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ABSTRACT

The aim of this paper is to investigate a mathematical model of stability and persistence in an interacting mutualism.
Four interacting population where one of them a mutualist, interact with the other three species lead to mutualism
between them.

The models represent two species predator-prey or competition system in which a third species acts as a mutualist with
either the predator, the prey, or one of the competitors. Stability and persistence are investigated.
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1. INTRODUCTION:

In this paper we investigate a model of four interacting populations where one of them, a mutualist, interacts with the
other three so as to benefit, and receive benefit, from one of those three. We are interested in establishing persistence
and stability criteria, which can be interpreted as the survival of all biological populations. There are now many papers
in the literature dealing with mulualistic system. Most of these papers deal with two-dimensional systems modeling
direct mutualism between two populations and ignore all other populations interactions, see ([1], [3], [4], [6]).Recently,
some papers have been appeared which deal with cases where the mutualism is due to or influenced by the interacting
with a third population, see ([4], [7], [8], [9], [10], [13], [14]).

The persistence in biological system in a context related to this paper has been discussed in [5], [7], [8], [9], [10], [11].
We utilize the definition of persistence developed in [5], [12].

Definition: Let N (7) be such that N(0) > 0. Then we say that N () persists if liminf N(¢) >0 as t — 0.
Further, we say that IV () persists uniformly if there exists O > O such that liminf N(¢) > & as ¥ — 0. Finally, a
system in R" persists (uniformly) if all components persist (uniformly).

2. MODEL:

We describe a general system that models a mutualist interacting with populations in a food chain. The mathematical

formulation of facultative relationships between the mutualist and two different trophic levels of the food chain are also
described.
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We consider the autonomous system

u=uh(u,x,y,z), .=d/dt
x=axg(u,x)—yp(u,x,y)—zpy(u,x,z),
y=yl=s1(u,y)+c; ) p(u,x,y)]-z2q(u,y,z), 2.1

z=2z[=sp(,2) +co(u) py (u, x,2) + c3(u)q(u, y, 2)1,
u(o)=u, 20, x(o)=x, 20, y(0)=y,20, z(0)=2z, 20,

as a model of a mutualist-food chain interaction with continuous birth and death process. I/t(l ) represents the density
of the mutualist at time 7, x(t ), y(t ), Z(t ) denote the prey and predator densities respectively. If # =0 system
(2.1) reduces to food chain model. The functions h, 85 DP1>P2551>5,2,C1,Cy,C5 are sufficiently smooth so that the
solutions of (2.1) exist uniquely and are continuable for all positive time. The function h represents the specific growth

rate of the mutualist.

We assume that /1 has the following properties, see ([6], [13], [16] ):
oh
(Hl)h(oyxyy’z)>07 a_(u,xy)’,Z)So
u

(Hz ) There exists a unique function L(u, y, z) >0, such that A(L(x, y,z),x,y,2)=0.
(H3) h(u,x,y,2)>0, h(u,x,y,2) <0, h.(u,x,y,2) <0,

(H 1) implies that, independent of X, ¥, Z populations, U is capable of growing even when rare. Also, the growth

rate is assumed to be density-dependent and decreases as the population increases. (H 2) implies that L(X » V,Z ) is
the mutualist carrying capacity and in part specifies in what way the prey and predator become part of the mutualist's
environment. (H 3) implies that U derives benefit from the prey population and that there might be a cost to the

mutualist due its interactions with the predators.

Also, (H 1) implies
(H,)Ast — 00,0 <1im L(x,0,0)=L <oo,L (x,y,2)>0,L,(x,y,2) <0, L (x,y,2) <0, which

implies that the mutualist has a finite carrying capacity.

The function g (Lt, X ) is the specific growth rate of the prey in the absence of any predation. We assume that g

satisfies:

(G,) g,0)>0, g (u,x)<0.
(Gz)There exists a unique kK(24) > O such that g(u,k(u)) >0, k(u)< E < 00, where E =maxk(u).

0<u<L

(Gl) implies that the prey population is capable of surviving in the presence or absence of the mutualist and the

growth rate in the absence of predation is density-dependent. (Gz) implies that k(u) is the carrying capacity of the

prey in the absence of predation.

In the case that g, (u,x) > 0, then, even in the absence of predation, U acts as a mutualist with respect to X . If
8. < 0, then there is a cost to X for associating with U , and U can be mutualist of X only by its effect upon

predator. If g, (u,x) =0, the relationship between 1 and X without predation is commensal.

