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ABSTRACT 

In this paper, the peristaltic flow of a fourth grade fluid through a porous medium in an asymmetric channel 

under the assumption of long wavelength is investigated. Series solutions of axial velocity and pressure gradient are 

given by using regular perturbation technique when Deborah number is small. Numerical computations have 

been performed for the pressure gradient and pressure rise.  The effects of various pertinent parameters on the 

pressure gradient and pumping characteristics are discussed in detail. 
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1. INTRODUCTION:    

 

Most studies on the peristaltic motion assume the physiological fluids to behaving like Newtonian fluids with constant 

viscosity. However, this approach fails to give an ample understanding of the peristaltic mechanism involved in small 

blood vessels, lymphatic vessels, intestine, and ductus efferentus of the male reproductive tracts. In these body organs, 

the viscosity of the fluid varies across the thickness of the duct. Also, the assumption that the chyme in small intestine 

is a Newtonian material of variable viscosity is not adequate in reality. Chyme is undoubtedly a non-Newtonian fluid. 

Some authors feel that the main factor responsible for moving the chyme along the intestine is a gradient in the 

frequency of segmentation (a process of oscillating contraction and relaxation of smooth muscles in the intestine wall) 

along the length of intestine. Moreover, peristaltic waves die out after traveling a very short distance; peristaltic waves 

which travel the entire length of small intestine do not occur in humans except under abnormal conditions. Also, in 

transport of spermatozoa in the cervical canal, there are some other important factors, responsible for the transport of 

semen in ductus efferentes. The phenomenon of peristalsis has also been proposed as a mechanism for the transport of 

spermatic fluid (semen) in vasdeferens. Movement through vasdeferens is accomplished by means of peristaltic action 

of contractile cells in the duct wall (Semans and Longworthy [10]). However, there is no doubt that peristalsis aids in 

moving semen in ductus efferentus, the chyme in the intestine, and flow of semen in vas deferens. The above review of 

physiological flows indicates that non-Newtonian viscoelastic rheology is the correct way of properly describing the 

peristaltic flow through channels and tubes. The effects of third order fluid on peristaltic transport in a planar channel 

were studied by Siddiqui et al. [11] and the corresponding axisymmetric tube results are obtained by Hayat et al. [4].  

Peristaltic flow of a MHD third grade fluid in a tube has studied by Hayat and Ali [5]. Also, Hayat et al. [6] 

investigated the peristaltic transport of a third order fluid under the effect of a magnetic field in a planar channel. Hayat 

et al. [7] have discussed peristaltic transport of a third order fluid in a channel. Peristaltic transport of a fourth grade 

fluid in an inclined asymmetric channel has studied by Haroun [3].  

 

Flow through a porous medium has been of considerable interest in recent years particularly among geophysical fluid 

dynamicists.  Examples of natural porous media are beach sand, sand stone, limestone, rye bread, wood, the human 

lung, bile duct, gall bladder with stones and in small blood vessels. Flow through a porous medium has analyzed by a 

number of workers by employing Darcy’s law (Scheidegger [9]).  Some studies about this point have been made by 

Varshney [13] and Raptis and Perdikis [8].  Elshehawey et al. [1] investigated the peristaltic flow of a generalized 

Newtonian fluid through a porous medium.  Peristaltic motion of a Newtonian fluid through a porous medium in 

asymmetric channel was discussed by Elshehaway et al. [2]. Recently, Subba Reddy et al. [12] have studied the long 

wavelength approximation to MHD peristaltic flow of a Bingham fluid through a porous medium in an inclined 

channel.  
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In view of these, we studied the peristaltic flow of a fourth grade fluid through a porous medium in an 

asymmetric channel under the assumption of long wavelength. Series solutions of axial velocity and pressure 

gradient are given by using regular perturbation technique when Deborah number is small. Numerical 

computations have been performed for the pressure gradient and pressure rise.  The effects of various pertinent 

parameters on the pressure gradient and pressure rise are studied in detail through graphs.  

