International Journal of Mathematical Archive-3(1), 2012, Page: 118-125
 (Ca $\$$ MA Available online through www.ijma.info ISSN 2229-5046

\mathbf{Z}^{*}-Open Sets And \mathbf{Z}^{*}-Continuity In Topological Spaces

Ali Mubarki*
Department of Mathematics, Faculty of Science, Taibah University E-mail: alimobarki@hotmail.com

(Received on: 26-12-11; Accepted on: 12-01-12)

Abstract

\boldsymbol{T} he aim of this paper is to introduce and study the notion of Z^{*}-open sets and Z^{*}-continuity. Some characterizations of these notions are presented. Also, some topological operations such as: Z^{*}-boundary, Z^{*}-border, Z^{*}-exterior, Z^{*}-limit point are introduced.

AMS Subject Classification: Primary 54D10, 54C05, 54C08.
Keyword:. Z^{*}-open sets , Z^{*}-boundary, Z^{*}-border, Z^{*}-exterior, Z^{*}-limit point, Z^{*}-nbd and Z^{*}-continuity.

1. INTRODUCTION:

In 1963, N. Levine [11] introduced semiopen sets and semi-continuous mappings in topological spaces.The concept of δ-preopen sets and δ-almost continuity introduced by S.Raychaudhuri and M.N. Mukheriee in 1993 [16]. Also, in 1996 Andrijevi'c [3] (resp. J. Dontchev and M. Przemski [4], A. A. El-Atik [8]) introduced the notion b-open (resp. sp-open, γ-open) sets. In 2008, Ekici [5] introduced e-open sets and e-continuous map in topological spaces. The purpose of this paper is to introduce and study the notion of Z^{*}-open sets and Z^{*}-continuity. Some topological operations such as: Z^{*} limit point, Z^{*}-boundary and Z^{*}-exterior...atc are introduced. Also, some characterizations of these notions are presented.

2. PRELIMINARIES:

A subset A of a topological space ($\mathrm{X}, \tau)$ is called regular open (resp. regular closed) [18] if $\mathrm{A}=\operatorname{int}(\mathrm{cl}(\mathrm{A})$) (resp. $\mathrm{A}=$ $\operatorname{cl}(\operatorname{int}(\mathrm{A}))$). The delta interior [18] of a subset A of X is the union of all reg ular open sets of X contained in A is denoted by δ - $\operatorname{int}(\mathrm{A})$. A subset A of a space X is called δ-open if it is the union of regular open sets. The complement of δ-open set is called δ-closed. Alternatively, a set A of (X, τ) is called δ-closed [18] if $\mathrm{A}=\delta$-cl(A), where δ-cl $(\mathrm{A})=$ $\{\mathrm{x} \in \mathrm{X}: \mathrm{A} \cap \operatorname{int}(\mathrm{cl}(\mathrm{U})) \neq \emptyset, \mathrm{U} \in \tau$ and $\mathrm{x} \in \mathrm{U}\}$. Throughout this paper (X, τ) and (Y, σ) (simply X and Y) represent nonempty topological spaces on which no separation axioms are assumed unless otherwise mentioned. For a subset A of a space $(X, \tau), \operatorname{cl}(A), \operatorname{int}(A)$ and $X \backslash A$ denote the closure of A, the interior of A and the complement of A respectively. A subset A of a space X is called a-open[6] (resp. α-open [14], δ-semiopen [15], semiopen [11], δ-preopen [16], preopen [12], b-open [3] or γ-open [8] or sp-open [4], e-open [5], β-open [1] or semi-preopen [2], e^{*}-open [7] or δ - β-open [10]) if $\mathrm{A} \subseteq \operatorname{int}(\mathrm{cl}(\delta-\operatorname{int}(\mathrm{A}))),(\operatorname{resp} . \mathrm{A} \subseteq \operatorname{int}(\mathrm{cl}(\operatorname{int}(\mathrm{A}))), \mathrm{A} \subseteq \mathrm{cl}(\delta-\operatorname{int}(\mathrm{A})), \mathrm{A} \subseteq \operatorname{cl}(\operatorname{int}(\mathrm{A})), \mathrm{A} \subseteq \operatorname{int}(\delta-\mathrm{cl}(\mathrm{A})), \mathrm{A} \subseteq \operatorname{int}(\mathrm{cl}(\mathrm{A})), \mathrm{A}$ $\subseteq \operatorname{int}(\operatorname{cl}(\mathrm{A})) \cup \operatorname{cl}(\operatorname{int}(\mathrm{A})), \mathrm{A} \subseteq \mathrm{cl}(\delta-\operatorname{int}(\mathrm{A})) \cup \operatorname{int}(\delta-\mathrm{cl}(\mathrm{A})), \mathrm{A} \subseteq \operatorname{cl}(\operatorname{int}(\mathrm{cl}(\mathrm{A}))), \mathrm{A} \subseteq \operatorname{cl}(\operatorname{int}(\delta-\mathrm{cl}(\mathrm{A})))$. The complement of a δ-semiopen (resp. semiopen, δ-preopen, preopen) set is called δ-semi-closed (resp. semi-closed, δ-pre-closed, preclosed). The intersection of all δ-semi-closed (resp. semi-closed, δ-pre-closed, pre-closed)sets containing A is called the δ-semi-closure (resp. semi-closure, δ-pre-closure, pre-closure) of A and is denoted by δ-scl(A) (resp. scl(A), δ $\operatorname{pcl}(\mathrm{A}), \operatorname{pcl}(\mathrm{A}))$. The union of all δ-semiopen(resp. semiopen, δ-preopen, preopen) sets contained in A is called the δ -semi-interior (resp. semi-interior, δ-pre-interior, pre-interior) of A and is denoted by δ-sint(A) (resp. $\operatorname{sint}(\mathrm{A}), \delta-\operatorname{pint}(\mathrm{A})$, $\operatorname{pint}(\mathrm{A})$). The family of all δ-open (resp. a-open, α-open, δ-semiopen, semiopen, δ-preopen, preopen, b-open, e-open, β-open, e^{*}-open) is denoted by $\delta \mathrm{O}(\mathrm{X})$ (resp. $\mathrm{aO}(\mathrm{X}), \alpha \mathrm{O}(\mathrm{X}), \delta \mathrm{SO}(\mathrm{X}), \mathrm{SO}(\mathrm{X}), \delta \mathrm{PO}(\mathrm{X}), \mathrm{PO}(\mathrm{X}), \mathrm{BO}(\mathrm{X}), \mathrm{eO}(\mathrm{X}), \beta \mathrm{O}(\mathrm{X})$, $\mathrm{e}^{*} \mathrm{O}(\mathrm{X})$).