The functions P, (I/t, X, y), P> (I/t, X, Z ) and ¢ (u, vy, Z) denote the predator's functional response to the prey and

mutualist densities.
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We assume

[ u’ b = ’l: b

(P) p;(u,0,0)=0,i=1,2
Pu(,x,y) >0, p, (u,x, ) >0,
Do (u,x,9)20, p, (u,x,z)20.

(PZ) plu SO’ p2u 20

The functions Py, P, are the competition functions and condition (Pl) states that competition between X and Yy,

and X and Z occurs when both populations are presented, and is an increasing function of their population. (Pz)
implies the fact that the mutualism may decrease the competitive effect of ¥ on X or may increase the competitive of
X on 2.

Also, we assume

(Q)) q,0,0)=0, q,(u,y,2) <0, q,(u,y,2) 20, g.(u, y,2) > 0.
(Q,)When y=0, zg.+g=0, g#0.

Also, we assume

(S)) s, (u,y) 20,5, (u,2) 0.

(S5) 8, (u, ¥)20, ¢, (u)<0,i =1,2,3.

The non-negative functions C; (u), 1 =1,2,3 are the rates of conversion of prey biomass to predator biomass, & is
a bifurcation parameter. The functions S, (u, y), Sy (u, Z) are the specific death rate of the predators Yand Z in

the absence of predation. We make the standard assumption that (S 1) , ( S 2) , the death rates are increasing functions
of population. Also, in order to have a viable system we must have that

(S3 ) There exists X5 Yy such that §; (0,0)= (o) (0)p1 (O,Xl ,0), X, < kl (0), and

$ (0,0)= o] (0)P1 (0,0, yl), y < kz 0).

(S4) There exists X, , Z; such that §, (0,0)= Cy (0)p2 (O,XZ,O), 0< X, < kl (0), and
5,(0,0)=¢,(0)p,(0,0,2,),0 <z, <k, (0).

We will make use of the following theorem.

Theorem 2.1: Under the above assumptions, the set
A={(u,x,y,2):0Ssu<L,0<x<k,0<c(0)x+y<M,0<c,(0)x+c,y+z< N}, (2.1)

Where

L =1im L(x,0,0), k = max k(u), g =max g(u.0),

M =c,(0)k[(a g +5,(0,0))/ 5,(0,0)],
S, = (pgig s,(,0), ¢, = 011<1a<>%c3(u),

and

N ={c,(0)k (5, + @ §) + &, M[5, +¢,(0) p, (0,k)1},

is positively invariant and attracts all solutions initiating with non-negative initial conditions.

Proof: The proof can be carried out by following the same steps of proof of theorem 2.1 in [13] and so will be omitted.
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3. EXISTENCE OF EQUILIBRIA:
In this section we shall establish criteria for the existence and nonexistence of equilibria of the system (2.1). It is clear
that the origin E 0 (0,0,0,0) is an equilibrium point for the system (2.1).

From (H 1 ),(H 2) and Freedman [6], we have the following theorem:

Theorem 3.1: The system (2.1) has exactly two one-dimensional equilibria El (LO ,0,0,0) and E2 (O, ko ,0,0) .

Remark 3.1: The subsystem in R ;r and R ;— have no equilibria since all of their solutions tend to zero exponentially.

Also, it follows that F o, is locally stable in the Y and Z directions and locally unstable in the 2 and X directions.
As shown in [10], the following result holds in R;X .

Theorem 3.2: The subsystem in Rl:rx has an equilibrium E3 (u,x,0,0) provided El and E2 are unstable in
+

R

Remark 3.2: Under hypotheses (H 1 ), (Gl ), E3 exists.

It is easy to prove the following theorems (see [6], [13]).

Theorem 3.3: A necessary and sufficient conditions for an equilibrium of the form E 4 (0, X5 V1 ,0) to exist in R;y

is that hypotheses (.S 3) be satisfied.

Theorem 3.4: A necessary and sufficient conditions for equilibrium ES (0, X, ,0, Zz) to exist is that the hypotheses
(S 4) be satisfied.

The following result for the existence of an interior equilibrium of the system (2.1) follows from [4], [13].

Theorem 3.5: Let the following hypotheses hold for the system (2.1):

(a) All solutions with non-negative initial conditions are bounded in forward time.
(b) The system (2.1) is persistent.

(c) The subsystems of (2.1) are isolated and a cyclic.

Then, an interior equilibrium E (I/t X ,Y ,Z ) exists for system (2.1).