 

2. MATHEMATICAL FORMULATION: 

 

We consider the peristaltic flow of an incompressible fourth grade fluid through a porous medium in a two-

dimensional asymmetric channel of width �� � ��.The flow is induced by sinusoidal wave trains propagating with 

constant speed � along the channel walls. Fig. 1 shows the physical model of the problem. 

  

The geometry of the wall surfaces is defined   

 

  � � ��	
� �
 � �� � ����� ���� 	
 � ��
�  (Upper wall)                                                               (2.1) 

 

 � � ��	
� �
 � ��� � ����� ���� 	
 � ��
 � �� (Lower wall)                                                       (2.2) 

 

where ��, �� are the amplitudes of the upper and lower waves, � is the wavelength, � is the phase difference which 

varies in the range � � � � � and � is the time. Further, ��� ��,���,��� and � satisfies the condition ��� � ��� � ��������� � 	�� � ��
� so that walls will not intersect with each other.  

                 

 
Fig. 1 Schematic diagram of the asymmetric channel 

 

� � ��� �  �
�! � " �

�#$ � � �%
�! � �&''

�! � �&'(
�# � )

* ��                                                                                (2.3) 

 

� � ��� �  �
�! � " �

�#$" � � �%
�# � �&'(

�! � �&((
�# � )

* "                                                                  (2.4) 

 

and the equation of continuity is  

 �+
�! � �,

�# � �                                                                            (2.5) 

 

where �  is the density,   and  "  are the velocity components in X and Y directions, -  is the pressure, .  is the 

permeability of the porous medium and /!! , /!# ,�/## are the components of extra stress tensor. 

 

The constitutive equations for an incompressible fourth grade fluid are 0 � �12 � / 

                                                                            (2.6) 

 / � 34� � 5�4� � 5�4�� � 6�47 � 6�	4�4� � 4�4�
 � 67	�84��
4� � 9�4:          

                  �9�	4�47 � 474�
 � 974�� � 9:	4��4� � 4�4��
 � 9�	�84�
4� � 

                   �9;	�84�
4�� � <9=�847 � 9>�8	4�4�
?4�                                                      (2.7) 



  ��������	
���
������������
������
���

����
������
�
�
	���
��

�
�

�
����
	��
��	������	� ��!�
�!��
��� 

���!��	����
�� ��
�

��
�������	���	��
��
������
	����
�������"���#�$%&'���
��#()&(���
 �*�$$)#$+&�

© 2012, IJMA. All Rights Reserved                                                                                                                                                     332  

 

where 3 is constant viscosity and 5��� 5��� 6��� 6��� 67�� 9�� 9�� 97�� 9:� 9�� 9;� 9=� 9> being material constants and 4@ 

representing the Rivlin-Ericksen tensors defined by  

 

 4@ � ABCDE
A� � 4@F�	G8�H�"
 � 	G8�H�"
I4@F��� J K L�                                                     (2.8) 

 

 4� � 	G8�H�"
 � 	G8�H�"
I                                                        (2.9) 

 M � 
 � ���� N � ��� O	M� N
 �  � ��� P	M� N
 � "�� 1	M� N
 � -	
� �� �
                                                      (2.10) 

 

Introducing the non-dimensional parameters and variables  

 

MQ � R
� ,�NS � T

UE ,�OS � V
W ,�PQ � X

WY ,�/Q � UE
)W / ,�1Q � ZUE[

)W� ,��Q � W�
�  ,�\� � ]E

UE ,�\� � ][
UE 

 

^ � U
� , _� � `E

UE, _� � `[
UE, H � U[

UE�                                                                (2.11) 

 

Using Eqs. (2.10), we obtain Eqs. (2.3) - (2.2) as 

 

 � �O �
�R � P �

�T$ O � � �Z
�R � �&aa

�R � �&ab
�T � )

* 	O � �
��                                                                       (2.12) 

 

 � �O �
�R � P �

�T$ P � � �Z
�T � �&ab

�R � �&bb
�T � )

* P                                                              (2.13) 

 

and the equation of continuity is  

 

 
�V
�R � �X

�T � �                                                           (2.14) 

 

where 	O� P
 are velocity components in the wave frame. 

