LIF- N-NORMED LINEAR SPACE

S. Jeevitha*

Department of Mathematics KTVR Knowledge Park for Engineering and Technology, Coimbatore-19, Tamilnadu, India

E-mail: sjee.maths@gmail.com

(Received on: 02-01-12; Accepted on: 20-01-12)

ABSTRACT

 \pmb{T} his paper introduces the notion of Cauchy sequence, convergent sequence and completeness in \mathscr{LF} n-normed linear space.

Key Words: *L*-fuzzy normed space, *LFn*-normed linear space, Continuous t- norm.

AMS Subject Classification No: 03E72, 46S40, 54A40.

1. INTRODUCTION:

Gahler [4] introduced the theory of n-norm on a linear space. For a systematic development of n-normed linear space one may refer to [5, 6, 8, 9]. In [5], Hendra Gunawan and Mashadi have also discussed the Cauchy sequence and convergent sequence in n-normed linear space. A detailed theory of fuzzy normed linear space can be found in [1, 2, 3, 7, 11]. In [10, 13], Vijayabalaji extended n-normed linear space to fuzzy n-normed linear space and complete fuzzy n-normed linear space.

Our object in this paper is to introduce the notion of Cauchy sequence and convergent sequence in \mathcal{L} -fuzzy n-normed linear space and to study the completeness of the \mathcal{L} -fuzzy n-normed linear space.

2. PRELIMINARIES:

Definition: 2.1 Let $n \in \mathbb{N}$ (natural numbers) and X be a real linear space of dimension $d \ge n$. (Here we allow d to be infinite). A real valued function $\| \bullet \dots \bullet \|$ on $X \times X \times \dots \times X$ (n times) $= X^n$ satisfying the following four properties:

- (1) $\| x_1, x_2, ..., x_n \| = 0$ if any only if $x_1, x_2, ..., x_n$ are linearly dependent.
- (2) $\| x_1, x_2, \dots, x_n \|$ is invariant under any permutation of x_1, x_2, \dots, x_n .
- (3) $\| x_1, x_2,...,cx_n \| = |c| \| x_1, x_2,...,x_n \|$, for any real c.
- $(4) \parallel x_1, x_2, ..., x_{n-1}, y+z \parallel \leq \|x_1, x_2, ..., x_{n-1}, y\| + \|x_1, x_2, ..., x_{n-1}, z\|.$

is called an n-norm on X and the pair $(X, \|\bullet, ..., \bullet\|)$ is called an n-normed linear space.

Definition: 2.2 A sequence $\{x_n\}$ in an n-normed linear space $(X, \|\bullet, ..., \bullet\|)$ is said to converge to an $x \in X$ (in the n-norm) whenever $\lim_{n \to \infty} \|x_1, x_2, ... x_{n-1}, x_n - x\| = 0$.

Definition: 2.3 A sequence $\{x_n\}$ in an n-normed linear space $(X, \|\bullet, ..., \bullet\|)$ is called a Cauchy sequence if sequence if $\lim_{n,k\to\infty} \|x_1, x_2, ... x_{n-1}, x_n - x_k\| = 0.$

Definition: 2.4 An n-normed linear space is said to be complete if every Cauchy sequence in it is convergent.

Definition: 2.5 Let $\mathcal{L} = (L, \leq_L)$ be a complete lattice and U a non – empty set called universe. An \mathcal{L} -fuzzy set in U is defined as a U \rightarrow L mapping. For each u in U, A(u) represents the degree (in L) to which u satisfies A.

Lemma: 2.1 Consider the set L^* and operation \leq_{L^*} defined by

$$L^* = \{(x_1, x_2) : (x_1, x_2) \in [0, 1]^2 \text{ and } x_1 + x_2 \le 1\},$$

 $(x_1, x_2) \leq_{L^*} (y_1, y_2) \Leftrightarrow x_1 \leq y_1 \text{ and } x_2 \geq y_2, \text{ for every } (x_1, x_2), (y_1, y_2) \in L^*. \text{ Then } (L^*, \leq_{L^*}) \text{ is a complete lattice.}$

Definition: 2.6 An intuitionistic fuzzy set $\mathbf{A}_{\zeta,\eta}$ in a universe U is an object $\mathbf{A}_{\zeta,\eta} = \{ x, \zeta_{\mathcal{A}}(u), \eta_{\mathcal{A}}(u) : u \in U \}$, where for all $u \in U$, $\zeta_{\mathcal{A}}(u) \in [1,0]$ and $\eta_{\mathcal{A}}(u) \in [1,0]$ are called the membership degree and the non-membership degree, respectively, u in set $\mathbf{A}_{\zeta,\eta}$, and furthermore satisfy $\zeta_{\mathcal{A}}(u) + \eta_{\mathcal{A}}(u) \le 1$.