4. STABILITY OF EQUILIBRIA:

To determine the stability of the above equilibria, we need to compute variational matrix of system (2.1). The signs of
the real part of the eigenvalues of this matrix evaluated at these equilibrium determine its stability.

uh,+h uh, uh, uh,
“WPu W tOXg, U —pi=WPy, P,
V(u,x,y,z): 1 2 1 171y 2 2z , (41)
¢ Y, Py, @ —29. 4
T 26Dy 64, X

where
D=0ag+axg, —ypi, — WP
¢:y(_slu +c1up1 +C1plu)_ZQM’
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P=—s+cp+y(=s,, +epy)—29,,
T=2(=$,, +C, P2 + P2, +€3,9+C34,)s
X==58,+C,py +C3q+2(=s,, +¢,p,. +39.),

also, all functions are evaluated at (Lt, X,V, Z) and we have used the notation F’ , torepresent aF / ax , etc.

The variational matrix VO ie. evaluating V' at E 0 (0,0,0,0) is diagonal and for which the eigenvalues in ¥ and
X directions are positive and hence the equilibrium point E o 1s locally unstable in ¥ and X directions. The

eigenvalues in the Y and Z directions are negative and hence E , 18 stable in the y and Z directions. Thus, E 0

has non-empty stable and unstable manifolds.

Next, for the equilibrium EI(LO,O,O) L(0,0,0) = Lo, the variational matrix Vl has a positive eigenvalue
ag (L(J ,O) , in X -direction and a negative eigenvalues Lohu (L(J ,0,0,0) in the other directions. Thus, El is

unstable in the X -direction and stable in the ¥,y and Z -directions. Hence, E1 has non-empty stable and unstable

manifolds.

The variational matrix V2 for E2 (O, ko ,0,0), ko = k(O) has the form:

h(0,k,,0,0) 0 0 0
akg (0,k) ag0.k)+ak,g (0,k —p(0,k ,0 .0k .0
V,0.k,,0,0)=| X8 OR) agOk)+akg.Ok) POk, 0) P>(0.k,,0)
0 =5,(0,0)+¢,(0)p,(0,k,,0)  —g(0,0,0)
where

¢ ==5,(0,0) + ¢,(0) p,(0,k,,0) + ¢5(0)9(0,0,0).

The equilibrium E2 yield that its eigenvalue h(O,k 0 ,0,0) which is positive in U -direction and negative

eigenvalue & k 08 x (0, k 0) in X -direction. The eigenvalues in y and Z directions are

a; =—5;(0,0) +¢;(0) p;(0,k,.,0), i=12.

From theorem 3.3, the eigenvalues in Y -direction are positive but the eigenvalues in Z -direction may be positive or

negative.

Remark 4.1: From the above analysis, it follows that E1 and E2 are unstable R;rx. A similar analysis for

equilibrium E 3 (I/_t , X ,0,0) yields its eigenvalue

Bl* =-, (I,_t,O) + C, (I/_t)pz (L_t, )_C,O) in z-direction which is positive or negative, but the eigenvalue in Yy -

direction is B; == (u,0)+ ¢ (ﬁ)pl (u,x,0), which by Theorem 3.3 is positive and thus E, is unstable in
y -direction. The other eigenvalues in U an X directions are:

B,, :%(w—ch +iih,) i%\/(ao_ch +ith,)? —dux(h,g. —g,h.,) .
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Thus, whenever hugx - guhx > (), eigenvalues Bl,z have negative real parts where QXg , + LThu < 0. Thus,

E, has nonempty stable and unstable manifolds.

Similarly, we analyze E4 (0, X5 yl,O), the eigenvalue of V4 (0, X5 yl,O) in the U -direction has the value

h 0, X, ,0 which is positive and hence E, is unstable in U -direction. The eigenvalue in Z -direction is given
1> Y1 p 4 g g
by
71 ==5,(0,0)+¢,(0) p, (0, x,,0) + ¢5(0)¢(0, y,,0),

and the other two eigenvalues are the roots of
y: —(ax, g, +08 -y, py, = ViS1y Y1 PV (VS +6 Y Py ) X
(ag+ax, g, =y Pi)+yipici(py+y,p1,)=0.

From the Routh-Hurwitz criteria, the roots have negative real parts iff

axlgx(o’ x1)+0(g(0,x1)— y1p1x(0ax1’ yl)_ y1s1y(0’ y1)+c1(0)y1p1y(09x1’ )’1) <0,
and

{35, 0, ) +¢,3,p,0,x, y) Hag0,x)+ax g, (0,x) =y p, (0,x,y)} +
P 0,x, y)e (p (0, %, y) + 3, py, (0,3, 3,)) > 0.