Lemma: 2.1 [18] Let A, B be two subsets of (X, τ). Then:
(1) A is δ-open if and only if $\mathrm{A}=\delta$-int(A),
(2) $\mathrm{X} \backslash(\delta-\operatorname{int}(\mathrm{A}))=\delta-\mathrm{cl}(\mathrm{X} \backslash \mathrm{A})$ and $\delta-\operatorname{int}(\mathrm{X} \backslash \mathrm{A})=\mathrm{X} \backslash(\delta-\mathrm{cl}(\mathrm{A}))$,
(3) $\mathrm{cl}(\mathrm{A}) \subseteq \delta-\mathrm{cl}(\mathrm{A})($ resp. $\delta-\operatorname{int}(\mathrm{A}) \subseteq \operatorname{int}(\mathrm{A}))$, for any subset A of X ,
(4) $\delta-\mathrm{cl}(\mathrm{A} \cup \mathrm{B})=\delta-\mathrm{cl}(\mathrm{A}) \cup \delta-\mathrm{cl}(\mathrm{B}), \delta-\operatorname{int}(\mathrm{A} \cap \mathrm{B})=\delta-\operatorname{int}(\mathrm{A}) \cap \delta-\operatorname{int}(\mathrm{B})$.

Proposition: 2.1 Let A be a subset of a space (X, τ). Then:
(1) $\operatorname{scl}(\mathrm{A})=\mathrm{A} \cup \operatorname{int}(\mathrm{cl}(\mathrm{A})), \operatorname{sint}(\mathrm{A})=\mathrm{A} \cap \operatorname{cl}(\operatorname{int}(\mathrm{A}))$ [3],
(2) $\operatorname{pcl}(\mathrm{A})=\mathrm{A} \cup \mathrm{cl}(\operatorname{int}(\mathrm{A})), \operatorname{pint}(\mathrm{A})=\mathrm{A} \cap \operatorname{int}(\mathrm{cl}(\mathrm{A}))[3]$,
(3) $\delta-\operatorname{scl}(\mathrm{X} \backslash \mathrm{A})=\mathrm{X} \backslash \delta-\operatorname{sint}(\mathrm{A}), \delta-\operatorname{scl}(\mathrm{A} \cup \mathrm{B}) \subseteq \delta-\operatorname{scl}(\mathrm{A}) \cup \delta-\operatorname{scl}(\mathrm{B})[15]$,
(4) $\delta-\operatorname{pcl}(X \backslash A)=X \backslash \delta-\operatorname{pint}(A), \delta-\operatorname{pcl}(A \cup B) \subseteq \delta-\operatorname{pcl}(A) \cup \delta-\operatorname{pcl}(B)[16]$.

Lemma: 2.2 The following hold for a subset H of a space (X, τ).
(1) $\delta-\operatorname{pcl}(\mathrm{H})=\mathrm{H} \square \mathrm{cl}(\delta-\operatorname{int}(\mathrm{H}))$ and $\delta-\operatorname{pint}(\mathrm{H})=\mathrm{H} \cap \operatorname{int}(\delta-\mathrm{cl}(\mathrm{H}))$ [16] ,
(2) $\delta-\operatorname{scl}(\mathrm{H})=\mathrm{H} \operatorname{Uint}(\delta-\mathrm{cl}(\mathrm{H}))$ and $\delta-\operatorname{sint}(\mathrm{H})=\mathrm{H} \cap \operatorname{cl}(\delta-\operatorname{int}(\mathrm{H}))$ [15],
(3) $\operatorname{cl}(\delta-\operatorname{int}(\mathrm{H}))=\delta-\mathrm{cl}(\delta-\operatorname{int}(\mathrm{H}))$ and $\operatorname{int}(\delta-\mathrm{cl}(\mathrm{H}))=\delta-\operatorname{int}(\delta-\mathrm{cl}(\mathrm{H})[5]$.

Definition: 2.1 A function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is called α-continuous [13] (resp. pre-continuous [12], δ-almost continuous[16], γ-continuous [8], e-continuous [5], e^{*}-continuous [7]) if $\mathrm{f}^{-1}(\mathrm{~V})$ is α-open(resp. preopen, δ-preopen, γ open, e-open, e^{*}-open) in X for each $\mathrm{V} \in \sigma$.

3. Z^{*}-open sets and Z^{*}-closed:

Definition: 3.1 A subset A of a topological space (X, τ) is said to be:
(1) Z^{*}-open if $A \subseteq \operatorname{cl}(\operatorname{int}(A)) \cup \operatorname{int}(\delta-\operatorname{cl}(A))$,
(2) Z^{*}-closed if $\operatorname{int}(\operatorname{cl}(A)) \cap \operatorname{cl}(\delta-\operatorname{int}(A)) \subseteq A$.

The family of all Z^{*}-open (resp. Z^{*}-closed) subsets of a space (X, τ) will be as always denoted by $Z^{*} O(X)$ (resp. Z*C(X)).

Remark: 3.1 The following holds for a space (X, τ).
(1) Every γ-open (resp. e-open) set is Z^{*}-open,
(2) Every Z^{*}-open set is e^{*}-open.

But the converse of the a bovine are not necessarily true in general as shown by the following examples.
Example: 3.1 Let $X=\{a, b, c, d\}$, with topology $\tau=\{\emptyset,\{a\},\{c\},\{a, b\},\{a, c\},\{a, b, c\},\{a, c, d\}, X\}$. Then:
(1) the subset $\{\mathrm{a}, \mathrm{d}\}$ is a Z^{*}-open set but not e-open,
(2) the subset $\{b, c\}$ is a Z^{*}-open set but not γ-open.

Example: 3.2 Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}\}$ with topology $\tau=\{\emptyset,\{\mathrm{a}, \mathrm{b}\},\{\mathrm{c}, \mathrm{d}\},\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}, \mathrm{X}\}$. Then, the subset $\{\mathrm{a}, \mathrm{e}\}$ is e^{*}-open set but not Z^{*}-open.

Remark: 3.2 The following diagram holds for a subset of a space X :

Proposition: 3.1 Let (X, τ) be a topological space .Then the δ-closure of a Z^{*}-open subset of (X, τ) is δ-semiopen.
Proof: Let $\mathrm{A} \in \mathrm{Z}^{*} \mathrm{O}(\mathrm{X})$. Then $\delta-\mathrm{cl}(\mathrm{A}) \subseteq \delta-\mathrm{cl}(\operatorname{cl}(\operatorname{int}(\mathrm{A})) \cup \operatorname{int}(\delta-\mathrm{cl}(\mathrm{A}))) \subseteq \delta-\operatorname{cl}(\operatorname{cl}(\operatorname{int}(\mathrm{A}))) \cup \delta-\mathrm{cl}(\operatorname{int}(\delta-\mathrm{cl}(\mathrm{A}))) \subseteq \delta-$ $\operatorname{cl}(\operatorname{int}(\mathrm{A})) \cup \delta-\operatorname{cl}(\operatorname{int}(\delta-\operatorname{cl}(\mathrm{A})))=\delta-\operatorname{cl}(\operatorname{int}(\delta-\operatorname{cl}(\mathrm{A})))=\delta-\operatorname{cl}(\delta-\operatorname{int}(\delta-\operatorname{cl}(\mathrm{A})))=\operatorname{cl}(\delta-\operatorname{int}(\delta-\operatorname{cl}(\mathrm{A})))$. Therefore $\delta-\operatorname{cl}(\mathrm{A}) \in$ $\delta \mathrm{SO}(\mathrm{X})$.

Lemma: 3.1 Let (X, τ) be a topological space. Then the following statements are hold.
(1) The union of arbitrary Z^{*}-open sets is Z^{*}-open,
(2) The intersection of arbitrary Z^{*}-closed sets is Z^{*}-closed.

