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ABSTRACT 

In this paper, a batch arrival M
X
/G/1 queue with exponentially distributed working vacations is analyzed. Using 

supplementary variable technique, the probability generating function of the steady state system size probabilities is 

derived and the expected system size probabilities are presented in closed form. Further, the results obtained are 

illustrated numerically and the effect of system parameters on system performance measures is discussed. Some 

particular cases are also discussed.  
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INTRODUCTION: 

 

Queueing system with server vacations is useful to model a system in which the server has additional task during 

vacation is eminent. Thus, it has wide applicability in analyzing the performance of computer systems, data 

communication networks and production systems. During the last two decades, the queueing systems with vacations 

have been studied extensively. The details can be seen in the monographs of Takagi [15], the surveys of Doshi[4,5] and 

Tegham[16]. In these studies, it is assumed that the server stops primary service completely during the vacations. In 

2002, Servi and Finn [14] according to which a customer is served at a lower rate during vacations. They have analyzed 

an M/M/1 working vacations queue in which the server works at a different rate rather than completely stopping the 

main service during vacation. They tried to approximate a multi-queue system whose service rate is one of two service 

speeds such that the fast speed mode cyclically moves from queue to queue with exhaustive service. They tried to apply 

the M/M/1 working vacation queue, to model a wave length division multiplexing (WDM) optical access network using 

multiple wave lengths which can be reconfigured. Subsequently, Kim et al [8] have analyzed the M/G/1 queue with 

exponentially distributed working vacations and obtained the steady-state queue length distribution through the 

decomposition approach. Later Wu and Takagi[17] extended Servi and Finn’s model to an M/G/1 working vacation in 

which, both service times – regular service and the service in working vacation are assumed to be generally distributed. 

An imbedded Markov chain that describes the queue size process in an M/G/1 working vacation queue is introduced 

and the probability generating function for the steady state queue size is derived. Later, based on Servi and Finn’s 

model, Liu et al [11] gave explicit expressions of distributions for the stationary queue length and waiting time which 

have intuitionistic probability sense for M/M/1 multiple working vacation. Tian et al [13] in their paper studied an 

M/M/1 queue with single working vacation. Using quasi birth and death process and matrix geometric method, they 

have given the distributions for the number of customers and the virtual time in system in steady state. GI/M/1 queue 

with working vacations was studied by Baba [1] using Matrix geometric method. Baink et al [2] analyzed the finite 

GI/M/1 N queue with working vacations. Later Li and Tian[9] considered two types of discrete time GI/Geo/1 queues 

with working vacations and vacation interruption. Li et al[10] in their paper considered the M/G/1 queue with 

exponentially distributed working vacations, which is a special case of that in Wu and Takagi[17]. Later Liu et al[12] 

extended the M/M/1 working vacation model to bulk input model MX/M/1 working vacations.  

 

Recently, Jemila parveen et al[6] analyzed M/M/1 queue with working vacations and derived the steady state solutions 

in a closed form by directly solving the difference differential equations. Later they have discussed the waiting time 

distribution of an arbitrary customer for the model and verified the classical relation between PGF of queueing system 

and L.S.T of the waiting time distribution. The steady state results of M/M/1 working vacation are also extended to 

MX/M/1 working vacations queueing model for both multiple and single vacations by Julia Rose Mary and Afthab 

begum [7]. 
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In this paper, we analyze the batch arrival Non Markovian MX/G/1 queue with exponentially distributed single working 

vacation. Authors so far discussed the results through matrix geometric method and that too no authors have discussed 

Non-Markovian single working vacation as for the best of authors’ knowledge is concerned. But supplementary 

variable technique helps to obtain the results in a easy manner and also in a closed form. The steady state distribution of 

the system size at departure epochs and arbitrary epochs are derived using supplementary variable technique and the 

results obtained are presented in a closed form. Further the system performance measures including expected system 

length and various probabilities are derived and illustrated numerically. Few results exist in literature for working 

vacations models are obtained as particular cases. 

