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ABSTRACT

In this paper, we have obtained a precise error estimate of the deficient discrete Quartic spline interpolate matching
the given function values at the mesh point and its difference at mid points and also boundary points.
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1. INTRODUCTION:

Deficient splines are more useful than usual splines as they require less continuity requirement at mesh points. Discrete
splines have been introduced by Mangasarian and Schumaker [7] in connection with certain studies of minimization
problems involving difference. Rana and Dubey [8] have obtains asymptotically precise estimate of the difference
between discrete cubic spline interplant and the function interpolated, which is sometimes used to smooth a histogram.
In the Direction of some constructive aspect's of discrete splines, we refer to Astor and Duris [1], Jia [4], Dikshit and
Powar [3] and Rana [9]. The object of the present paper is to study the existence, uniqueness and convergence
properties of deficient discrete quartic spline matching the given functional values at mesh points and its defferecne at
mid points and also boundary point..

Let us consider a mesh P on [0,1], which is defined by
O=x,<x <..<x,=1

such that x;, —x, , = P, for i =1,2,...,n. and P = max <<, P, , Throughout, & will be represent a given positive
real number. Consider a real continuous function S(x,%) defined over [0,1] which is such that its restriction S; on

[x,_;,x;] is a polynomial of degree 4 or less for i =1,2,..., n, then S(x,h) defines a discrete quartic spline if

D\/'S.(x ,h)=D!"S

where the difference operator D, are defined as

(x ,h) j=0,12.3. (1.1

i+l

D" f(x) = f(x), D' f0) = (f(x+h)= f(x=h)/2h

fE+h)=2f )+ f(x=h)

DR f)= ¢

2. EXISTENCE AND UNIQUENESS

The class of deficient discrete quartic splines is denoted by S(4,2,A,h) where S ’ (4,2,A,h) denotes the class of
all discrete deficient quartic splines which satisfies the boundary condition
{1} _ {1}
D, "S(x,,h) =D, f(x,),
D!"S(x,,h) = D" f(x,), 2.
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We introduce the following interpolating conditions

S(x,) = f(x,) i=0,.,n—1n. 02
DVS(Z)=D\"f(Z,) i=0,.,n—1. '
where Z, =m
2

Infact, we shall prove following:

Theorem: 2.1 For any /1> 0, there exists a unique deficient discrete quartic spline S(x,4)e S” (4,2, P,h) which
satisfies the conditions (2.1) and (2.2).

Let E(Z) be a quartic spline polynomial defined on [0,1]. It can be easily verified that

E(Z)=E©O)P(Z)+D\"E'(1/2)P,(Z)+ EQ)P,(Z)+ D!"E'(0)P,(Z)+ D" E'(1)P,(Z) (2.4)

\2
where PI(Z)=%(2+4Z—ZZ)

P(Z2)=-7"(1-2)°
2
P3<Z):%<7+6Z_Zz)
P(Z)=z (1-2)*(1+z/4)
22(z-1) 3+2)
4

PS(Z):

i

= Z then we can write

Let S(x,h)be a discrete quartic polynomial [x;, x,,,] and

S,(x.h)=f(x; )P(z)+ piDr{zljf(ZHl )Py(z)+ flx,,, )Py(z)+ piDzil}f(xi )P\(z) + pl.DZUf(le )Py(z) 2.5)
which is clearly satisfy the condition (2.1) and (2.2).

Let 3,(a,b) = api2 +bh®, wherea,b are real numbers and m, = D,{l”Si (x,h), we apply the continuity of the

second difference of S, (x,h) at x; in (2.5) to see that
3

3
pim, 3. (51 +{p’3, 9D+ p’,3.(7-Djm, +p’m,,3, (3-1) = %F,. +:—fFi* 2.6)
i i-1

where F, = (f, — £,.)3,(10,-2)+ p, . f " (Z)3,,(4,4)

We can easily see that excess of the absolute value of the coefficient of m1; over the sum of absolute value of the

coefficients of m,_, and m,,, in (2.6) under the condition of theorem 2.1 is given by

G,(h)= [pi38i—1 (4,0)+ pij—lsi(4’0)]

Thus the coefficient matrix of the system of equations (2.6) is diagonally dominant and hence invertible, therefore the
system of equation (2.6) has unique solution, which completes the proof of the theorem 2.1.

REMARK: In the case, when /1 — 0 theorem 2.1 gives the corresponding results for continuous C> quartic spline
interpolation under condition (2.1) and (2.2).

3. ERROR BOUNDS:

Now system of equation (2.6) may be written as

ACh)-M(h)=F.
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where A(h) is coefficient matrix and M (h) = m,(h), However, as already shown in the proof of theorem 2.1 A(h)

is invertible. Denoting the inverse of A(h) by A~ (h) we note that row max norm A~'(h) satisfies the following
inequality

1 A™ (h) I y(h). 3.1)
where y(h) = max{/, (h)}™" for convenience, we assume in this section that 1 = Ni when N is positive integer. It

is also assumed that the mesh points [x;] are such that

x; €[0,1],, for i=0,1,...n.
where discrete interval [0,1], is the set of points {0, N,..., Nh} for a function f and two distinct points X;, X, in
it’s domain, the first divided difference is defined by

[x, 2, 1f =0 () = f ()1 (x, — x,)
and

[-xz’x3]f _[xl,xz]f

(X3 _xl)

[x, %5, %, 1f = 3.2)
For convenience, we write f ' for D!V f, £ for D" f(x,) and w(f, p) for modules of continuity of f , the
discrete norm of a function f* over the interval [0,1], is defined by
I fll= max | f(x)I (3.3)
20,1,

We shall obtain in the following the bound of error functions e(x) = s(x,h)— f(x) over the discrete interval

[0,1]A.

