International Journal of Mathematical Archive-3(2), 2012, Page: 556-565

g[#] semi–closed sets in Bitopological spaces

Mrs. Veronica Vijayan* & K. Reena**

*Department of mathematics, Nirmala College for women, Coimbatore, India

**Department of mathematics, Sree Narayana Guru College, Coimbatore, India

E-mail:*reenamaths1@gmail.com

(Received on: 03-02-12; Accepted on: 25-02-12)

ABSTRACT

In this paper, we introduce $g^{\#}$ semi-closed sets in bitopological spaces. Properties of these sets are investigated and we introduce four new bitopological spaces namely, (i,j)- $_{\alpha}T_{b}^{\#}$, (i,j)- $T_{b}^{\#}$, (i,j)- $T_{b}^{\#}$, (i,j)- $_{\alpha}T_{b}^{\#}$, (i,j)- $T_{b}^{\#}$, (i,j)- $_{\alpha}T_{b}^{\#}$, (i,j)- $T_{b}^{\#}$, (i,j)- $_{\alpha}T_{b}^{\#}$, (i,j)- $_{$

Keywords: (i,j)- $g^{\#}$ s-closed sets, (i,j)- $_{\alpha}T_{b}^{\#}$, (i,j)- $T_{b}^{\#}$, (i,j)- $T_{b}^{\#\#}$, (i,j)- $^{\#}T_{b}$ spaces,(i,j)- $g^{\#}s$ -continuous and (i,j)- $g^{\#}s$ -irresolute maps.

1. Introduction:

A triple (X, τ_1 , τ_2) where X is a nonempty set and τ_1 and τ_2 are topologies on X is called a bitopological space and Kelly initiated the study of such spaces. Levine introduced and studied semi-open sets¹ [11] and generalized closed sets²[10] in 1963 and 1970 respectively. S.P. Arya and T.Nour³ [3] defined generalized semi-closed sets (briefly gs-closed sets) in 1990 for obtaining some characterizations of s-normal spaces. Njåstad⁴ [16] and Abd El-Monsef et. al ⁵[1] introduced α -sets (called as α -closed sets) and semi-preopen sets respectively. Semi-preopen sets are also known as β -sets⁶ [2]. Maki et.al. Introduced generalized α -closed sets (briefly g α -closed sets)⁷[13] and α -generalized closed sets (briefly α g-closed sets)⁸[12] in 1993 and 1994 respectively. M.K.R.S. Veera Kumar introduced and studied g[#]-semi-closed sets, "T_b space, T_b" space, T_b" space and $_{\alpha}T_{b}$ " space, g"s-continuous and g"s-irresolute maps for general topology. The class of g"-semi-closed sets is independent from the classes of g-closed sets, g α -closed sets, α g-closed sets, and pre closed sets.

The purpose of this paper is to introduce the concepts of $g^{\#}$ -semi-closed sets, ${}^{\#}T_{b}$ space, $T_{b}^{\#}$ space, $T_{b}^{\#}$ space and ${}_{\alpha}T_{b}^{\#}$ space, $g^{\#}$ s-continuous and $g^{\#}$ s-irresolute maps for bitopological spaces and investigate some of their properties.

2. Prerequisites:

Throughout this paper (X,τ_1, τ_2) , (Y, σ_1, σ_2) and (Z, η_1, η_2) represent non-empty bitopological spaces on which no separation axioms are assumed unless otherwise mentioned. If A is a subset of X with topology τ then cl(A), int(A) and C(A) denote the closure of A, the interior of A and the complement of A in X respectively. We recall the following definitions, which will be used often throughout this paper.

Definition 2.1: A subset A of a space (X, τ) is called

- (1) a preopen set if $A \subseteq int(cl(A))$ and a preclosed set if $cl(int(A)) \subseteq A$.
- (2) a semi-open set if $A \subseteq cl(int(A))$ and a semi-closed set if $int(cl(A)) \subseteq A$.
- (3) an α -open set if A \subseteq int(cl(int(A))) and a α -closed set if cl(int(cl(A))) \subseteq A.