Proof: (1) It is clear.
Remark: 3.2 By the following we show that the intersection of any two Z^{*}-open sets is not Z^{*}-open.
Example: 3.3 Let $X=\{a, b, c\}$ with topology $\tau=\{\emptyset,\{b\},\{c\},\{b, c\}, X\}$.Then $A=\{a, c\}$ and $B=\{a, b\}$ are Z^{*}-open sets, but $A \cap B=\{a\}$ is not Z^{*}-open.

Definition: 3.2 Let (X, τ) be a topological space. Then:
(1) The union of all Z^{*}-open sets of X contained in A is called the Z^{*}-interior of A and is denoted by Z^{*}-int (A),
(2) The intersection of all Z^{*}-closed sets of X containing A is called the Z^{*}-closure of A and is denoted by Z^{*}-cl(A).

Theorem: 3.1 Let A, B be two subsets of a topological space (X, τ). Then the following are hold:
(1) Z^{*}-cl $(X \backslash A)=X \backslash Z^{*}$-int(A),
(2) Z^{*}-int $(X \backslash A)=X \backslash Z^{*}-\operatorname{cl}(A)$,
(3) If $\mathrm{A} \subseteq \mathrm{B}$, then $\mathrm{Z}^{*}-\mathrm{cl}(\mathrm{A}) \subseteq \mathrm{Z}^{*}-\mathrm{cl}(\mathrm{B})$ and $\mathrm{Z}^{*}-\operatorname{int}(\mathrm{A}) \subseteq \mathrm{Z}^{*}-\operatorname{int}(\mathrm{B})$,
(4) $x \in Z^{*}$-cl(A) if and only if for each a Z^{*}-open set U contains $x, U \cap A \neq \emptyset$,
(5) $x \in Z^{*}$-int(A) if and only if there exist a Z^{*}-open set W such that $x \in W \subseteq A$,
(6) A is Z^{*}-open set if and only if $A=Z^{*}-\operatorname{int}(A)$,
(7) A is Z^{*}-closed set if and only if $\mathrm{A}=\mathrm{Z}^{*}$-cl(A),
(8) $Z^{*}-\mathrm{cl}\left(Z^{*}-\mathrm{cl}(\mathrm{A})\right)=\mathrm{Z}^{*}-\mathrm{cl}(\mathrm{A})$ and $\mathrm{Z}^{*}-\operatorname{int}\left(\mathrm{Z}^{*}-\operatorname{int}(\mathrm{A})\right)=\mathrm{Z}^{*}-\operatorname{int}(\mathrm{A})$,
(9) $Z^{*}-c l(A) \cup Z^{*}-c l(B) \subseteq Z^{*}-c l(A \cup B)$ and $Z^{*}-\operatorname{int}(A) \cup Z^{*}-\operatorname{int}(B) \subseteq Z^{*}-\operatorname{int}(A \cup B)$,
(10) $Z^{*}-\operatorname{int}(A \cap B) \subseteq Z^{*}-\operatorname{int}(A) \cap Z^{*}-\operatorname{int}(B)$ and $Z^{*}-c l(A \cap B) \subseteq Z^{*}-c l(A) \cap Z^{*}-c l(B)$.

Remark: 3.3 By the following example we show that the inclusion relation in parts (9) and (10) of the above theorem cannot be replaced by equality.

Example: 3.4 Let $X=\{a, b, c, d\}$, with topology $\tau=\{\emptyset,\{a\},\{b\},\{a, b\}, X\}$.Then:
(1) If $A=\{a, d\}, B=\{b, d\}$, then $Z^{*}-c l(A)=A, Z^{*}-c l(B)=B$ and $Z^{*}-c l(A \cup B)=X$.

Thus $\mathrm{Z}^{*}-\mathrm{cl}(\mathrm{A} \cup \mathrm{B}) \nsubseteq \mathrm{Z}^{*}-\mathrm{cl}(\mathrm{A}) \cup \mathrm{Z}^{*}-\mathrm{cl}(\mathrm{B})$,
(2) If $\mathrm{E}=\{\mathrm{a}, \mathrm{b}\}, \mathrm{F}=\{\mathrm{a}, \mathrm{c}\}$, then $\mathrm{Z}^{*}-\mathrm{cl}(\mathrm{E})=\mathrm{X}, \mathrm{Z}^{*}-\mathrm{cl}(\mathrm{F})=\mathrm{F}$ and $\mathrm{Z}^{*}-\mathrm{cl}(\mathrm{E} \cap \mathrm{F})=\{\mathrm{a}\}$.

Thus $\mathrm{Z}^{*}-\mathrm{cl}(\mathrm{E}) \cap \mathrm{Z}^{*}-\mathrm{cl}(\mathrm{F}) \nsubseteq \mathrm{Z}^{*}-\mathrm{cl}(\mathrm{E} \cap \mathrm{F})$.
(3) If $M=\{c, d\}, N=\{b, d\}$, then $Z^{*}-\operatorname{int}(M)=\emptyset, Z^{*}-\operatorname{int}(N)=N$ and $Z^{*}-i n t(M \cup N)=\{b, c, d\}$.

Thus $Z^{*}-\operatorname{int}(M \cup N) \nsubseteq Z^{*}-\operatorname{int}(M) \cup Z^{*}-\operatorname{int}(N)$.
Theorem: 3.2 Let A, B be two subsets of a topological space (X, τ). Then the following are hold:
(1) $Z^{*}-\operatorname{cl}(\operatorname{cl}(A) \cup B)=\operatorname{cl}(A) \cup Z^{*}-c l(B)$,
(2) $Z^{*}-\operatorname{int}(\operatorname{int}(A) \cap B)=\operatorname{int}(A) \cap Z^{*}-\operatorname{int}(B)$.

Proof: (1) $Z^{*}-\mathrm{cl}(\mathrm{cl}(\mathrm{A}) \cup B) \supseteq \mathrm{Z}^{*}-\mathrm{cl}(\mathrm{cl}(\mathrm{A})) \cup \mathrm{Z}^{*}-\mathrm{cl}(\mathrm{B}) \supseteq \mathrm{cl}(\mathrm{A}) \cup \mathrm{Z}^{*}-\mathrm{cl}(\mathrm{B})$.
The other inclusion, $\mathrm{cl}(\mathrm{A}) \cup \mathrm{B} \subseteq \operatorname{cl}(\mathrm{A}) \cup \mathrm{Z}-\mathrm{cl}(\mathrm{B})$ which is Z^{*}-closed. Hence,
$Z^{*}-\operatorname{cl}(\operatorname{cl}(A) \cup B) \subseteq \operatorname{cl}(A) \cup Z^{*}-c l(B)$. Therefore, $Z^{*}-\operatorname{cl}(\operatorname{cl}(A) \cup B)=\operatorname{cl}(A) \cup Z^{*}-c l(B)$, (2) It is follows from (1).
Theorem: 3.3 Let (X, τ) be a topological space and $A \subseteq X$. Then A is a Z^{*}-open set if and only if $A=\operatorname{sint}(A) \cup \delta$ pint(A).