Under these conditions we notice that E 4 18 stable in ny .For E5 (0, Xy ,0, 2y ), the variational matrix has the

form
h(0,x,,0,z,) 0 0 0
G L _pl(()’xz’o) _pz(o’xzvZz)_zzng(o,xz,zz)
‘/5(0’x270’22): _ a— —_
2,4,(0,0,z,) 0 n 2,4,(0,0,2,)—¢(0,0,z,)
H 2,6,(0)p,,(0,%,,2,)  2,¢,(0)¢,(0,0,2,) 4

where

G=-2p,,(0,x,,2,) +ax,g,(0,x,),
H = 2,[~5,,(0,2,) +¢,,(0) p,(0,x,,2,) +¢,(0) p,, (0, x,, 2,) + ¢;,(0)4(0,0, z,)
+¢;(0)q,(0,0,2,)], L=ag0,x,)+ax,g,(0,x,)=2,p,.(0,%,,2,),
n= —51(0,0)+Cl(O)pl(O,Xz,O)—quy(o,(), ),
&=-5,(0,2,)+¢,(0)p,(0,x,,2,) +¢;(0)g(0,0, z,)
+2,[=5,.(0,2,) +¢,(0) p,, (0, x,,2,) + ¢;(0)¢, (0,0, 2,)].

The eigenvalue of V5 in U -direction is h(O, X, ,0, Zz) which is positive and thus E5 is unstable in U -direction.

The eigenvalue in Y -direction is given by:

6, =15,(0,0)+¢,(0)p,(0,x,,0) - 2,4,(0,0,2,),

and the other eigenvalues in X an Z directions are obtained from the equation

52—(§+L)§+L§+zzc2p2p2x =0.

The eigenvalues & 1.» have negative real parts iff L+ § < 0, and
LS - 2,6,(0) p,(0,x,,2,) p, (0, x,,2,) > 0.
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Similarly for E6 (u3 5 X3, Y3 ,0), the variational matrix has the form

M3hu +h l/t3hx M3hy M3hz
A B C i %)
V6(u3ax39y390): .
D eare  Fooo—q
0 0 0 K

where
A=y;py, Taxsg,,
B=ag+ox;8, = yipi,
C=—=p,=y3D1,»
D = y;(=sy, + ¢, Dy + ¢ Py
F ==s,+cp) +y3(=s, +¢,pyy),
K=-5,+c,p, +c3q,

and all the above functions are evaluated at (I/t3 s X35 V3 ,O) The eigenvalue of E in z-direction is K. The other
eigenvalues are the roots of the polynomial

E+a,é +a,é+ay =0,
where
a, =uzh,+B+F,
a, = y3BF —ush A= ysush, D+ ysc,p,,C +ush, B+ ysF,
ay = yyush,(BF + ¢ px;C) —uzh, y;(AF —CD) +uyy;h, (¢, p;, A— FB).

Thus, from the Routh-Hurwitz criteria, the necessary and sufficient conditions for E to be asymptotically stable in

+
Ruxy are that:

K < 0, Cll > 0, 33 > 0, and alaz - 613 > 0.

Also, for E7 (u4 s Xy ,0, 24 ), the eigenvalue of V7 in y -direction is given by:
n=—s(uy,0)+c (ug)p;(y,x4,0) = 249, (y,0,24).

The other eigenvalues are the roots of the polynomial
n’ +bn* +b,n+by, =0,
where
b, =—(u,h,+J+N),
b, =u,h,(J+N)+NJ -Iz,c,p, —u,h M —u,Oh_,
b, =u,hIz,c,p, +uMJh —u,NJh, —u,IQh —u,h Mz,c,p, +u,ONh_,
J =246,P5, = 245525
N=0g+0x,8, 24D,
I =—(py+24P2.)
M =o0x,8,—2,P>
Q = 24(=5y, + ¢, Py +C2 P, +€3,9).
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All the above functions are evaluated at (u 45%X4 ,0, 4 )

E7 will be asymptotically stable in szxz iff:
*

Similarly, since for Eg (0, X5, Y5525 ), the eigenvalue of Vg in the u-direction is h(0,Xs,ys,25) >0, and
hence E, is unstable in U -direction. The other eigenvalues are the zeros of the polynomial
A +d A +d,A+d; =0
ie. X +(M —=N—-L)A +{M(N+L)+NL+ yc,p,.(p, + ypy,) + 26, P2, (P, + 2y ) } +
(P, + 2, )y +¢ pzeq, — 26,0, N)+Lye, p.(p +p,,) —269(2q, + )M —MNL=0, where
M =d,g+0xg, = ypi, = s
N =(=s,+c,p)+y(=s, +cp,)—24q,,
L=(=s,+c,py+c39)+2(=5,, +Cypy, +C3q,).