Classically, a triangular norm T on ([0,1], \leq) is defined as an increasing, commutative, associative mapping T:[0,1]² \rightarrow [0,1] satisfying T(1,x)=x, for all x \in [0,1]. These definitions can be straight forwardly extended to any lattice $\mathcal{L} = (L, \leq_1)$

Definition: 2.7 A triangular norm (t-norm) on \mathcal{L} is a mapping $\mathscr{F}: L^2 \to L$ satisfying the following conditions:

- (i) $(\forall x \in L)(\mathcal{F}(x,1_{\mathcal{S}})=x \text{ (boundary condition)};$
- (ii) $(\forall (x, y) \in L^2)(\mathcal{F}(x, y) = \mathcal{F}(y, x)$ (commutative);
- (iii) $(\forall (x, y, z) \in L^3)(\mathcal{F}(x, \mathcal{F}(y, z)) = \mathcal{F}(\mathcal{F}(x, y), z)$ (associativity);
- (iv) $(\forall (x, x', y, y') \in L^4(X \leq_T x')$ and $Y \leq_T y \Longrightarrow \mathscr{F}(x, y) \leq_T \mathscr{F}(x', y')$ (monotonicity)

There are recursively defined by $\mathscr{F} = \mathscr{F}$ and $\mathscr{F}(x_{(1)},...,x_{(n+1)}) = \mathscr{F}(\mathscr{F}^{n-1}(x_{(1)},...,x_{(n+1)}))$ for $n \ge 2$ and $x_{(i)} \in L$.

Definition: 2.8 A continuous t- norm \mathscr{F} on \mathscr{L}^* is called continuous t- representable if and only if there exist a continuous t-norm * and a continuous t-conorm \diamond on [0, 1] such that,

for all
$$x = ((x_1, x_2, ..., x_n), (x_1, x_2, ..., x_n)), y = ((y_1, y_2, ..., y_n), (y_1, y_2, ..., y_n)) \in \mathcal{L}^*$$

$$\mathcal{F}(x, y) = ((x_1 * y_1, x_2 * y_2, ..., x_n * y_n), (X_1 \diamond y_1, x_2 \diamond y_2, ..., x_n \diamond y_n)).$$

Definition: 2.9 A negator on \mathcal{L} is any decreasing mapping $\mathscr{N}: L \to L$ satisfying $\mathscr{N}(0_{\mathscr{D}}) = 1_{\mathscr{D}}$ and $\mathscr{N}(1_{\mathscr{D}}) = 0_{\mathscr{L}}$. If $\mathscr{N}(\mathscr{N}(x_1, x_2, ..., x_n)) = (x_1, x_2, ..., x_n)$ for all $x_1, x_2, ..., x_n \in \mathscr{L}$, then \mathscr{N} is called an involutive negator. The negator $\mathscr{N}_{\mathfrak{S}}$ on ([0, 1], \leq) defined as, for all $x_1, x_2, ..., x_n \in [0, 1]$, $\mathscr{N}_{\mathfrak{S}}(x) = 1 - (x_1, x_2, ..., x_n)$ is called the standard negator on ([0, 1], \leq).

