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ABSTRACT 

In this paper, we prove some fixed point and common fixed point theorems for non contraction rational mappings in 
Banach space. Also we generalized many more known results. 
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1. INTRODUCTION 
 
It is well known that the differential and integral equations that arise in many physical problems are mostly non linear   
and fixed point technique provides a powerful tool for obtaining the   solutions of   such equations which otherwise   
are difficult to solve by ordinary methods. While stating this, however, we mention  that  some qualitative properties   
of the solution of related equations are lost by functional analysis approach. Many  attempts have been made to    
formulate fixed point theorems in this direction and the well known Schauder’s fixed point principle formulated  by  J. 
Schauder  in  1930. 
 
Brouwder [1], Gohde [5], and Kirk [12], have independently proved the fixed point theorem for non–expansive 
mappings defined on a closed bounded and convex subset of a uniformly convex Banach space and in spaces with 
richer structure. Many other mathematicians gave a number of  generalizations  of  non- expansive mappings, like  
Dotson [3], Emmouele[4], Goebel[6], Goebel and Zlotkiewicz [7],Goebel, Kirk and  Shimi [8], Massa  and  Roux  [13],  
Rhodes  [14],  are  of  special  significance.  A  comprehensive  survey concerning  fixed  point  theorem  for non- 
expansive  and  related  mappings  can  be  found  in  Kirk [10]. 
 
Let X be a Banach space and C a closed subset of X.  then the  well  known Banach  Contraction Principle  states  that  
a  contraction mapping of  C into  itself  has  a  unique  fixed  point.  The same holds good if we assume that only some 
positive power of a mapping is a contraction (For example, Bryant [2]).  But this result is no longer true for non 
expansive mappings.  Many  mathematicians  have  studied  the  existence of  fixed  points  of  non expansive maps 
defined on  a closed bounded and  convex subset of a uniformly convex Banach space,  and  in a space with  a normal  
structure.  For  the results  of this  kind one  is  referred  to Browder [1], Goebel[6],  and  kirk [10], it  is  natural with  a 
non expansive iteration. The answer, in  general,  is  negative However Goebel and Zlokiewicz [7]  have  answered  this  
problem in  affirmative  with  some  restriction, and  thus  generalizing  a  result  of  Browder [1].   
 
MAIN RESULTS 
 
Theorem :2.1 Let F be mappings of a Banach space X into itself. If F satisfies the following conditions; 
 
F2 = I, where I is identity mapping                                                                                    (2.1.1) 
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For every x,y∈X where α , β ,γ ,δ ,η ≥ 0 and 7α +8 β +4 8<γ then F has a fixed point. 

If 
2
β

+2δ +η <1.Then F has a unique fixed point  

Proof: Suppose X is a point in the Banach space X. Taking Y= 
2
1

(F+ I) X, Z = F(Y), U = 2Y-Z, We have 
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Combining 2.1(a) and 2.1(b) , we have 
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By the definition of q, we claim that {Gn(X)} is a Cauchy sequence in X.

  
By the completeness, {Gn(X)} converges to some element X0 in X. 
 
i.e. 
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Which implies that G(X0) = X0. 
 
Hence F(X0) = X0 
 
i.e. X0 is a fixed point of F. 
 
For the uniqueness, if possible let Y0(≠ X0) be another fixed point of F then 
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2.2 Now we prove the following theorem which generalises the theorem-2.1 
 
Theorem: 2.2 Let K be closed and convex subject of a Banach space X. Let F: K →K, G: K →K satisfy the following 
conditions 
 
F and G commute                                                                                                    (2.2.1) 
 

IF =2 and IG =2  where I denotes the indentity mapping                                                                                    (2.2.2) 
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For every x,y∈K where α , β ,γ ,δ ,η ≥ 0 and 7α +8 β +4γ <8 then there exists at least one fixed point, X0є K 
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Theorem: 2.3 Let K be a closed and convex subset of a Banach space X. Let F, G and H be three mappings of X into 
itself such that 
                  
FG = GF, GH = HG and FH = HF                                                                                                                              (2.3.1) 
 
F2= I , G2= I , H2= I , where I denotes the identify mapping                                                                    (2.3.2) 
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For every X, Y є K and 0,,,, ≥ηδγβα such that γβα 487 ++ <8 then there exist at least onefixed point X0 єX 
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Where (FGH)2=I and 7 γβα 48 ++ <8 
 
Then by theorem 1 , we write that FGH has at least one fixed point , say X0 in K 
 
i.e. FGH( X0)= X0                                                                                                                                                          3.(A)    
 
and so GH(FGH)( X0)=GH(X0)  or .F( X0)=GH( X0)                                                                                                   3.(B) 
 
Also H (FGH) (X0)=H(X0)  or  .FG( X0)=H(X0)                                                                       3 (C) 
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Therefore 

≤− 00 )( XXF )2
2

( ηδβ
++ 00 )( XXF −

 

Which is a contradiction  ,Since   
1)2

2
( <++ ηδβ

 Hence,  it  follows  that F(X0)=X0   But F(X0)=G(X0) 
 

Therefore, F(X0) =G(X0) =H(X0) =X0 
 

i.e. X0  is the common fixed point of F,G and H. 
 

Now to show the uniqueness of X0 , we let Y0 be another common fixed point of F, G and H. 
 

Using (2.3.1),(2.3.2),(2.3.3) and 3.(a),3.(b),3.(c), we get 
 

=− 00 YX
 

)()( 0
2

0
2 YFXF −   =   )()( 00 YFFXFF −

 

             ≤α )()()()(
)()()()(

0000
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−−

 

                            
+ β )()()()(

)()()()(
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−+−
−−

 
                                 + γ [ )()( 00 XFFXGHF − + )()( 00 YFFYGHF − ]                                                            

                                           +δ [ )()( 00 YFFXGHF − + )()( 00 XFFYGHF − ] )()( 00 YGHFXGHF −+η                                                                      
                                                    

 

                    
δβ 2

2 00 +−= YX η+− 00 YX
 

 

                    
)2

2
( ηδβ

++= 00 YX −
 

Therefore 
 

≤− 00 YX
(

ηδβ
++ 2

2 ) 00 YX −
 

Which is a contradiction, since  
1)2

2
( <++ ηδβ

 

Hence,  it  follows  that X0=Y0, 
 
Proving the uniqueness of X0. 
 
This completes the proof of the theorem. 
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