 

Using Eqs. (2.9), we obtain Eqs. (2.12) - (2.14) as 

 

cd^ �O �V�R � P �V�T$ � � �Z
�R � ^ �&aa�R � �&ab

�T � �
eU �	O � L
                                                                       (2.15) 

 

cd^7 �O �X�R � P �X�T$ � � �Z
�T � ^� �&ab�R � ^ �&bb�T � Y[

eU P                                                             (2.16) 

 

and the equation of continuity is  

 �V
�R � �X

�T � �                                                            (2.17) 

 

where 

 / � 4� � f�4� � f�4�� � g�47 � g�	4�4� � 4�4�
 � g7	�84��
4� � h�4:  

        �h�	4�47 � 474�
 � h74�� � h:	4��4� � 4�4��
 � h�	�84�
4� � 

    ��;	ijk�
k�� � l�=ijk7 � �>ij	k�k�
mk�                                                                  (2.18) 

 

4@ � nO o
oM � P

o
oNp4@F� � 4@F�	G8�H�"
 � 	G8�H�"
I4@F� 

 

Here the wave number ^ , Reynolds number cd , Darcy number q� , the material coefficients f�� f��� g��� g��� g7�� h��� h��� h7�� h:�� h�� h;� h=� h> are 

 

 ^ � U
� , cd � rUEW

)  ,  q� � *
UE[ ,    

 

 f� � sEW
)UE � � f� � s[W

)UE � � g� � tEW[
)UE[ � � �g� �

t[W[
)UE[ ��  

 

 g7 � tuW[
)UE[ � � h� �

vEWu
)UEu � � h� �

v[Wu
)UEu � � h7 �

vuWu
)UEu ��                                                       (2.19) 
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 h: � vwWu
)UEu � � h� �

v[Wu
)UEu � � h; �

vxWu
)UEu � � h= �

vyWu
)UEu � � h> �

vzWu
)UEu ��   

 

The corresponding dimensionless boundary conditions in wave frame of reference are given by  

 

 O � �L   at N � \� � L � _������M                                              (2.20) 

 

 O � �L          at N � \� � �H � _����	��M � �
                                                                     (2.21) 

 

where  _� � `E
UE, _� � `[

UE, H � U[
UE. 

 

Under the assumption of long wavelength, the Eqs. (2.15) and (2.16), become 

 

 � � � �Z
�R � �&ab

�T � �
eU 	O � L
                                                          (2.22) 

 

 � � � �Z
�T                                                (2.23) 

here    /RT � �V
�T � �� ��V�T$

7���� in which the Deborah number � is  � � �g� � �g7�{ 
 

Eqs. (2.22) and (2.23) can be rewritten as  

  

 
AZ
AR � �

�T |�V�T � �� ��V�T$
7} � ~�	O � L
                                                                        (2.24) 

here ~� � �
eU. 

 

The volume flow rate in wave frame of reference is given by  

 � � � OHN�E�[                                                (2.25) 

 

The instantaneous flux �	
� �
in the laboratory frame is 

 

 �	
� �
 � � 	O � L
HN�E�[ � � OHN�E�[ � � HN�E�[ � � � \� ��\�                                                                    (2.26) 

 

The average flux over one period 	0 � f��
 of the peristaltic wave is 

 

 �S � �
I � �H� � �

I � 	� � \� ��\�
H� �I
� � � L � HI

�                                                        (2.27) 

 

3. SOLUTION: 

 

Eq. (2.24) is non-liner differential equation, so that it is not possible to obtain a closed form solution, so we seek a 

perturbation solution. We expand the flow quantities in a power series of the small parameter Deborah number  � as 

follows: 

 O � O� � �O� � �������                                                             (3.1) 

 

 1 � 1� � �1� � �������                                                              (3.2) 

 

 � � �� � ��� � �������                                                             (3.3) 

 

Substituting these equations into the Eqs. (2.24), (2.20) and (2.21) we obtain                                                      

 