3. Complete \mathcal{L} - fuzzy n – normed linear space:

Definition: 3.1 Let X be a linear space over a field F, \mathscr{F} is a continuous t-norm on \mathscr{L} and \mathscr{F} is an \mathscr{L} - fuzzy set on $X^n \times [0, \infty)$ is called a \mathscr{L} - fuzzy n-norm on X if and only if:

- (N_1) $\mathscr{T}(x_1, x_2,...,x_n, t) > L_0 \mathscr{L}$
- (N_2) $\mathscr{F}(x_1, x_2,...,x_n, t) = 1$ $\mathscr{F}(x_1, x_2,...,x_n, t)$ are linearly dependent.
- (N_3) $\mathscr{T}(x_1,\!x_2,\!...,\!x_n,\!t)$ is invariant under any permutation of $x_1,\,x_2,\!...,\!x_n$.
- (N₄) $\mathscr{F}(x_1, x_2, ..., c | x_n, t) = \mathscr{F}(x_1, x_2, ..., x_n, t / | c | t)$ if $c \neq 0$, $c \in F(field)$.

$$(N_5) \qquad \mathscr{F}((x_1, x_2, ..., x_n) + (y_1, y_2, ..., y_n) \ , \ s+t) \geq \mathscr{F}(\mathscr{F}(x_1, x_2, ..., x_n, \ s \) \ , \ \mathscr{F}(y_1, y_2, ..., y_n, t)).$$

(N₆)
$$\mathscr{T}(x_1, x_2,...,x_n, t)$$
 is left continuous and non-decreasing function such that $\lim_{t\to\infty} \mathscr{T}(x_1,x_2,...,x_n, t) = 1_{\mathcal{L}}$.

Then $(X, \mathcal{P}, \mathcal{F})$ is called a \mathcal{L} -fuzzy n-normed linear space or in short \mathcal{LF} n-NLS.

To strengthen the above definition, we present the following example.

Example: 3.1 Let $(X, \|\bullet,...,\bullet\|)$ be an n-normed linear space.

Define
$$\mathscr{F}(a,b) = \min\{a,b\}$$
 and $\mathscr{F}(x_1,x_2,...,x_n,t) = t/(t+||x_1,x_2,...,x_n||)$. Then is a $(X,\mathscr{F},\mathscr{F})$ is a \mathscr{LF} -n-NLS.

Proof:

(N₁) Clearly
$$\mathcal{P}(x_1, x_2,...,x_n, t) > 0$$
.

$$(N_2) \mathscr{F} (x_1, x_2,...,x_n, t) = 1 \mathscr{L}$$

$$\Leftrightarrow$$
 t/(t+||x₁, x₂,...,x_n||)=1 \mathscr{L}

$$\Leftrightarrow \|\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n\| = 0$$

 \Leftrightarrow $x_1, x_2,...,x_n$ are linearly dependent.

$$(N_3) \mathcal{S}(x_1, x_2,...,x_n, t)$$

$$= t/(t+||x_1,x_2,...,x_n||)$$

$$= t/(t+||x_1,x_2,...,x_n,x_{n-1}||)$$

$$= \mathscr{F}(x_1, x_2, ..., x_n, x_{n-1}, t).$$

It follows similarly for the rest.

 (N_5) Without loss of generality assume that $\mathscr{T}(y_1,\!y_2,\!...,y_n\,,t)\,\leq\,\mathscr{T}(x_1,\!x_2,\!...,x_n\,,s\,).$ Then

$$t/(t + || y_1, y_2, ..., y_n ||) \le s/(s + || x_1, x_2, ..., x_n ||)$$

$$\Rightarrow t (s + || x_1, x_2, ..., x_n ||) \le s (t + || y_1, y_2, ..., y_n ||)$$

$$\Rightarrow t \| x_1, x_2, ..., x_n \| \le s \| y_1, y_2, ..., y_n \|$$

$$\Rightarrow \| x_1, x_2, ..., x_n \| \le (s/t) \| y_1, y_2, ..., y_n \|.$$

Therefore,

$$\begin{split} \parallel x_1, & x_2, ..., x_n \parallel + \parallel y_1, y_2, ..., y_n \parallel \leq (s \ / \ t \) \parallel y_1, y_2, ..., y_n \parallel + \parallel y_1, y_2, ..., y_n \parallel \\ & \leq ((s \ / \ t \) + 1 \) \parallel y_1, y_2, ..., y_n \parallel \\ & = ((s \ + t \) \ / \ t \) \parallel y_1, y_2, ..., y_n \parallel . \end{split}$$