Proof: It is clear.
Proposition: 3.2 Let (X, τ) be a topological space and $A \subseteq X$. Then A is a Z^{*}-closed set if and only if $A=\operatorname{scl}(A) \cap \delta$ $\operatorname{pcl}(\mathrm{A})$.

Proof: It follows from Theorem 3.3.
Proposition: 3.3 Let A be a subset of a space (X, τ).Then:
(1) $Z^{*}-\operatorname{cl}(A)=\operatorname{scl}(A) \cap \delta-\operatorname{pll}(A)$,
(2) $Z^{*}-\operatorname{int}(A)=\operatorname{sint}(A) \cup \delta-\operatorname{pint}(A)$.

Lemma: 3.2 Let A be a subset of a topological space (X, τ). Then the following are hold:
(1) $\operatorname{pcl}(\delta-\operatorname{pint}(\mathrm{A}))=\delta-\operatorname{pint}(\mathrm{A}) \cup \operatorname{cl}(\operatorname{int}(\mathrm{A}))$,
(2) $\operatorname{pint}(\delta-\operatorname{pcl}(\mathrm{A}))=\delta-\operatorname{pcl}(\mathrm{A}) \cap \operatorname{int}(\mathrm{cl}(\mathrm{A}))$.

Proof: (1) By Lemma 2.2 and Proposition 2.1, $\operatorname{pcl}(\delta-\operatorname{pint}(A))=\delta-\operatorname{pint}(A) \cup \operatorname{cl}(\operatorname{int}(\delta-\operatorname{pint}(A)))=\delta-\operatorname{pint}(A) \cup \operatorname{cl}(\operatorname{int}(A \cap$ $\delta-\operatorname{cl}(\operatorname{int}(\mathrm{A}))))=\delta-\operatorname{pint}(\mathrm{A}) \cup \operatorname{cl}(\operatorname{int}(\mathrm{A}))$,
(2) It follows from (1).

Proposition: 3.4 Let A be a subset of a topological space (X, τ). Then:
(1) $Z^{*}-\operatorname{cl}(A)=A \cup \operatorname{pint}(\delta-\operatorname{pcl}(A))$,
(2) $Z^{*}-\operatorname{int}(A)=A \cap \operatorname{pcl}(\delta-\operatorname{pint}(A))$.

Proof: (1) By Lemma 3.2, $\mathrm{A} \cup \operatorname{pint}(\delta-\operatorname{pcl}(\mathrm{A}))=\mathrm{AU}(\delta-\operatorname{pcl}(\mathrm{A}) \cap \operatorname{int}(\operatorname{cl}(\mathrm{A})))=(\mathrm{A} \cup \delta-\operatorname{pcl}(\mathrm{A})) \cap(\mathrm{A} \cup \operatorname{int}(\mathrm{cl}(\mathrm{A})))=$ $\delta-\operatorname{pcl}(\mathrm{A}) \cap \operatorname{scl}(\mathrm{A})=\mathrm{Z}^{*}-\mathrm{cl}(\mathrm{A})$.
(2) It follows from (1).

Theorem: 3.4 Let A be a subset of a topological space (X, τ).Then the following are equivalent:
(1) A is a Z^{*}-open set,
(2) $A \subseteq \operatorname{pcl}(\delta-\operatorname{pint}(A))$,
(3) there exists $U \in \delta-\mathrm{PO}(\mathrm{X})$ such that $\mathrm{U} \subseteq \mathrm{A} \subseteq \operatorname{pcl}(\mathrm{U})$,
(4) $\operatorname{pcl}(\mathrm{A})=\operatorname{pcl}(\delta-\operatorname{pint}(\mathrm{A}))$.

Proof: $(1) \rightarrow(2)$. Let A be a Z^{*}-open set. Then, $\mathrm{A}=\mathrm{Z}^{*}-\operatorname{int}(\mathrm{A})$ and by Proposition 3.4, $\mathrm{A}=\mathrm{A} \cap \operatorname{pcl}(\delta-\operatorname{pint}(\mathrm{A}))$ and hence, $\mathrm{A} \subseteq \operatorname{pcl}(\delta-\operatorname{pint}(\mathrm{A}))$.
(3) $\rightarrow(1)$. Let $\mathrm{A} \subseteq \operatorname{pcl}(\delta-\operatorname{pint}(\mathrm{A}))$.Then by Proposition $3.4, \mathrm{~A} \subseteq \mathrm{~A} \cap \operatorname{pcl}(\delta-\operatorname{pint}(\mathrm{A}))=\mathrm{Z}^{*}-\operatorname{int}(\mathrm{A})$ and hence $\mathrm{A}=$ Z^{*} - $\operatorname{int}(\mathrm{A})$. Thus A is Z^{*}-open,
$(2) \rightarrow(3)$. It follows from putting $U=\delta$-pint(A),
(3) $\rightarrow(2)$. Let there exists $U \in \delta-P O(X)$ such that $U \subseteq A \subseteq \operatorname{pcl}(U)$. Since $U \subseteq A$, then $\operatorname{pcl}(U) \subseteq \operatorname{pcl}(\delta-\operatorname{pint}(A))$ therefore $\mathrm{A} \subseteq \operatorname{pcl}(\mathrm{U}) \subseteq \operatorname{pcl}(\delta-\operatorname{pint}(\mathrm{A}))$,
(4) $\leftrightarrow(4)$. It is clear.

Theorem: 3.5 Let A be a subset of a topological space X. Then the following are equivalent:
(1) A is a Z^{*}-closed set,
(2) $\delta-\operatorname{pint}(\operatorname{pcl}(\mathrm{A})) \subseteq \mathrm{A}$,
(3) there exists $U \in \delta-\mathrm{PC}(\mathrm{X})$ such that $\operatorname{pint}(\mathrm{U}) \subseteq \mathrm{A} \subseteq \mathrm{U}$,
(4) $\operatorname{pint}(\mathrm{A})=\operatorname{pint}(\delta-\operatorname{pcl}(\mathrm{A}))$.

Proof: It follows from Theorem 3.4.
Proposition: 3.5 If A is a Z^{*}-open subset of a topological space (X, τ) such that $A \subseteq B \subseteq \operatorname{pcl}(A)$, then B is Z^{*}-open.

4. SOME TOPOLOGICAL OPERATIONS.

Definition: 4.1 Let (X, τ) be a topological space and $A \subseteq X$. Then the Z^{*}-boundary of $A\left(b r i e f l y, Z^{*}-b(A)\right)$ is defined by $Z^{*}-b(A)=Z^{*}-c l(A) \cap Z^{*}-c l(X \backslash A)$.

Theorem: 4.1 If A is a subsets of a topological space (X, τ), then the following statement are hold:
(1) $Z^{*}-b(A)$ is Z^{*}-closed,
(2) $Z^{*}-b(A)=Z^{*}-b(X \backslash A)$,
(3) $Z^{*}-b(A)=Z^{*}-c l(A) \backslash Z^{*}-\operatorname{int}(A)$,
(4) $Z^{*}-b(A) \cap Z^{*}-\operatorname{int}(A)=\emptyset$,
(5) $Z^{*}-b(A) \cap Z^{*}-\operatorname{int}(A)=Z^{*}-c l(A)$,
(6) $Z^{*}-b\left(Z^{*}-b(A)\right) \subseteq Z^{*}-b(A)$,
(7) $Z^{*}-b\left(Z^{*}-\operatorname{int}(A)\right) \subseteq Z^{*}-b(A)$,
(8) $Z^{*}-b\left(Z^{*}-c l(A)\right) \subseteq Z^{*}-b(A)$,
(9) Z^{*}-int $(A)=A \backslash Z^{*}-b(A)$,
(10) $\mathrm{Z}^{*}-\mathrm{b}(\mathrm{A} \cap \mathrm{B}) \subseteq \mathrm{Z}^{*}-\mathrm{b}(\mathrm{A}) \cup \mathrm{Z}^{*}-\mathrm{b}(\mathrm{B})$.