3.1 System of order zero: 

 

   
�[V�
�T[ �~�	O� � L
 � AZ�

AR ��                                                                    (3.4) 

 

Together with the boundary conditions 

 O� � �L��������N � � \�                                                                                         (3.5) 

 

 O� � �L��������N � � \�                                                                                         (3.6) 



  ��������	
���
������������
������
���

����
������
�
�
	���
��

�
�

�
����
	��
��	������	� ��!�
�!��
��� 

���!��	����
�� ��
�

��
�������	���	��
��
������
	����
�������"���#�$%&'���
��#()&(���
 �*�$$)#$+&�

© 2012, IJMA. All Rights Reserved                                                                                                                                                     334  

 

3.2 System of order one: 

 

 
�[VE
�T[ �~�O� � AZE

AR � �� �
�T ��V��T $

7�                                                            (3.7) 

 

Together with the boundary conditions 

 O� � �����������N � � \�                                                                                         (3.8) 

 

 O� � �������������N � �\�                                                                                         (3.9) 

 

3.3 Zeroth-order solution: 

 

Solving Eq. (3.4) using boundary conditions (3.5) and (3.6), we get  

 

O� � �
�[ �AZ�AR $ <4� ���� ~N � 4� ����~N � L? � L.                                                                                    (3.10) 

 

where 4� � ������[F������E
�����	�[F�E
 �       and    4� � ������EF������[

�����	�[F�E
 �{  and the volume flow rate��� is given by    

 

 �� � � �O�HN�E�[       

  

      � �
�u �AZ�AR $ <�F� �����	�EF�[
F�	�EF�[
 �����	�[F�E
?����<�	�[F�E
? � 	\� � \�
�                                                                           (3.11)  

 

From Eq. (3.11) 

 

      
AZ�
AR � <���	�EF�[
?�u ����<�	�[F�E
?

�F������	�EF�[
F�	�EF�[
 �����	�[F�E
                                                                            (3.12) 

 

3.4 First order solution: 

 

Substituting Eq. (3.10) into Eq. (3.7) and solving Eq. (3.7) using boundary conditions (3.8) and (3.9), we obtain 

 

O� � �
�[ �AZEAR $ <4� ���� ~N � 4� ����~N � L? � �

:�w �AZ�AR $
7 <4� ���� ~N � �4�� ����~N � ��47 ���� �~N ���������������������������������������������−�4������~N−�4�~N����~N−�4�~N����~N                                                     (3.13) 

 

where   47 � �
: <4�7 � �4�4��? ,   4: � �

: <4�7 � �4��4�? , 
 

 4� � 7
: <4�4�� � 4�7?��     4; � 7

: <4�7 � 4��4�?��  

 4= � �47 ���� �~\� � �4: ���� �~\� � �4�~\� ����~\� � �4;~\� ���� ~\�, 

 4> � �47� ���� �~\� � �4: ���� �~\� � �4�~\� ����~\� � �4;~\� ���� ~\�, 

 

4� � By ������[FBz ������E
����<�	�[F�E
?  ,       4�� � Bz ������EFBy ������[

����<�	�[F�E
?   , and the volume flow rate��� is given by    

 

���� � � �O�HN
�E

�[
 

 

     =� ��u AZEAR ��F������	�EF�[
F�	�EF�[
 �����	�[F�E
����<�	�[F�E
? � � �
:�w �AZ�AR $

7 4��                                                                         (3.14)                                  

 

From Eq. (3.14), we have 

 

AZE
AR �

��EF E
w�w� ¡� a $

uBEE¢�£u ����<�	�[F�E
?
�F������	�EF�[
F�	�EF�[
 �����	�[F�E
                                                                                                                (3.15) 
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where 4�� � 	B¤�:B[

� <����~\� � ����~\�? � 	BE��:Bx


£ <���� ~\� � ���� ~\�? � 

 ����������������Bu� <���� �~\� � ����� �~\�? � Bw
� <���� �~\� � ���� �~\�? � 

                          �4�<\� ���� ~\� � \����� ~\�? � ��4;<\� ����~\� � \�����~\�?         

