \\ f^{-1}(cl(B)) \supseteq \ int(cl(f^{-1}(cl(B)))) \ \cap \ cl(\delta - int(f^{-1}(cl(B)))) \ \supseteq \ int(cl(\ f^{-1}(B))) \ \cap \ cl(\delta - int(f^{-1}(B))), \end{array}$

 $(4) \rightarrow (5)$. By replacing $Y \setminus B$ instead of B in (4), we have int(cl($f^{-1}(Y \setminus B)$)) \cap cl(δ -int($f^{-1}(Y \setminus B)$)) $\subseteq f^{-1}(cl(Y \setminus B))$ and therefore $f^{-1}(int(B)) \subseteq cl(int(f^{-1}(B))) \cup int(\delta$ -cl($f^{-1}(B)$)),

 $(5) \rightarrow (6)$. Follows directly by replacing A instead of $f^{-1}(B)$ in (5) and applying the bijection of f,

 $(6) \rightarrow (7)$. By complementation of (6) and applying the bijective of f, we have $f(int(cl (X \setminus A))) \cap f(cl(\delta-int(X \setminus A))) \subseteq cl(f(X \setminus A))$. We obtain the required by replacing A instead of $X \setminus A$,

 $(7) \rightarrow (1)$. Let $V \in \sigma$. But $W = Y \setminus V$, by (7), we have $f(int(cl(f^{-1}(W)))) \cap f(cl(\delta - int(f^{-1}(W)))) \subseteq cl(ff^{-1}(W)) \subseteq cl(W) = W$. So $int(cl(f^{-1}(W))) \cap cl(\delta - int(f^{-1}(W))) \subseteq f^{-1}(W)$ implies $f^{-1}(W)$ is Z*-closed and therefore $f^{-1}(V) \in Z^*O(X)$.

Theorem: 5.2. Let $f:(X, \tau) \rightarrow (Y, \sigma)$ be a mapping. Then the following statements are equivalent: (1) f is Z*-continuous,

© 2012, IJMA. All Rights Reserved

(2) Z^* -cl(f⁻¹(B)) \subseteq f⁻¹(cl(B)), for each B \subseteq Y, (3) f (Z*-cl(A)) \subseteq cl(f (A)), for each A \subseteq X, (4) Z*-Bd(f⁻¹(B)) \subseteq f⁻¹(Bd(B)), for each B \subseteq Y, (5) f (Z*-d(A)) \subseteq cl(f (A)), for each A \subseteq X, (6) f⁻¹(int(B)) \subseteq Z*-int(f⁻¹(B)), for each B \subseteq Y,

Proof: (1) \rightarrow (2). Let $B \subseteq Y$, $f^{-1}(cl(B))$ is Z*-closed in X. Then Z*-cl($f^{-1}(B)$) \subseteq Z*-cl($f^{-1}(cl(B))$) = $f^{-1}(cl(B))$,

 $(2) \rightarrow (3)$. Let $A \subseteq X$, then $f(A) \subseteq Y$, by (2), $f^{-1}(cl(f(A))) \supseteq Z^*-cl(f^{-1}(f(A))) \supseteq Z^*-cl(A)$.

Therefore, $cl(f(A)) \supseteq f f^{-1}(cl(f(A))) \supseteq f(Z^*-cl(A))$.

 $(3) \rightarrow (1)$. Let W \subseteq Y be open set. Then, F = Y \ W is closed in Y and $f^{-1}(F) = X \setminus f^{-1}(W)$.

Hence, by (3), $f(Z^*-cl(f^{-1}(F))) \subseteq cl(f(f^{-1}(F))) \subseteq cl(F) = F$ thus, $Z^*-cl(f^{-1}(F)) \subseteq f^{-1}(F)$,

So, $f^{-1}(F) = X \setminus f^{-1}(W) \in Z^*C(X)$ and therefore $f^{-1}(W) \in Z^*O(X)$,

 $(4) \rightarrow (6)$. Let $B \subseteq Y$. Then by (4), $Z^*-Bd(f^{-1}(B)) = f^{-1}(B) \setminus Z^*-int(f^{-1}(B)) \subseteq f^{-1}(Bd(B)) = f^{-1}(B \setminus int(B)) = f^{-1}(B) \setminus f^{-1}(int(B))$ this implies $f^{-1}(int(B)) \subseteq Z^*-int(f^{-1}(B))$,

 $(6) \rightarrow (4)$. Let $B \subseteq Y$. Then by (6), $f^{-1}(int(B)) \subseteq Z^*-int(f^{-1}(B))$ we have $f^{-1}(B) \setminus Z^*-int(f^{-1}(B)) \subseteq f^{-1}(B) \setminus f^{-1}(int(B)) \Rightarrow Z^*-Bd(f^{-1}(B)) \subseteq f^{-1}(Bd(B))$,

 $(1) \rightarrow (5)$. It is obvious, since f is Z*-continuous and by (3), f (Z*-cl(A)) \subseteq cl(f (A)), for each $A \subseteq X$. So, f(Z*-d(A)) \subseteq f(Z*-cl(A)) \subseteq cl(f (A)).