But,
$$\|(x_1, x_2, ..., x_n) + (y_1, y_2, ..., y_n)\| \le \|x_1, x_2, ..., x_n\| + \|y_1, y_2, ..., y_n\|.$$

$$\leq ((s +t)/t) \| y_1, y_2, ..., y_n \|$$

$$\Rightarrow \qquad \parallel (x_1,\!x_2,\!...,\,x_n) + (\;y_1,\!y_2,\!...,\,y_n) \parallel \; / \; (\;s\!+\!t\;\;) \leq \; \parallel y_1,\!y_2,\!...,\,y_n \parallel \; / \; t$$

$$\Rightarrow 1 + (\| (x_1, x_2, ..., x_n) + (y_1, y_2, ..., y_n) \| / (s+t)) \le 1 + (\| y_1, y_2, ..., y_n \|) / t$$

$$\Rightarrow \qquad (\ (s+t\)+\|\ (x_1,\!x_2,\!...,x_n)+(\ y_1,\!y_2,\!...,y_n)\ \|\)\ /\ (s+t\)\leq \ (t+\|\ y_1,\!y_2,\!...,y_n\|)/\ t$$

S. Jeevitha*/ L F - N-NORMED LINEAR SPACE/ IJMA- 3(1), Jan.-2012, Page: 318-323

$$\Rightarrow \qquad (s+t)/(s+t) + \|(x_1, x_2, ..., x_n) + (y_1, y_2, ..., y_n)\| \ge t/(t+\|y_1, y_2, ..., y_n\|)$$

$$\Rightarrow \mathscr{F}((x_1, x_2, ..., x_n) + (y_1, y_2, ..., y_n), s + t) \ge \mathscr{F} \{ \mathscr{F}(x_1, x_2, ..., x_n, s), \mathscr{F}(y_1, y_2, ..., y_n, t) \}.$$

(N₆) Clearly $\mathcal{I}(x_1, x_2,...,x_n, t)$ is a left continuous function.

Suppose that $t_2 > t_1 > 0$ with $t_1, t_2 \in [0, \infty)$ then,

$$t_2 / (t_2 + \parallel x_1, x_2, ..., x_n \parallel) - t_1 / (t_1 + \parallel x_1, x_2, ..., x_n \parallel) = \parallel x_1, x_2, ..., x_n \parallel (t_2 - t_1) / ((t_2 + \parallel x_1, x_2, ..., x_n \parallel)) ((t_1 + \parallel x_1, x_2, ..., x_n \parallel)) \ge 0$$
 for all $(x_1, x_2, ..., x_n \parallel) \in X^n$.

$$\Rightarrow t_2/(t_2 + ||x_1, x_2, ..., x_n||) \ge t_1/(t_1 + ||x_1, x_2, ..., x_n||)$$

$$\Rightarrow \mathscr{F}(x_1, x_2,...,x_n, t_2) \geq \mathscr{F}(x_1, x_2,...,x_n, t_1).$$

Thus $\mathcal{P}(x_1, x_2, ..., x_n \,, \, t \,)$ is a non-decreasing function of $t \in [\, 0, \infty \,).$

Also,

$$\lim_{t \to \infty} \mathcal{F}(x_1, x_2, ..., x_n, t) = \lim_{t \to \infty} t / (t + || x_1, x_2, ..., x_n ||)$$

$$= \lim_{t \to \infty} t / t (1 + (1/t) || x_1, x_2, ..., x_n ||)$$

$$= 1_{\mathcal{F}}.$$

Thus $(X, \mathcal{F}, \mathcal{F})$ is a \mathcal{LF} -n-NLS.

Definition: 3.2 A sequence $\{x_n\}$ in a \mathcal{LF} -n-NLS $(X, \mathscr{T}, \mathscr{F})$ is said to converge to x if given $\mathcal{E}, t > 0$, $\mathcal{E} \in L/\{0_{\mathscr{L}}, 1_{\mathscr{L}}\}$, there exists an integer $n_0 \in \mathbb{N}$ such that $\mathscr{F}(x_1, x_2, ..., x_{n-1}, x_n - x, t) >_L \mathscr{N}(\mathcal{E})$ for all $n \geq n_0$.

Theorem: 3.1 In a \mathcal{LF} -n-NLS (X, \mathcal{R}, F) is a sequence $\{x_n\}$ converges to x if and only if $\mathcal{F}(x_1, x_2, ..., x_{n-1}, x_n - x, t) \to 1_{\mathcal{L}}$ as $n \to \infty$.