Proof: (1) It is clear.
Theorem: 4.2 If A is a subset of a space X , then the following statement are hold:
(1) A is a Z^{*}-open set if and only if $\mathrm{A} \cap \mathrm{Z}^{*}-\mathrm{b}(\mathrm{A})=\emptyset$,
(2) A is a Z^{*}-closed set if and only if Z^{*}-b $(A) \subset A$,
(3) A is a Z^{*}-clopen set if and only if Z^{*}-b $(\mathrm{A})=\varnothing$.

Proof: (1) It follows from Theorem 4.1.
© 2012, IJMA. All Rights Reserved

Definition: 4.2 $Z^{*}-\operatorname{Bd}(A)=A \backslash Z^{*}-\operatorname{int}(A)$ is said to be Z^{*}-border of A.
Theorem: 4.2 For a subset A of a space X, the following statements hold:
(1) $Z^{*}-B d(A) \subseteq A$, for any $A \subseteq X$,
(2) $A=Z^{*}-\operatorname{int}(A) \cup Z^{*}-B d(A)$,
(3) $Z^{*}-\operatorname{int}(A) \cap Z^{*}-\operatorname{Bd}(A)=\emptyset$,
(4) A is Z^{*}-open if and only if $Z^{*}-B d(A)=\emptyset$,
(5) $Z^{*}-\mathrm{Bd}\left(Z^{*}-\operatorname{int}(\mathrm{A})\right)=\varnothing$,
(6) $Z^{*}-\operatorname{int}\left(Z^{*}-B d(A)\right)=\emptyset$,
(7) $\mathrm{Z}^{*}-\mathrm{Bd}\left(\mathrm{Z}^{*}-\mathrm{Bd}(\mathrm{A})\right)=\mathrm{Z}^{*}-\mathrm{Bd}(\mathrm{A})$,
(8) $Z^{*}-B d(A)=A \cap Z^{*}-c l(X \backslash A)$.

Proof: (6) Let $x \in Z^{*}-\operatorname{int}\left(Z^{*}-B d(A)\right)$. Then $x \in Z^{*}-B d(A)$. Since, $Z^{*}-B d(A) \subseteq A$, then $x \in Z^{*}-\operatorname{int}\left(Z^{*}-B d(A)\right) \subseteq Z^{*}-\operatorname{int}(A)$. Hence, $x \in Z^{*}-\operatorname{int}(A) \cap Z^{*}-B d(A)$, which contradicts (3). Thus, $Z^{*}-\operatorname{int}\left(Z^{*}-B d(A)\right)$ $=\varnothing$,
(8) $\mathrm{Z}^{*}-\mathrm{Bd}(\mathrm{A})=\mathrm{A} \backslash \mathrm{Z}^{*}-\operatorname{int}(\mathrm{A})=\mathrm{A} \backslash\left(\mathrm{X} \backslash \mathrm{Z}^{*}-\mathrm{cl}(\mathrm{X} \backslash \mathrm{A})\right)=\mathrm{A} \cap \mathrm{Z}^{*}-\mathrm{cl}(\mathrm{X} \backslash \mathrm{A})$.

Definition: 4.3 Let (X, τ) be a topological space and $A \square X$. Then the set $X \backslash\left(Z^{*}-c l(A)\right)$ is called the Z^{*}-exterior of A and is denoted by $Z^{*}-\operatorname{ext}(A)$. A point $p \in X$ is called a Z^{*} - exterior point of A, if it is a Z^{*}-interior point of $X \backslash A$.

Theorem: 4.3 If A and B are two subsets of a space (X, τ), then the following statement are hold:
(1) $Z^{*}-\operatorname{ext}(A)$ is Z^{*}-open,
(2) $Z^{*}-\operatorname{ext}(A)=Z^{*}-\operatorname{int}(X \backslash A)$,
(3) $Z^{*}-\operatorname{ext}\left(Z^{*}-\operatorname{ext}(A)\right)=Z^{*}-\operatorname{int}\left(Z^{*}-c l(A)\right)$,
(4) $Z^{*}-\operatorname{ext}\left(X \backslash Z^{*}-\operatorname{ext}(A)\right)=Z^{*}-\operatorname{ext}(A)$,
(5) $Z^{*}-\operatorname{int}(A) \subseteq Z^{*}-\operatorname{ext}\left(Z^{*}-\operatorname{ext}(A)\right)$,
(6) $Z^{*}-\operatorname{ext}(A) \cap Z^{*}-b(A)=\emptyset$,
(7) $Z^{*} \operatorname{ext}(A) \cup Z^{*}-b(A)=Z^{*}-c l(X \backslash A)$,
(8) $\left\{Z^{*}-\operatorname{int}(A), Z^{*}-b(A)\right.$ and $\left.Z^{*}-\operatorname{ext}(A)\right\}$ form a partition of X,
(9) If $A \subseteq B$, then $Z^{*}-\operatorname{ext}(B) \subseteq Z^{*}-\operatorname{ext}(A)$,
(10) $Z^{*}-\operatorname{ext}(\varnothing)=X$ and $Z^{*}-\operatorname{ext}(X)=\varnothing$,
(11) $Z^{*}-\operatorname{ext}(A \cup B) \subseteq Z^{*}-\operatorname{ext}(A) \cup Z^{*}-\operatorname{ext}(B)$,
(12) $Z^{*}-\operatorname{ext}(A \cap B) \supseteq Z^{*}-\operatorname{ext}(A) \cap Z^{*}-\operatorname{ext}(B)$,
(13) $Z^{*}-\operatorname{ext}(A \cup B) \subseteq Z^{*}-\operatorname{ext}(A \cap B)$.

Proof: It follows from Theorems 3.1 and 4.1.
Remark: 4.1The inclusion relation in parts (11) and (12) of the above theorem cannot be replaced by equality as is shown by the following example.

Example: 4.1 Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$ with topology $\tau=\{\varnothing,\{\mathrm{a}\},\{\mathrm{b}, \mathrm{c}\},\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \mathrm{X}\}$.
If $A=\{b, c\}$ and $B=\{a, c\}$, then $Z^{*}-\operatorname{ext}(A)=\{a, d\}, Z^{*}-\operatorname{ext}(B)=\{b, d\}$. But $Z^{*}-\operatorname{ext}(A \cup B)=\emptyset$,
Therefore $Z^{*}-\operatorname{ext}(A) \cup Z^{*}-\operatorname{ext}(B) \nsubseteq Z^{*}-\operatorname{ext}(A \cup B)$. Also, $Z^{*}-\operatorname{ext}(A \cap B)=\{a, b, d\}$, hence,
$\mathrm{Z}^{*}-\operatorname{ext}(\mathrm{A} \cap \mathrm{B}) \nsubseteq \mathrm{Z}^{*}-\operatorname{ext}(\mathrm{A}) \cap \mathrm{Z}^{*}-\operatorname{ext}(\mathrm{B})$.
Definition: 4.4 Let A be a subset of a topological space (X, τ). Then a point $P \in X$ is called a Z^{*}-limit point of a set $A \subseteq X$ if every Z^{*}-open set $G \subseteq X$ containing p contains a point of A other than p. The set of all Z^{*}-limit points of A is called a Z^{*}-derived set of A and is denoted by Z^{*}-d(A).