                                                                                                            

Substituting from equations (3.12) and (3.15) into the Eq. (3.2) and using the relation 
AZ
�AR � AZ�

AR � � AZEAR   and neglecting 

terms greater than �����, we get  

 

  
AZ
�AR � �� <��	�EF�[
?�u ����<�	�[F�E
?

�F� �����	�EF�[
F�	�EF�[
 �����	�[F�E
$ � �

:¥ ����	�EF�[
�u��zBEE ����<�	�[F�E
?
<�F������	�EF�[
F�	�EF�[
 �����	�[F�E
?w¦           (3.16) 

 

The pressure rise per wave length 	�1
   and is defined as 

 

 �1 � � AZ
AR HM���

�                                                             (3.17) 

 

The above integral numerically evaluated using the MATLAB software. 

 

4. DISCUSSION OF THE RESULTS: 

 

Fig. 2 depicts the variation of axial pressure gradient
AZ
AR with Debaroh number � for _� � �{§�  _� � �{¨� H � L{���  

�S � �L�� q� � �{L��and � � �
; { It is observed that, the axial pressure gradient H1�HM increases with an increase in 

Deborah number �. Further, it is observed that, the axial pressure gradient is more for fourth grade fluid 	� © � © L
 
than that of Newtonian fluid 	� � �
.  
 

The variation of axial pressure gradient 
AZ
AR with Darcy number q� for  _� � �{§�  _� � �{¨� �S � �L�� H � L{��� 

� � �{�Land � � �
; is depicted in Fig. 3. It is noted that, the axial pressure gradient H1�HM decreases on increasing 

Darcy numberq�. 

 

Fig. 4 shows the variation of the axial pressure gradient H1�HM with phase shift  � for  _� � �{§�  _� � �{¨� �S ��L�� H � L{�� q� � �{L and � � �{�L. It is observed that, the axial pressure gradient H1�HM  decreases with an increase 

in phase shift �.  

 

The variation of axial pressure gradient 
AZ
AR with upper wave _� for  q� � �{L�  _� � �{¨� �S � �L�� H � L{��� 

� � �{�L and � � �
; is shown in Fig. 5. It is found that, the axial pressure gradient H1�HM increases with an increase in 

amplitude of the upper wave _1. The same trend is observed for lower wave amplitude  _2 as shown in Fig. 6. 

 

Fig. 7 illustrates the variation of the axial pressure gradient H1�HM with width of the channel  H for � � 0{01�  _1 � 0{5�
_2 � 0{7� �S � �1�� q� � 0{1�and � � �

6
 . It is noted that, the axial pressure gradient H1�HM decreases with an increase 

in H. 

 

The variation of pressure rise ª1�with time averaged flux �S  for different values of Deborah number  � with _1 � 0{5�  
_2 � 0{7� H � 1{2� q� � 0{1�and � � �

6
 is shown in Fig. 8.  It is found that, the time-averaged flux �S increases with 

increasing Deborah number � in both the pumping region�	�1 K 0
and free-pumping�	�1 � 0
� while it decreases with 

increasing Deborah number  � in the co-pumping 	�1 © 0
 region.  

 

Fig. 9 depicts the variation of �1 with time-averaged flux �S for different values of Darcy number q� with  _1 � 0{5� 
_2 � 0{7� H � 1{2� � � 0{01�and�� � �

6
. It is observed that, any two pumping curves intersecting in the first quadrant, 

to the left of this point of intersection, the time-averaged flux �S decreases with increasing Darcy number q� and to the 

right of this point of intersection, the  �S increases with increasing�q�. 