 

MODEL DESCRIPTION: 

 

We consider MX/G/1 queueing systems in which the customers arrive according to the Compound Poisson process with 

the random arrival size X with arrival rate λ . The number of units arriving at an arrival instant is a random variable X, 

with the probabilities Pr(X=k) = gk, k=1,2…The server begins a working vacation whenever the system becomes empty 

and the vacation duration V follows an exponential distribution with parameterη . During working vacation an arriving 

customer is served at a rate of vµ , and at the end of the vacation, if the server finds customers waiting in the queue, the 

server changes his service rate from vµ to regular service rate bµ , and a regular busy period begins. On the other hand, 

at the end of vacation, if the server finds the system empty, then he joins the system and stays idle in the system until a 

batch of customers arrives. Thus, working vacation is an operation period in a lower rate. When the number of 

customers in the system is relatively few, we set a lower rate operation period in order to economize operation cost 

together with serving customers. Therefore, this single working vacation policy has practical significance in optimal 

design of the system. It is assumed that the remaining regular service time ( )(tS
o
b ) and remaining service time during 

vacation ( )(tS
o
v ) are supplementary variables following general distributions with finite mean and variance and they 

are independent of each other and also independent of the arrivals. 

 

SYSTEM SIZE DISTRIBUTION: 

 

In this section to derive the steady state system size equations, the following notations and probabilities are defined.  

 

λ : group arrival rate 

X: group arrival size random variable 

gk : Pr(X=k), k=1,2,3.. 

X (z): Probability generating function (PGF) of X 

 

Let N(t) denote the system size including the one in service at time t. 

 

Y(t) = {0, if the server is idle in vacation at time t ; 1, if the server is idle in the system at time t ; 2, if the server is busy 

in vacation with lower service rate at time t ; 3, if the server is busy with regular service rate at time t}. 

 

Q0 (t) = Pr (N (t) = 0, Y (t) = 0), 

P0 (t) = Pr (N (t) = 0, Y (t) = 1),   

Qn(x, t) = Pr (N (t) = n, Y (t) = 2, x ≤ )(
0

tSv ≤  x + dt), n ≥ 1 

Pn(x, t) = Pr (N (t) = n, Y (t) = 3, x ≤ )(
0

tSb ≤  x + dt), n ≥ 1 

 

Thus Q0 and P0 gives the probability that the server is idle in vacation and in system respectively at time t. Qn(x, t) and 

Pn(x, t) gives the probability that there are n customers in the system while the server is serving at lower service rate 

and in regular service rate respectively at time t. 

 

Assuming the steady state probabilities Q0 = )(0 tQlt
t ∞→

, Qn(x, t) = ),( txQn

t
lt

∞→

, Pn(x, t) = ),( txPn

t
lt

∞→

 , n ≥ 1, 

0),(),( =
∂

∂
=

∂

∂
txQ

t
txP

t
nn exist and following the arguments of Cox[3] and observing the changes of states in the 

interval (t, t+ ∆ t) at any time t, we obtain the following steady state system size equations. 

 

00 QP ηλ =                                                                                                                                                                          (1) 

 

 )0()0()( 110 QPQ +=+ηλ                                                                                                                                                (2) 
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)()()0()()()( 01211 xsQgxsQxQxQ
dt

d
vv ληλ +++−=−  
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1

1

01 ≥++++−=− �
−
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−+ ngxQxsQgxsQxQxQ
dt

d
n

k

kknvnvnnn λληλ  

)()()()()0()()(
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101211 xsdyyQxsPgxsPxPxP
dt

d
bbb ηλλ �

∞

+++−=−  

)()()()()0()()(

0

01 xsdyyQxsPgxsPxPxP
dt

d
bnbnbnnn ηλλ �

∞

+ +++−=− 2,)(

1

1

≥+ �
−

=

− ngxP

n

k

kknλ  

 

For further simplification, we define the following L.S.T  

 

�
∞

−∗ =

0

)( dxxQeQ n
x

n
θ  and �

∞

−∗ =

0

)( dxxPeP n
x

n
θ . 

 

Taking the L.S.T on both sides of the above equations, we have  

 

)()()0()()()0()( 102111 θλθθηλθθ ∗∗∗∗ −−+=− vv SgQSQQQQ                                                                                         (3) 

 

2,)()()()0()()()0()(

1

1

01 ≥−−−+=− �
−
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∗
−

∗∗
+

∗∗
ngQSgQSQQQQ

n

k

kknvnvnnnn θλθλθθηλθθ                                                 (4)                                     

)()()()()0()()0()(

0

1102111 θηθλθθλθθ ∗

∞

∗∗∗∗

�−−−=− bbb SdyyQSgPSPPPP                                                                      (5) 

2,)()()()()()0()()0()(

1

10

01 ≥−−−−=− ��
−

=

∗
−

∗

∞

∗∗
+

∗∗
ngPSdyyQSgPSPPPP

n

k

kknbnbnbnnnn θλθηθλθθλθθ                          (6) 

 

STEADY STATE SOLUTIONS: 

 

In order to derive the distribution of the system size probabilities, we define the following pgfs. 