Theorem: 4.4 If A and B are two subsets of a space X, then the following statement are hold:
(1) If $A \subseteq B$, then $Z^{*}-d(A) \subseteq Z^{*}-d(B)$,
(2) $Z^{*}-d(A) \cup Z^{*}-d(B) \subseteq Z^{*}-d(A \cup B$
(3) $Z^{*}-d(A \cap B) \subseteq Z^{*}-d(A) \cap Z^{*}-d(B)$,
(4) A is a Z^{*}-closed set if and only if it contains each of its Z^{*}-limit points,
(5) $Z^{*}-\mathrm{cl}(\mathrm{A})=A \cup Z^{*}-\mathrm{d}(\mathrm{A})$.

Proof: It is clear.

Definition: 4.5 A subset N of a topological space (X, τ) is called a Z^{*}-neighbourhood (briefly, Z^{*}-nbd) of a point $P \in X$ if there exists a Z^{*}-open set W such that $\mathrm{P} \in \mathrm{W} \subseteq \mathrm{N}$. The class of all Z^{*}-nbds of $\mathrm{P} \in \mathrm{X}$ is called the Z^{*}-neighbourhood system of P and denoted by $\mathrm{Z}^{*}-\mathrm{N}_{\mathrm{p}}$.

Theorem: 4.5 A subset G of a space X is Z^{*}-open if and only if it is Z^{*}-nbd, for every point $P \in G$.
Proof: It is clear.
Theorem: 4.6 In a topological space (X, τ). Let $Z^{*}-N_{p}$ be the Z^{*}-nbd System of a point $P \in X$. Then the following statement is hold:
(1) $Z^{*}-N_{p}$ is not empty and p belongs to each member of $Z^{*}-N_{p}$,
(2) Each superset of members of N_{p} belongs to $Z^{*}-N_{p}$,
(3) Each member $N \in Z^{*}-N_{p}$ is a superset of a member $W \in Z^{*}-N_{p}$, where W is $Z^{*}-n b d$ of each point $P \in W$.

Proof: Obvious.

5. Z^{*}-continuous mappings.

Definition: 5.1 A function $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is called Z^{*}-continuous if $\mathrm{f}^{-1}(\mathrm{~V})$ is Z^{*}-open in X for each $\mathrm{V} \in \sigma$.
Remark: 5.1. Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be mapping from a space (X, τ) into a space (Y, σ), The following hold:

Now , the following examples show that these implication are not reversible.
Example: 5.1 Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}, \tau=\{\emptyset,\{\mathrm{a}\},\{\mathrm{c}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{c}\},\{\mathrm{a}, \mathrm{b}, \mathrm{c}\},\{\mathrm{a}, \mathrm{c}, \mathrm{d}\}, \mathrm{X}\}, \sigma=\{\emptyset,\{\mathrm{b}, \mathrm{c}\},\{\mathrm{a}, \mathrm{d}\}$, $\mathrm{Y}\}$. Then, the identity $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is Z^{*}-continuous but not γ-continuous and not e-continuous.

Example: 5.2 Let $\mathrm{X}=\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}\}, \tau=\{\emptyset,\{\mathrm{a}, \mathrm{b}\},\{\mathrm{c}, \mathrm{d}\},\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}, \mathrm{X}\}, \sigma=\{\emptyset,\{\mathrm{a}, \mathrm{e}\}, \mathrm{Y}\}$.Then the identity $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ is e^{*}-continuous but not Z^{*}-continuous.

Theorem: 5.1 Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be a mapping. Then the following statements are equivalent:
(1) f is Z^{*}-continuous.
(2) For each $x \in X$ and $V \in \sigma$ containing $f(X)$, there exists $U \in Z * O(X)$ containing x such that $f(U) \subseteq V$,
(3) The inverse image of each closed set in Y is Z^{*}-closed in X ,
(4) $\operatorname{int}\left(\operatorname{cl}\left(\mathrm{f}^{-1}(\mathrm{~B})\right)\right) \cap \operatorname{cl}\left(\delta-\operatorname{int}\left(\mathrm{f}^{-1}(\mathrm{~B})\right)\right) \subseteq \mathrm{f}^{-1}(\mathrm{cl}(\mathrm{B}))$, for each $\mathrm{B} \subseteq \mathrm{Y}$,
(5) $\mathrm{f}^{-1}(\operatorname{int}(\mathrm{~B})) \subseteq \operatorname{cl}\left(\operatorname{int}\left(\mathrm{f}^{-1}(\mathrm{~B})\right)\right) \cup \operatorname{int}\left(\delta-\mathrm{cl}\left(\mathrm{f}^{-1}(\mathrm{~B})\right)\right)$, for each $\mathrm{B} \subseteq \mathrm{Y}$,
(6) If f is bijective, then $\operatorname{int}(f(\mathrm{~A})) \subseteq \mathrm{f}(\mathrm{cl}(\operatorname{int}(\mathrm{A}))) \cup \mathrm{f}(\operatorname{int}(\delta-\mathrm{cl}(\mathrm{A})))$, for each $\mathrm{A} \subseteq \mathrm{X}$,
(7) If f is bijective, then $f(\operatorname{int}(\operatorname{cl}(A))) \cap f(\operatorname{cl}(\delta-\operatorname{int}(A))) \subseteq \operatorname{cl}(f(A))$, for each $A \subseteq X$.