The equilibrium ES will be asymptotically stable in R:yz iff

d, >0, dy>0 and d,d, —d, >0.

Now, we will consider the stability of the interior equilibrium £ * (u : , X * s y* , Z : ) In what follows all functions
are assumed to be evaluated at (Lt X .Y ,Z ) The variational matrix at £ is given by (4.1) evaluated at E".

In general [13], it is not possible to determine the stability of E * Thus, mutualist's interaction with food chain
populations can result in either stabilization or destabilization of the system as has been noted in two- and three species
models (see [2], [8] ). Finally, it shows that the populations feeding on more than one trophic level do not necessarily
cause an unstable system, the possibility of which has been pointed out by Pimm and Lawton [15], and that mutualistic
interactions can have a significant effect on stability, even in the case of complex system.

5. PERSISTENCE AND UNIFORM PERSISTENCE:

In this section, we shall investigate the persistence of the populations given by the system (2.1). We shall derive criteria
that ensure the uniform persistence of the system (2.1) in the cases of facultative mutualism between the mutualist and
the prey X as well as between U and prey y.

(i) Facultative mutualism between U and X.

The system (2.1) exhibits facultative mutualism between mutualist U and the prey X, whenever the hypotheses

H,))-MH,), (G)), (G,), (P), (P,)and (S,), (S,) are satisfied. Also, we shall assume the following
hypotheses:

(P]') Let the equilibrium E, be globally asymptotic stable with respect to solutions initiating in R :y .

(Pz) Let E; (if it exists) be globally asymptotic stable with respect to solutions initiating in R;LZ .

+
uxy’

(Pg) Let the equilibria E6’ E7 and ES be globally stable in R lexz and R;yz respectively.

+

The following results hold for the food chain in R Xyz

(see [11], and [13]).

Theorem 5.1: Let the hypotheses (H,)—(H,), (G,), (G,), (P,), (P,) and (S,)—(S;) hold. Then, the system
(2.1) persists for Ol > 0.
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Theorem 5.2: Let the hypotheses (G,), (G,), (P,), (P,), (S,)—=(S;), (Ply ), (Pz) hold. Then, the subsystem in

+
Ruyz is uniformly persistent whenever Y, > 0, 5] > 0.

Theorem 5.3: Let the hypotheses (H,)—(H,), (Ply) - (P3 ), \(P_1),(P,), (P,)and (S,)—(S;) hold. Then, the
three-dimensional subsystem in R;xy is uniformly persistent whenever B; >0, and S)tjxy is uniformly persistent
whenever B} > 0.

It follows from [5] that whenever a subsystem of (2.1) is uniformly persistent, it has an interior equilibrium.

Theorem 5.4: Let the hypotheses (H,)—(H,), (G)), (G,), (P), (P,), (S,)—(S;) and (P,)—(P,)
hold. Then, the system (2.1) is uniformly persistent whenever ° >0 and K > 0.

Proof: The proof is similar to that of Theorem 4.4 in [13], and will be omitted.
(ii) Facultative mutualism between U and Y.

This case can be treated, as case (i) with some suitable conditions and so will be omitted.
6. EXAMPLE:

Consider the system

u=u|l- “ ,
I+y
)'c=x(3—x)—xy—xzzu,
) 5 5
y=y —E(1+y)+§x)—uz2y, (6.1)
11 1 1 j
7=z| ————z+—zux+—uzy
(10 107 2

The system (6.1) has the boundary equilibria

Eo (0303030)’ El (1303030)3 E2 (0,33030)’ E3 (1,35030)3 E4(nga§70)’ E5 (0,330’1)’

E6 (% , % ,2,0} E7 (1,2,0,1), Eg (0, % , % , ?j After simple but long calculations, it is easy to see that

E 45 E 5 is globally asymptotic stable in R :y and all the three-dimensional subsystems are uniformly persistent.

Using theorem 5.4, we can easily prove that the system (6.1) is uniform persistence.
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