 

�
∞

=

∗∗ =
1

1 )(),(

n

n
n zQzQ θθ , �

∞

=

=
1

1 )0()0,(

n

n
n zQzQ , 01 ),(),( QzQzPV += ∗∗ θθ , �

∞

=

∗∗ =
1

)(),(

n

n
nB zPzP θθ and 

�
∞

=
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1

)0()0,(

n

n
nB zPzP        

 

Multiplying equations (3) and (4) by the proper powers of z and summing up over n= 1 to ∞ , we get 
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Using the identity ),()()( 1

2

1

1

θθ zQzXgQz k

n

n

k

kn

n ∗
∞

=

−

=

∗
− =��

�

�
�
�

�
� � , the above equation becomes 

))0()()(()
)(

1)(0,(),())(( 1011 QQzXS
z

S
zQzQzh v

v
X −−−=− ∗

∗
∗ λθ

θ
θθ  

At ))(1()( zXzhX −+== ληθ  , ))0()((
))((

))((
)0,( 101 QQzX

zhSz

zhzS
zQ

Xv

Xv −
−

=
∗

∗

λ . 

 

By similar argument of Li et al[10], the unique root z1 of ))(( zhSz Xv
∗−  lies inside (0,1). 
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Therefore, 011 )()0( QzXQ λ=                                                                                                                                          (7) 

 

Substituting for Q1(0) in Q1(z, 0), 
))((

)()())(((
)0,( 10

1
zhSz

zXzXzhSzQ
zQ

Xv

Xv

∗

∗

−

−
=

λ
                                                                 (8) 

 

And 
))))(())(((

))())(()(()((
),( 10

1
zhSzzh

SzhSzXzXzQ
zQ

XvX

vXv

∗

∗∗
∗

−−

−−
=

θ
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θ                               

 

At θ =0, 
))))(()((

)))((1)(()((
)0,( 10

1
zhSzzh

zhSzXzXzQ
zQ

XvX

Xv

∗

∗
∗

−

−−
=

λ
                                                                                                (9) 

 

Similarly multiplying equations (5) and (6) by appropriate powers of z and then adding, we have 

 

)()())0()0,((
)(

),()0,(),( 01 θλ
θ

θλθθ ∗
∗

∗∗ −−−=− bB
b

BBB SPzXzPzP
z

S
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∗
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==��� ,  

we have 

))0()()0,()(()
)(
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S
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At ))(1()( zXzwX −== λθ , 
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And ))0()()0,((
)))(())(((

))())(((
),( 101 PPzXzQ

zwSzzw

SzwSz
zP

XbX

bXb
B −+

−−

−
= ∗

∗

∗∗
∗ λη

θ

θ
θ                                                                (11) 

 

Equation (2) implies )0()0()( 110 QPQ +=+ηλ 01 )()0( QzXP λ+=  (from (7))   

 

Therefore )))(1(()0( 101 zXQP −+= λη                                                                                                                          (12) 

 

Substituting P1 (0) and )0,(1 zQ∗
in equation (11) and on further simplification 
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[
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And at 0=θ , 

 

)))(()((

)))((1))(()((
[

)))(()((

)))((1(
),( 10

zhSzzh

zhSzXzXz
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zwSzQ
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XvX
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XbX
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∗

∗

∗
∗
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−

−
=

λη
θ ))](1())(1( 1zXzX −−−− λη                        (13) 

 

Thus the total PGF P(z) of the system size probabilities is given by  

 

 0)0,()0,()( PzPzPzP vB ++= ∗∗   

 

Using the normalizing condition P(1)=1, 

))(1)((

)())(1()(
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MEAN SYSTEM LENGTH: 

  

Let Lv and Lb denotes the mean system size during the working vacation and regular busy respectively. Then 
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Hence the mean system size of the model L is given by L=Lv+Lb. 