Proof: $(1) \leftrightarrow(2)$ and $(1) \leftrightarrow(3)$ are obvious,
(3) \rightarrow (4). Let $\mathrm{B} \subseteq \mathrm{Y}$, then by (3) $\mathrm{f}^{-1}(\mathrm{cl}(\mathrm{B}))$ is Z^{*}-closed. This means $\mathrm{f}^{-1}(\operatorname{cl}(\mathrm{~B})) \supseteq \operatorname{int}\left(\operatorname{cl}\left(\mathrm{f}^{-1}(\operatorname{cl}(\mathrm{~B}))\right)\right) \cap \operatorname{cl}\left(\delta-\operatorname{int}\left(\mathrm{f}^{-1}(\operatorname{cl}(\mathrm{~B}))\right)\right) \supseteq \operatorname{int}\left(\operatorname{cl}\left(\mathrm{f}^{-1}(\mathrm{~B})\right)\right) \cap \operatorname{cl}\left(\delta-\operatorname{int}\left(\mathrm{f}^{-1}(\mathrm{~B})\right)\right)$,
(4) \rightarrow (5). By replacing $Y \backslash B$ instead of B in (4), we have
$\operatorname{int}\left(\mathrm{cl}\left(\mathrm{f}^{-1}(\mathrm{Y} \backslash \mathrm{B})\right)\right) \cap \operatorname{cl}\left(\delta-\operatorname{int}\left(\mathrm{f}^{-1}(\mathrm{Y} \backslash \mathrm{B})\right)\right) \subseteq \mathrm{f}^{-1}(\mathrm{cl}(\mathrm{Y} \backslash \mathrm{B}))$ and therefore $\mathrm{f}^{-1}(\operatorname{int}(\mathrm{~B})) \subseteq \operatorname{cl}\left(\operatorname{int}\left(\mathrm{f}^{-1}(\mathrm{~B})\right)\right) \cup \operatorname{int}\left(\delta-\mathrm{cl}\left(\mathrm{f}^{-1}(\mathrm{~B})\right)\right)$,
$(5) \rightarrow(6)$. Follows directly by replacing A instead of $f^{-1}(B)$ in (5) and applying the bijection of f,
(6) \rightarrow (7). By complementation of (6) and applying the bijective of f, we have
$f(\operatorname{int}(\mathrm{cl}(X \backslash A))) \cap \mathrm{f}(\mathrm{cl}(\delta-\operatorname{int}(X \backslash A))) \subseteq \operatorname{cl}(f(X \backslash A))$.We obtain the required by replacing A instead of $X \backslash A$,
(7) $\rightarrow(1)$. Let $V \in \sigma$.But $W=Y \backslash V$, by (7), we have $f\left(\operatorname{int}\left(\mathrm{cl}\left(\mathrm{f}^{-1}(\mathrm{~W})\right)\right)\right) \cap \mathrm{f}\left(\mathrm{cl}\left(\delta-\operatorname{int}\left(\mathrm{f}^{-1}(\mathrm{~W})\right)\right)\right) \subseteq \mathrm{cl}\left(\mathrm{ff}^{-1}(\mathrm{~W})\right) \subseteq \mathrm{cl}(\mathrm{W})=$ W. So $\operatorname{int}\left(\mathrm{cl}\left(\mathrm{f}^{-1}(\mathrm{~W})\right)\right) \cap \operatorname{cl}\left(\delta-\operatorname{int}\left(\mathrm{f}^{-1}(\mathrm{~W})\right)\right) \subseteq \mathrm{f}^{-1}(\mathrm{~W})$ implies $\mathrm{f}^{-1}(\mathrm{~W})$ is Z^{*}-closed and therefore $\mathrm{f}^{-1}(\mathrm{~V}) \in \mathrm{Z}^{*} \mathrm{O}(\mathrm{X})$.

Theorem: 5.2. Let $\mathrm{f}:(\mathrm{X}, \tau) \rightarrow(\mathrm{Y}, \sigma)$ be a mapping. Then the following statements are equivalent:
(1) f is Z^{*}-continuous,
(2) $Z^{*}-\mathrm{cl}\left(\mathrm{f}^{-1}(\mathrm{~B})\right) \subseteq \mathrm{f}^{-1}(\mathrm{cl}(\mathrm{B}))$, for each $\mathrm{B} \subseteq Y$,
(3) $f\left(Z^{*}-c l(A)\right) \subseteq c l(f(A))$, for each $A \subseteq X$,
(4) $Z^{*}-B d\left(f^{-1}(B)\right) \subseteq f^{-1}(B d(B))$, for each $B \subseteq Y$,
(5) $\mathrm{f}\left(\mathrm{Z}^{*}-\mathrm{d}(\mathrm{A})\right) \subseteq \mathrm{cl}(\mathrm{f}(\mathrm{A}))$, for each $\mathrm{A} \subseteq \mathrm{X}$,
(6) $\mathrm{f}^{-1}(\operatorname{int}(\mathrm{~B})) \subseteq \mathrm{Z}^{*}-\operatorname{int}\left(\mathrm{f}^{-1}(\mathrm{~B})\right)$, for each $\mathrm{B} \subseteq \mathrm{Y}$,

Proof: $(1) \rightarrow(2)$ Let $\mathrm{B} \subseteq \mathrm{Y}, \mathrm{f}^{-1}(\mathrm{cl}(\mathrm{B}))$ is Z^{*}-closed in X . Then $\mathrm{Z}^{*}-\mathrm{cl}\left(\mathrm{f}^{-1}(\mathrm{~B})\right) \subseteq \mathrm{Z}^{*}-\mathrm{cl}\left(\mathrm{f}^{-1}(\mathrm{cl}(\mathrm{B}))\right)=\mathrm{f}^{-1}(\mathrm{cl}(\mathrm{B}))$,
$(2) \rightarrow(3)$. Let $A \subseteq X$, then $f(A) \subseteq Y$, by $(2), \mathrm{f}^{-1}(\operatorname{cl}(f(\mathrm{~A}))) \supseteq \mathrm{Z}^{*}-\mathrm{cl}\left(\mathrm{f}^{-1}(\mathrm{f}(\mathrm{A}))\right) \supseteq \mathrm{Z}^{*}-\mathrm{cl}(\mathrm{A})$.
Therefore, $\operatorname{cl}(f(\mathrm{~A})) \supseteq \mathrm{ff}^{-1}(\mathrm{cl}(\mathrm{f}(\mathrm{A}))) \supseteq \mathrm{f}\left(\mathrm{Z}^{*}-\mathrm{cl}(\mathrm{A})\right)$.
$(3) \rightarrow(1)$. Let $W \subseteq Y$ be open set. Then, $F=Y \backslash W$ is closed in Y and $f^{-1}(F)=X \backslash f^{-1}(W)$.
Hence, by $(3), \mathrm{f}\left(\mathrm{Z}^{*}-\mathrm{cl}\left(\mathrm{f}^{-1}(\mathrm{~F})\right)\right) \subseteq \operatorname{cl}\left(\mathrm{f}\left(\mathrm{f}^{-1}(\mathrm{~F})\right)\right) \subseteq \mathrm{cl}(\mathrm{F})=\mathrm{F}$ thus, $\mathrm{Z}^{*}-\mathrm{cl}\left(\mathrm{f}^{-1}(\mathrm{~F})\right) \subseteq \mathrm{f}^{-1}(\mathrm{~F})$,
So, $f^{-1}(F)=X \backslash f^{-1}(W) \in Z^{*} C(X)$ and therefore $f^{-1}(W) \in Z^{*} O(X)$,
$(4) \rightarrow(6)$. Let $B \subseteq Y$. Then by (4), $Z^{*}-B d\left(f^{-1}(B)\right)=f^{-1}(B) \backslash Z^{*}-\operatorname{int}\left(f^{-1}(B)\right) \subseteq f^{-1}(B d(B))=$ $f^{-1}(B \backslash \operatorname{int}(B))=f^{-1}(B) \backslash f^{-1}(\operatorname{int}(B))$ this implies $f^{-1}(\operatorname{int}(B)) \subseteq Z^{*}-\operatorname{int}\left(f^{-1}(B)\right)$,
(6) \rightarrow (4). Let $B \subseteq Y$. Then by $(6), \mathrm{f}^{-1}(\operatorname{int}(\mathrm{~B})) \subseteq \mathrm{Z}^{*}-\operatorname{int}\left(\mathrm{f}^{-1}(\mathrm{~B})\right)$ we have $\mathrm{f}^{-1}(\mathrm{~B}) \backslash \mathrm{Z}^{*}-\operatorname{int}\left(\mathrm{f}^{-1}(\mathrm{~B})\right) \subseteq \mathrm{f}^{-1}(\mathrm{~B}) \backslash \mathrm{f}^{-1}(\operatorname{int}(\mathrm{~B})) \Rightarrow \mathrm{Z}^{*}-\mathrm{Bd}\left(\mathrm{f}^{-1}(\mathrm{~B})\right) \subseteq \mathrm{f}^{-1}(\mathrm{Bd}(\mathrm{B}))$,
$(1) \rightarrow(5)$. It is obvious, since f is Z^{*}-continuous and by $(3), f\left(Z^{*}-c l(A)\right) \subseteq c l(f(A))$, for each $A \subseteq X . S o, f\left(Z^{*}-d(A)\right) \subseteq f\left(Z^{*}-c l(A)\right) \subseteq c l(f(A))$.
$(5) \rightarrow(1)$. Let $U \subseteq Y$ be open set. Then, $F=Y \backslash U$ is closed in Y and $f^{-1}(F)=X \backslash f^{-1}(U)$.
Hence, by $(5), f\left(\mathrm{Z}^{*}-\mathrm{d}\left(\mathrm{f}^{-1}(\mathrm{~F})\right)\right) \subseteq \mathrm{cl}\left(\mathrm{f}\left(\mathrm{f}^{-1}(\mathrm{~F})\right)\right) \subseteq \mathrm{cl}(\mathrm{F})=\mathrm{F}$. Hence, $\mathrm{Z}^{*}-\mathrm{d}\left(\mathrm{f}^{-1}(\mathrm{~F})\right) \subseteq \mathrm{f}^{-1}(\mathrm{~F})$. By Theorem 4.4, $f^{-1}(F)=X \backslash f^{-1}(U)$ is Z^{*}-closed in X. Therefore, $f^{-1}(U)$ is Z^{*}-open in X,
$(1) \rightarrow(6)$ Let $B \subseteq Y$. Then $f^{-1}(\operatorname{int}(B))$ is Z^{*}-open in X. Thus, $f^{-1}(\operatorname{int}(B))=Z^{*}-\operatorname{int}\left(f^{-1}(\operatorname{int}(B))\right) \subseteq Z^{*}-\operatorname{int}\left(f^{-1}(B)\right)$. Therefore, $\mathrm{f}^{-1}(\operatorname{int}(\mathrm{~B})) \subseteq \mathrm{Z}^{*}-\operatorname{int}\left(\mathrm{f}^{-1}(\mathrm{~B})\right)$,
(5) $\rightarrow(1)$. Let $U \subseteq Y$ be an open set. Then $f^{-1}(U)=f^{-1}(\operatorname{int}(U)) \subseteq f^{-1}\left(Z^{*}-\operatorname{int}(U)\right)$.