 

Fig. 10 shows the variation of �1  with time-averaged flux �S  for different values of phase shift �  with _1 � 0{5�  _2 � 0{7� H � 1{2� � � 0{01 and q� � 0{1{  It is noted that, the time-averaged flux �S decreases with an increase in � 

in both the pumping region and free pumping region, while it increases with increasing � in the co-pumping regions for 

appropriately chosen �1	© 0
. 
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The variation of �1 with time-averaged flux �S  for different values of amplitude of the upper wave _1  with  « �
1� _2 � 0{7� H � 1{2� � � 0{01�and  � � �

6
 is presented in Fig. 11. It is found that, the time-averaged flux �S increases on  

 

increasing _1 in both the pumping region and free-pumping region, while it decreases with increasing _1  in the co-

pumping region for appropriately chosen �1	© 0
.  The same phenomenon is observed for the lower wave amplitude  _2 as presented in Fig. 12.  

 

Fig. 13 shows the variation of �1  with time-averaged flux �S  for different values of width of the channel H  with  

« � 1� _1 � 0{5� _2 � 0{7�  � � 0{01��and � � �
6
{  It is observed that, the time-averaged flux �S  decreases with an 

increase H in both the pumping region and free pumping region, while it increases with increasing H in the co-pumping 

region. 

 

5. CONCLUSIONS: 

 

In this paper, we studied the effect of magnetic field on the peristaltic pumping   of an incompressible fourth grade fluid 

through a porous medium in an asymmetric channel under assumption of long wavelength. A perturbation technique is 

obtained for the case in which Deborah number � is small. It is found that, the axial pressure gradient and the pumping 

increases with increasing �� _1 and�_2, while they decreases with increasing  �q�� � and��H.  

 

 

Fig. 2 Profiles of axial pressure gradient  
AZ
AR for different values of Deborah number  ¬ for _� � �{§�  _� � �{¨� 

H � L{����  �S � �L�� q� � �{L��and � � �
;{ 

 

 

Fig. 3    Profiles of axial pressure gradient  
AZ
AR for different values of Darcy number  q� for  _� � �{§�  _� � �{¨� 

H � L{����  �S � �L�� ¬ � �{�L and � � �
;{ 
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Fig. 4 Profiles of axial pressure gradient  
AZ
AR for different values of phase shift  � for  _� � �{§�  _� � �{¨� 

H � L{�� �S � �L��     ¬ � �{�L�and q� � �{L{ 
 

 

Fig. 5 Profiles of axial pressure gradient  
AZ
AR for different values of _� for  ¬ � �{�L�  _� � �{¨� H � L{�� q� � �{L  

and � � �
;{ 

 

Fig. 6 Profiles of axial pressure gradient  
AZ
AR for different values of  _� for ¬ � �{�L�  _� � �{§� H � L{�� 

q� � �{L� �S � �L�  and � � �
;{ 
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Fig. 7 Profiles of axial pressure gradient  
AZ
AR for different values of H for ¬ � �{�L�  _� � �{§� _� � �{¨� 

q� � �{L� �S � �L�  and � � �
;{ 

 
Fig. 8 The variation of pressure rise ª1�with time averaged flux �S for different values of  Deborah number  ¬ with 

_� � �{§�    _� � �{¨� H � L{�� q� � �{L��and � � �
;. 

 
Fig. 9 The variation of pressure rise ª1�with time averaged flux �S  for different values of Darcy number  q� with 

_� � �{§�  _� � �{¨� H � L{�� ¬ � �{�L�and � � �
;. 
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Fig. 10 The variation of pressure rise ª1�with time averaged flux �S for different values of phase shift  �  with  _� ��{§�  _� � �{¨� H � L{�� ¬ � �{�L� and q� � �{L{ 

 

 
Fig. 11     The variation of pressure rise ª1�with time averaged flux �S for different values of  _�  with  q� � �{L� 

_� � �{¨� H � L{�����¬ � �{�L and � � �
;{ 

 
Fig. 12     The variation of pressure rise ª1�with time averaged flux �S for different values of  _� with q� � �{L� _� ��{§� H � L{�� ¬ � �{�L��and � � �

;{ 
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Fig. 13 The variation of pressure rise ª1�with time averaged flux �S for different values of  H with  q� � �{L� _� � �{§�_� � �{¨� ¬ � �{�L��and � � �
;{ 
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