 

Other Performance measures: 

 

• Probability that the server is on vacation (Pv) is given by 
η

)(
)0,( 10

1
1

zhQ
zQltP X

z
v == ∗

→
 

•   Probability that the server is busy (Pb) is given by  
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• Probability that the server is idle (PI) is given by 
λ

η 0
0

1

Q
PltP

z
I ==

→
 

 

PARTICULAR CASES: 

 

In this section, the steady state results of  MX/M/1 [7] and M/G/1 are deduced as particular cases of the model. 

 

 

1. MX/M/1 single working vacation [7]: 

 

If both the services – regular service and service during working vacation follow exponential distribution, then 

)(
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                                                                                                  ))](1( zXz −−η     

              = P1(z) of MX/M/1 single working vacation  

 

2. M/G/1 Single working vacation:    

 

When both regular service time and service time during working vacation follow  other than exponential distribution 

and by taking X(z)=z  i.e, single arrival, the probability generating functions of the M/G/1 SWV model is deduced as 

follows. 
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NUMERICAL ANALYSIS: 

 

In this section, we present some numerical examples to explain the influence of various parameters such as mean 

vacation time (1/η ), mean regular service (1/ bµ ) and mean service during working vacation (1/ vµ ) on mean system 

size (L) and on various probabilities. For the computation, the batch arrival is assumed to follow geometric distribution 

and service times follow Erlang k distributions.  

 

In the classical vacation models, since the service is stopped completely during vacation, the system size increase 

notably as the mean vacation time increases. But in working vacation, since the service is done with a smaller rate 

vµ (< bµ ) during vacation, the vacation parameter η  have less effect on the system size. The effects of η  and vµ  on 

the expected mean system size under two situations ( 3.0=bρ  and 6.0=bρ ) are presented in table 1. The table 1 

values also show that as vµ  or η  increases, the mean system size decrease. Also we infer that as  vµ  approaches to 0, 

the system size of single working vacation model (SWL) approaches the system size of the corresponding classical 

single vacation model (CSL). The data’s in table 2 shows the effect of traffic intensity ( bρ ) on the probabilities 

including probability that the server is idle (PI), on vacation (Pv) and on regular busy (Pb). In all the above discussion 

we fix bµ =1. Figure 1 is the graphical representation of table 2. 

  

Table: 1 L Vs vµ  Vs η  

 

vµ  η  
3.0=bρ  6.0=bρ  

LSWV LSV LSWV LSV 

 

 

0.25 

0.5 2.4592 4.0917 14.7156 7.1871 

1 4.3912 1.5378 18.3425 3.5917 

1.5 6.3348 1.1312 23.3371 3.1052 

2 11.4063 0.9949 29.2266 2.9532 

0.5 

0.5 1.9542 4.0917 11.0570 7.1871 

1 4.1285 1.5378 16.6471 3.5917 

1.5 6.1732 1.1312 22.3264 3.1052 

2 8.1750 0.9949 28.0163 2.9532 

0.75 

0.5 1.6429 4.0917 8.6696 7.1871 

1 3.9115 1.5378 15.2405 3.5917 

1.5 6.0174 1.1312 21.3713 3.1052 

2 8.0587 0.9949 27.3205 2.9532 

 

Table: 2 Probabilities Vs Traffic Intensity 

 
ρ  

bP  vP  IP  

0.1 0.0864 0.5353 0.3963 

0.2 0.1283 0.6863 0.1854 

0.3 0.2043 0.7021 0.0936 

0.4 0.2970 0.6530 0.0500 

0.5 0.4019 0.5703 0.0278 

0.6 0.5146 0.4698 0.0157 

0.7 0.6322 0.3592 0.0087 

0.8 0.7529 0.2427 0.0044 

0.9 0.8757 0.1225 0.0017 
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Figure: 1 Various probabilities with traffic intensity 

 

CONCLUSION: 

 

Over the past two decades, queueing systems with vacations have been studied by many researchers and have been 

applied to many situations. Working vacation is a new concept introduced by Servi and Finn [14] and the model 

discussed till now are M/M/1, M/G/1 multiple working vacations, GI/M/1 using matrix geometric method. In this paper 

we have made an attempt to discuss a batch arrival MX/G/1 queue  under single working vacation using supplementary 

variable technique and derived the steady state results in closed form. Various system performance measures are 

deduced from it. Further few results existing in literature are obtained as particular cases. Finally numerical examples 

are presented to justify the measure and to understand the model in a better way. The model analyzed in this paper may 

be extended to the model including the system with second optional service, with/without breakdowns, bulk service 

models, etc.  
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