Hence, $\mathrm{f}^{-1}(\mathrm{U})$ is Z^{*}-open in X . Therefore, f is Z^{*}-continuous.
Remark: 5.3. The composition of two Z^{*}-continuous mappings need not be Z^{*}-continuous as show by the following example.

Example: 5.3. Let $\mathrm{X}=\mathrm{Y}=\mathrm{Z}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}\}$ with topologies $\tau_{\mathrm{x}}=\{\emptyset,\{\mathrm{a}, \mathrm{b}\},\{\mathrm{c}, \mathrm{d}\}$,
$\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}, \mathrm{X}\}$, an indiscrete topology $(\mathrm{Y}, \mathfrak{J})$ and $\tau_{\mathrm{Z}}=\{\emptyset,\{\mathrm{a}, \mathrm{e}\}, \mathrm{Z}\}$. Let the mappings
$\mathrm{f}:\left(\mathrm{X}, \tau_{\mathrm{x}}\right) \rightarrow(\mathrm{Y}, \square)$ and $\mathrm{g}:(\mathrm{Y}, \square) \rightarrow\left(\mathrm{Z}, \tau_{\mathrm{Z}}\right)$ defined as identity mappings. It is clear that f and g are Z^{*}-continuous but g $\square \mathrm{f}$ is not Z^{*}-continuous.

REFERENCES:

[1] M.E. Abd El- Monsef ; S.N. El-Deeb and R.A. Mahmoud, β-open sets and β-continuous mappings, Bull. Fac. Sci. Assiut Univ. 12(1983), pp. 77-90 .
[2] D. Andrijevi'c, Semi-preopen sets, Math.Vesnik, 38(1) (1986), pp. 24-32 .
[3] D. Andrijevi'c, On b-open sets, Mat. Vesnik, 48 (1996), pp. 59-64 .
[4] J.Dontchev and M. Przemski, On the various decompositions of continuous and some weakly continuous, Acta Math. Hungarica, 71(1-2) (1996), pp. 109-120 .
[5] E. Ekici, On e-open sets, DP*-sets and DPE*-sets and decompositions of continuity, Arabian J. Sci, 33 (2) (2008), pp. 269-282.
[6] E. Ekici, On a-open sets, A*-sets and decompositions of continuity and super continuity, Annales Univ. Sci. Budapest, 51(2008), pp. 39-51.
[7] E. Ekici, On e*-open sets and (D, S) ${ }^{*}$-sets and decompositions of continuous functions, Mathematica Moravica, Vol. 13-1 (2009), pp. 29-36.
[8] A.A.EL-Atik, A study of some types of mappings on topological spaces, M.Sc. Thesis, Tanta Univ. Egypt (1997).
[9] E. Ekici and G. B. Navalagi, " δ-Semicontinuous Functions", Math. Forum, 17 (2004-2005), pp. 29-42.
[10] E. Hatir; T. Noiri. Decompositions of continuity and complete continuity, Acta Mathematica Hungarica, 113, (2006). 281-287.
[11] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 68, pp. 44-46, (1961).
[12] A. S. Mashhour; M. E. Abd EL-Monsef and S .N .EL-Deeb, On pre-continuous and weak precontinuous mappings, Proc. Math . Phys. Soc .Egypt, 53 (1982), pp. 47-53.
[13] A. S. Mashhour, I. A. Hasanein, and S. N. El-Deeb, α-continuous and α-open mappings, Acta, Math. Hungar. 41 (1983), no. 3-4, 213-218.
[14] O. Njastad, On some classes of nearly open sets, Pacific J. Math, 15 (1965), pp.961- 970. [15] J. H. Park; B.Y. Lee and M. J. Son, On δ-semiopen sets in topological spaces, J. Indian Acad. Math, 19 (1) (1997), pp. 59-67.
[15] S. Raychaudhuri and M. N. Mukherjee, On δ-almost continuity and δ-preopen sets, Bull. Inst. Math. Acad. Sinica, 21 (1993), pp. 357-366.
[16] M.H. Stone, Application of the theory of Boolean rings to general topology, TAMS, 41 (1937), pp. 375-381.
[17] N.V. Velicko, H-closed topological spaces, Amer. Math. Soc. Transl, 78(1968), 103-118.