Proof: Fix t > 0. Suppose $\{x_n\}$ converges to x. Then for a given \mathcal{E} , $\mathcal{E} \in L/\{0_{\mathscr{L}}, 1_{\mathscr{L}}\}$, there exists an integer $n_0 \in N$ such that $\mathscr{F}(x_1, x_2, ..., x_{n-1}, x_n - x, t) >_L \mathscr{N}(\mathcal{E})$.

Thus $1 - \mathcal{F}(x_1, x_2, ..., x_{n-1}, x_n - x, t) < \mathcal{E}$ and hence $\mathcal{F}(x_1, x_2, ..., x_{n-1}, x_n - x, t) \to 1_{\mathcal{F}}$ as $n \to \infty$.

Conversely, if for each t > 0, $\mathcal{P}(x_1, x_2, ..., x_{n-1}, x_n - x, t) \rightarrow 1_{\mathscr{Z}} \text{ as } n \rightarrow \infty$, then for every $\mathfrak{E}, \mathfrak{E} \in L/\{0_{\mathscr{Z}}, 1_{\mathscr{Z}}\}$, there exists an integer n_0 such that $1-\mathscr{P}(x_1, x_2, ..., x_{n-1}, x_n - x, t) <_L \mathfrak{E}$ for all $n \geq n_0$. Thus $\mathscr{P}(x_1, x_2, ..., x_{n-1}, x_n - x, t) >_L 1-\mathfrak{E}$ for all $n \geq n_0$.

Hence $\{x_n\}$ converges to x in $(X, \mathcal{F}, \mathcal{F})$

Definition: 3.3 A sequence $\{x_n\}_{n\in\mathbb{N}}$ in a \mathscr{LF} -n-NLS $(X,\mathscr{F},\mathscr{F})$ is said to be Cauchy sequence if given $\mathcal{E}\in L/\{0_{\mathscr{L}},1_{\mathscr{L}}\}$, t>0, there exists an integer $n_0\in\mathbb{N}$ such that $\mathscr{L}(x_1,x_2,...,x_{n-1},x_n-x_m,t)>_L\mathscr{N}(\mathcal{E})$ for all $n,m\geq n_0$.

Theorem: 3.2 In a \mathcal{LF} -n-NLS (X, \mathcal{F} , \mathcal{F}) every convergent sequence is a Cauchy sequence.

Proof: Let $\{x_n\}$ be a convergent sequence in $(X, \mathcal{P}, \mathcal{F})$. Suppose $\{x_n\}$ converges to x.

Let t > 0 and $\mathcal{E} \in L/\{0_{\mathcal{G}}, 1_{\mathcal{G}}\}$. Choose $r \in L/\{0_{\mathcal{G}}, 1_{\mathcal{G}}\}$ such that $\mathcal{F}(\mathcal{N}(r), \mathcal{N}(r)) > \mathcal{N}(\mathcal{E})$.

Since $\{x_n\}$ converges to x, we have an integer n_0 such that $\mathcal{P}(x_1, x_2, ..., x_{n-1}, x_n - x, t/2) >_L \mathcal{N}(r)$

Now,

$$\begin{split} \mathscr{T}(x_{_{1}}, x_{_{2}}, &..., \, x_{_{n-1}}, \, x_{_{n}} - x_{_{m}} \,, \, t) = \mathscr{T}(x_{_{1}}, x_{_{2}}, ..., \, x_{_{n-1}}, \, x_{_{n}} - \, x + x \, - x_{_{m}} \,, \, t) \\ \\ = \mathscr{T}(\mathscr{T}(x_{_{1}}, \, x_{_{2}}, ..., \, x_{_{n-1}}, \, x_{_{n}} - x \,, \, t/2), \mathscr{T}(x_{_{1}}, x_{_{2}}, ..., \, x_{_{n-1}}, \, x - x_{_{k}}, \, t/2)) \\ \\ \geq \mathscr{T}(\mathscr{N}(r), \, \mathscr{N}(r)) \text{ for all } \, n, \, m \geq n_{0} \end{split}$$

$$> \mathcal{N}(\varepsilon)$$
 for all $n, m \ge n_0$

Therefore $\{x_n\}$ is a Cauchy sequence in $(X, \mathcal{P}, \mathcal{F})$.

Definition: 3.4 A *IF*-n-NLS is said to be complete if every Cauchy sequence in it is convergent.