Theorem: 3.1 Suppose S(x, /) is the discrete quartic splines interpolant of theorem 2.1 then

le(x)Il < k(p,Hw(f", p) (G.4)
and e () Il < y(Wk (p, Hw( ", p) (3.5)
e )l < k7 (p,Hw(f", p) (3.6)

where k(p,h) .k (p,h) and k~ (p,h) are some positive functions of p and K.

Proof: Writing f(x;) = f; . Equation (3.1) may be written as

A(hy-e'" (x,) = (f'")A(h) = (L)) (say) (3.7
when we replace m1,(h) by
ei“}(xi) — S{l)(x,->h)_f,~{l)

we need following lemma due to Lyche [5,6], to obtain inequlity (3.4).

Lemma: 3.1 Let { a; }1";1 and {b ; }3:] be given sequence of non-negative real numbers such that Zai = Zb ; then

for any real valued function f ', defined on discrete interval [0,1],, we have

'S b W=k ) 2
Zai[xio’xi]""’xik ]f_z j[yjo,yjl,---,yjk ]f = (f L )T (38)
i=1 j=1 :

where x;, ¥ € [0,1], for relevant values of 7, j and k.
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We can write the equation (2.6) is of the form of error function as follows.
3

[ple)3. 5. )+{p'3, 9. D+ p),3,(7-D}e!" + pell)3.3,-1)] = ”F+ ’F
pz pt]

—[p/ fES LGOS L OD+pL S T-DIY + pLfUS,B-DI= R () Gsay) (3.9)
Writing equation (3.9) is of the form of divided difference and using Lemma 3.1, given by Lyche [5,6].
3

Since Z a, = [P?,lsi (14,2) + p?3i71(14,2)]= 24: bi
j=1

i=1

We get
LR =1 ax0.x,1, =D b,[y,0. v, (3.10)
3 4
<w(f".p)) a =3 b,
i=1 j=1
where a,=p’(0p’, —=2h*)=p’3. (10,-2),
a, = p) (14p> +2h*) = p’3.(14,2),
a; =4p’(h* +pl) = p/S,(4.4),
b =p;5pl +h’)=p'3, (5D,
b, = P?sH O.nH+ p?—lsi(77_1)
by = p?—lsi(3’1) = p?—lsi(:;’_l)
b, = p?—lsi(494) = p?—lsi(4s4)
and

Xio = Xicts X1t =X = X0 = Vi = Yoo = V30 = Yar
Xy = Xy =Yg = Xg5 Vi = Qs sy = By

X30 = Zizio Yao = Zis

Now using the equtions (3.9) and (3.10).

lle' (x) I y(Wk (p.yw(f", p) G.11)

1 1
lle' (D) 1< &, (p, yw(f ), p)
This complete proof of inequality (3.5) of Theorem 3.1.

Next, we have to get e(x) . Writing equation (2.5) in form of error function as follows.

e(x )= pe""P,(t)+ pe N P (1) + L, (f)

where

L(f)=fRO+p f" )P0+ [P O+ p fUP@) + p, AP0~ f(x) (3.12)
We write L, (f) in form of divided difference and using Lemma 3.1, we get

| L, (f) I w(f, p)Za = Zb

i=1
=p(z+2° =272 +z7%)

= p,;k(z,h) (say) (3.13)
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where
a, = l(7z2 +62° —z%)
2
a, = i(4z+213 -7z +z7%)
a, :i(—3z2 +2z2° +27%)
b =z
b, =z'+72-27
and

Xig = Xoo = X309 = X,
Xy =Xy = X3 =X
Yio =X, Yu=4%;

Yoo = Ziv> Yo = X

i+l

From equations (3.11) and (3.12) gives inequality (3.4) of theorem (3.1).
This complete proof of inquality of theorem 3.1.
Again we have to find error bound of second difference as follows.

ie. () =182 - £ W]
Now

2 {2 2 1 2 2 1} 4142 1} 442

P () =[fAP )+ Pf " (2, AL () + £, AP (0 + P e AP (1) + e} AP (1)
+p, L AR @)+ AT 0) =P £ (0] (3.14)

For convience we write (3.14) equation

PP (x)=Ple" AP (1) + P AP (0)]+0.(f) (3.15)
where

0,(N=1HAT O+ P [ (2,47 O+ [y AT O+ B{ATAT + [V AT O) = B £ (0]
We write Q,(f) in form of divided difference and using Lemma 3.1, we get

5 1
1Q,(f)1 =|Zai[xi0’ X1y _ij[yjo Viulg
i=1 Jj=1

5 1
<Qa, = Dbyw(f".P) (3.16)
i=1 j=1
where

a, = P[7-18z+(6z° +h*)]

a, = P[2+127-2(6z" +h*)]

a, =P [-7/2+3z+1/2(62" +h*)]

a, =P [-3/2+43z+1/2(62° + h*)]

as =P,

b =P

1
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Since a, +a, +a,+a, +a; =P. =b,

1

5
ie.Sa =b =P
i=1
and
X0 = Yo = Xa0 = Xi»
X = X = Xpp T Xy = X
Xoo = Zigrr K30 = Xy X3 =X
Xso =X = Vir»
Hence

10, ISEw (fU.P) (3.17)
By using (3.5) and (3.15) in (3.14) we get inequality (3.6) of theorem (3.1).
This complete proof of theorem 3.1.
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