 $(5) \rightarrow (1)$. Let $U \subseteq Y$ be open set. Then, $F = Y \setminus U$ is closed in Y and $f^{-1}(F) = X \setminus f^{-1}(U)$.

Hence, by (5), $f(Z^*-d(f^{-1}(F))) \subseteq cl(f(f^{-1}(F))) \subseteq cl(F) = F$. Hence, $Z^*-d(f^{-1}(F)) \subseteq f^{-1}(F)$. By Theorem 4.4, $f^{-1}(F) = X \setminus f^{-1}(U)$ is Z^* -closed in X. Therefore, $f^{-1}(U)$ is Z^* -open in X,

 $(1) \rightarrow (6)$. Let $B \subseteq Y$. Then $f^{-1}(int(B))$ is Z*-open in X. Thus, $f^{-1}(int(B)) = Z^*-int(f^{-1}(int(B))) \subseteq Z^*-int(f^{-1}(B))$. Therefore, $f^{-1}(int(B)) \subseteq Z^*-int(f^{-1}(B))$,

(5) \rightarrow (1). Let $U \subseteq Y$ be an open set. Then $f^{-1}(U) = f^{-1}(int(U)) \subseteq f^{-1}(Z^*-int(U))$.

Hence, $f^{-1}(U)$ is Z*-open in X. Therefore, f is Z*-continuous.

Remark: 5.3. The composition of two Z*-continuous mappings need not be Z*-continuous as show by the following example.

Example: 5.3. Let $X = Y = Z = \{a, b, c, d, e\}$ with topologies $\tau_x = \{\emptyset, \{a, b\}, \{c, d\}, \{c, d\},$

{a, b, c, d}, X}, an indiscrete topology (Y, \Im) and $\tau_Z = \{\emptyset, \{a, e\}, Z\}$. Let the mappings f:(X, τ_X) \rightarrow (Y,) and g: (Y,) \rightarrow (Z, τ_Z) defined as identity mappings. It is clear that f and g are Z*-continuous but g f is not Z*-continuous.

REFERENCES:

[1] M.E. Abd El- Monsef ; S.N. El-Deeb and R.A. Mahmoud, β -open sets and β -continuous mappings, Bull. Fac. Sci. Assiut Univ. 12(1983), pp. 77-90.

[2] D. Andrijevi'c, Semi-preopen sets, Math. Vesnik, 38(1) (1986), pp. 24-32.

[3] D. Andrijevi'c, On b-open sets, Mat. Vesnik, 48 (1996), pp. 59 - 64 .

[4] J.Dontchev and M. Przemski, On the various decompositions of continuous and some weakly continuous, Acta Math. Hungarica, 71(1-2) (1996), pp. 109 - 120.

Ali Mubarki*/ Z^{*}-Open Sets And Z^{*}-Continuity In Topological Spaces/ IJMA- 3(1), Jan.-2012, Page: 118-125

[5] E. Ekici, On e-open sets, DP*-sets and DPE*-sets and decompositions of continuity, Arabian J. Sci, 33 (2) (2008), pp. 269 - 282.

[6] E. Ekici, On a-open sets, A*-sets and decompositions of continuity and super continuity, Annales Univ. Sci. Budapest, 51(2008), pp. 39 -51.

[7] E. Ekici, On e*-open sets and $(D, S)^*$ -sets and decompositions of continuous functions, Mathematica Moravica , Vol. 13 -1 (2009), pp. 29-36.

[8] A.A.EL-Atik, A study of some types of mappings on topological spaces, M.Sc. Thesis, Tanta Univ. Egypt (1997).

[9] E. Ekici and G. B. Navalagi, "ô-Semicontinuous Functions", Math. Forum, 17 (2004-2005), pp. 29-42.

[10] E. Hatir; T. Noiri. Decompositions of continuity and complete continuity, Acta Mathematica Hungarica, 113, (2006). 281-287.

[11] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 68, pp. 44-46, (1961).

[12] A. S. Mashhour; M. E. Abd EL-Monsef and S .N .EL-Deeb, On pre-continuous and weak precontinuous mappings, Proc. Math . Phys. Soc .Egypt, 53 (1982), pp. 47 - 53.

[13] A. S. Mashhour, I. A. Hasanein, and S. N. El-Deeb, α -continuous and α -open mappings, Acta, Math. Hungar. 41 (1983), no. 3-4, 213-218.

[14] O. Njastad, On some classes of nearly open sets, Pacific J. Math, 15 (1965), pp.961- 970. [15] J. H. Park; B.Y. Lee and M. J. Son, On δ-semiopen sets in topological spaces, J. Indian Acad. Math, 19 (1) (1997), pp. 59 - 67.

[15] S. Raychaudhuri and M. N. Mukherjee, On δ -almost continuity and δ -preopen sets, Bull. Inst. Math. Acad. Sinica, 21 (1993), pp. 357 - 366.

[16] M.H. Stone, Application of the theory of Boolean rings to general topology, TAMS, 41 (1937), pp. 375 - 381.

[17] N.V. Velicko, H-closed topological spaces, Amer. Math. Soc. Transl, 78(1968), 103-118.