The following example shows that there may exist Cauchy sequence in a LF-n-NLS which is not convergent.

Example: 3.2 Let $(X, \|\bullet, ..., \bullet\|)$ be an n-normed linear space and define $\mathscr{F}(a, b) = \min\{a, b\}$ for all $a, b \in [0,1]$ and $\mathscr{P}(x_1, x_2, ..., x_n, t) = t / (t + \|x_1, x_2, ..., x_n\|)$. Then $(X, \mathscr{F}, \mathscr{F})$ is shown to be a \mathscr{LF} -n-NLS.

Let $\{x_n\}$ be a sequence in \mathcal{LF} -n-NLS, then

- (a) $\{x_n\}$ is a Cauchy sequence in $(X, \|\bullet, ..., \bullet\|)$ if and only if $\{x_n\}$ is a Cauchy sequence in $(X, \mathscr{I}, \mathscr{F})$.
- (b) $\{x_n\}$ is a convergent sequence in $(X, \|\bullet, \dots, \bullet\|)$ if and only if $\{x_n\}$ is a convergent sequence in $(X, \mathcal{P}, \mathcal{F})$.

Proof:

(a) $\{x_n\}$ is a Cauchy sequence in $(X, \|\bullet, ..., \bullet\|)$

$$\Leftrightarrow \lim_{n, m \to \infty} \|x_1, x_2, ..., x_{n-1}, x_n - x_m\| = 0.$$

$$\Leftrightarrow \lim_{n, m \to \infty} \mathcal{I}(x_1, x_2, ..., x_{n-1}, x_n - x_m, t)$$

$$\Leftrightarrow \lim_{n, m \to \infty} t / (t + || x_1, x_2, ..., x_n - x_m ||) = 1_{\mathscr{Z}}$$

$$\Leftrightarrow \quad \mathscr{T}(x_1, x_2, ..., x_{n-1}, x_n - x_m, t) \to 1_{\mathscr{L}} \quad \text{as} \quad n \to \infty.$$

$$\Leftrightarrow \quad \mathscr{T}(x_{_{1}},\!x_{_{2}},\!...,\,x_{_{n-1}},\,x_{_{n}}\,\text{-}\,x_{_{m}}\,,\,t) \,>\! \mathscr{N}(\epsilon),\,\text{for all}\ \, n\,,\!m\,\geq n_{0}.$$

- \Leftrightarrow {x_n} is a Cauchy sequence in (X, \mathscr{F} , \mathscr{F}).
- (b) $\{x_n\}$ is a convergent sequence in $(X, \|\bullet, ..., \bullet\|)$

$$\Leftrightarrow \lim_{n \to \infty} \|x_1, x_2, ..., x_{n-1}, x_n - x\| = 0.$$

$$\Leftrightarrow \lim_{n \to \infty} \mathscr{I}(x_1, x_2 \dots x_{n-1}, x_n - x_m, t)$$

$$\Leftrightarrow \lim_{n \to \infty} t / (t + \|x_1, x_2, \dots x_{n-1}, x_n - x_m\|) = 1_{\mathscr{D}}$$

$$\Leftrightarrow \mathscr{T}(x_1, x_2, ..., x_{n-1}, x_n - x, t) \to 1_{\mathscr{L}} \text{ as } n \to \infty.$$

$$\Leftrightarrow$$
 $\mathcal{I}(x_1, x_2, ..., x_{n-1}, x_n - x, t) > \mathcal{N}(\varepsilon)$, for all $n \ge n_0$.

 $\Leftrightarrow \quad \{x_n\} \text{ is a convergent sequence in } (X \text{ , } \mathscr{T}, \mathscr{F}).$

Thus if there exists an n-normed linear space (X, $\|\bullet,...,\bullet\|$) which is not complete, then the $\mathscr L$ - fuzzy n-norm induced by such a crisp n-norm $\|\bullet,...,\bullet\|$ on an incomplete n-normed linear space X is an incomplete $\mathscr L$ - fuzzy n-normed linear space.

Theorem: 3.3 A \mathscr{LF} -n-NLS $(X, \mathscr{F}, \mathscr{F})$ in which every Cauchy sequence has a convergent subsequence is complete.

S. Jeevitha*/LF-N-NORMED LINEAR SPACE/IJMA-3(1), Jan.-2012, Page: 318-323

Proof: Let $\{x_n\}$ be a Cauchy sequence in $(X, \mathcal{F}, \mathcal{F})$ and $\{x_n\}$ be a subsequence of $\{x_n\}$ that converges to x. We prove that $\{x_n\}$ converges to x. Let t > 0 and $\mathcal{E} \in L/\{0_{\mathcal{F}}, 1_{\mathcal{F}}\}$. Choose $f \in L/\{0_{\mathcal{F}}, 1_{\mathcal{F}}\}$ such that $\mathcal{F}(\mathcal{N}(f), \mathcal{N}(f)) > \mathcal{N}(\mathcal{E})$.

Since $\{x_n\}$ is a Cauchy sequence, there exists an integer $n_0 \in N$ such that $\mathscr{T}(x_1, x_2, ..., x_{n-1}, x_n - x_m, t/2) >_L \mathscr{N}(r)$ for all n, $m \ge n_0$.

Since $\{x_{n_m}\}$ converges to x, there is a positive integer $i_m > n_0$ such that

$$\begin{split} \mathscr{T}(x_1, & x_2, ..., x_{n-1}, x_{i_m} - x \;, t/2) >_{\mathcal{L}} \mathscr{N}(r) \;\;. \\ \text{Now,} \\ \mathscr{T}(x_1, x_2, ..., x_{n-1}, x_n - x \;, t) &= \mathscr{T}(x_1, x_2, ..., x_{n-1}, x_n - x_{i_m} + x_{i_m} - \; x + x \; - x_m \;, t/2 + t/2) \\ &\geq_L \mathscr{T}(\mathscr{T}(x_1, x_2, ..., x_{n-1}, x_n - x_{i_m}, t/2), \; \mathscr{T}(x_1, x_2, ..., x_{n-1}, x_{i_m} - x \;, t/2)) \\ &>_L \mathscr{T}(\mathcal{T}(r), \mathscr{N}(r)) \\ &>_L \mathscr{T}(\mathcal{E}) \end{split}$$

Therefore $\{x_n\}$ converges to x in $(X, \mathcal{P}, \mathcal{F})$ and hence it is complete.

4. REFERENCES:

- [1] T. Bag and S. K. Samanta, Finite dimensional fuzzy normed linear spaces, The Journal of Fuzzy Mathematics, 11 (2003), No.3, 687-705.
- [2] S. C. Chang and J. N. Mordesen, Fuzzy linear operators and fuzzy normed linear spaces, Bull. Cal. Math. Soc., 86 (1994), 429-436.
- [3] C. Felbin, Finite dimensional fuzzy normed linear spaces II, Journal of Analysis, (1999), 117-131.
- [4] S. Gähler, Unter Suchungen Über Veralla gemeinerte m-metrische Räume I, Math. Nachr., 40 (1969),165-189.
- [5] Hendra Gunawan and M. Mashadi, on n-normed spaces, International J. Math.&Math. Sci., 27 (2001), No.10, 631-639.
- [6] S. S. Kim and Y. J. Cho, Strict convexity in linear n-normed spaces, Demonstratio Math., 29 (1996), No.4, 739-744.
- [7] S. V. Krishna and K. K. M. Sarma, Separation of fuzzy normed linear spaces, Fuzzy Sets and Systems, 63 (1994), 207-217.
- [8] R. Malceski, Strong n-convex n-normed spaces, Mat. Bilten, 21 (1997), 81-102.
- [9] A. Misiak, n-inner product spaces, Math. Nachr., 140 (1989), 299-319.
- [10] AL. Narayanan and S. Vijayabalaji, Fuzzy n-normed linear space, International J. Math.&Math. Sci., 2005, No.24, 3963-3977.
- [11] G. S. Rhie, B. M.C hoi and S. K. Dong, On the completeness of fuzzy normed linear spaces, Math. Japonica, 45 (1997), No.1, 33-37.
- [12] B. Schweizer and A. Sklar, Statistical metric spaces, Pacific J. Math., 10 (1960) 314-334.
- [13] S. Vijayabalaji and N. Thillaigovindan, Complete fuzzy n normed linear space, Journal of Fundamental Sciences 3 (2007) 119-126.