(4) a semi-preopen set (= β -open) if A \subseteq cl(int(cl(A))) and a semi-preclosed set (= β -closed) if int(cl(int(A))) \subseteq A.

The semi-closure (resp. α -closure) of a subset A of (X, τ) is denoted by scl(A) (resp. α cl(A) and spcl(A))and is the intersection of all semi-closed (resp. α -closed and semi-preclosed) sets containing **A**.

*Corresponding author: K. Reena**, *E-mail: reenamaths1@gmail.com

Definition 2.2: A subset A of a space (X, τ) is called

- (1) a generalized closed (briefly g-closed) set²[10] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .
- (2) a generalized semi-closed (briefly gs-closed) set³[3] if scl(A) \subseteq U whenever A \subseteq U and U is open in (X, τ).
- (3) a generalized semi-preclosed (briefly gsp-closed) set¹²[9] if spcl(A) \subseteq U whenever A \subseteq U and U is open in (X, τ).
- (4) an α -generalized closed (briefly α g-closed) set⁸[12] if α cl(A) \subseteq U whenever A \subseteq U and U is open in (X, τ).
- (5) a generalized α -closed (briefly g α -closed) set⁷[13] if α cl(A) \subseteq U whenever A \subseteq U and U is α -open in (X, τ).

Definition 2.3: A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is called

- (1) *semi-continuous*¹ [11] if $f^{-1}(V)$ is semi-open in (X, τ) for every open set V of (Y, σ) .
- (2) *pre-continuous*¹¹ [14] if $f^{-1}(V)$ is pre-closed in (X, τ) for every closed set V of (Y, σ) .
- (3) *a-continuous*¹² [15] if $f^{-1}(V)$ is *a*-closed in (X, τ) for every closed set V of (Y, σ) .
- (4) **\beta-continuous⁵** [1] if f⁻¹(V) is semi-preopen in (X, τ) for every open set V of (Y, σ).
- (5) *g-continuous*¹³ [4] if $f^{-1}(V)$ is g-closed in (X, τ) for every closed set V of (Y, σ) .
- (6) gs-continuous¹⁴ [7] if $f^{-1}(V)$ is gs-closed in (X, τ) for every closed set V of (Y, σ) .
- (7) *ag-continuous*² [10] if $f^{-1}(V)$ is ag-closed in (X, τ) for every closed set V of (Y, σ) .
- (8) *ga-continuous*⁷ [13] if $f^{-1}(V)$ is ga-closed in (X, τ) for every closed set V of (Y, σ) .
- (9) gsp-continuous¹⁶ [9] if $f^{-1}(V)$ is gsp-closed in (X, τ) for every closed set V of (Y, σ) .
- (10) *ag-irresolute*¹⁰ [6] if $f^{-1}(V)$ is a g-closed in (X, τ) for every a g-closed set V of (Y, σ) .
- (11) pre-semi-open¹⁵ [5] if f(U) is semi-open in (Y, σ) for every semi-open set U in (X, τ) .

Definition 2.4: A topological space (X, τ) is said to be

(1) a $T_{1/2}$ space if every g-closed set in it is closed.

(2) a T_b space if every gs-closed set in it is closed.

(3) an $_{\alpha}T_{b}$ space if every α g-closed set in it is closed.

Definition 2.5: A subset A of a bitopological space (X, τ_1, τ_2) is called:

(1) (i,j)-g-closed if τ_j -cl(A) \subseteq U whenever A \subseteq U and U is open in τ_i (2) (i,j)-g*-closed if τ_j -cl(A) \subseteq U whenever A \subseteq U and U is g-open in τ_i (3) (i,j)-rg-closed if τ_i -cl(A) \subseteq U whenever A \subseteq U and U is regular open in τ_i

(5) (i,j)-ig-closed if t_j -cl(A) \subseteq 0 whenever A \subseteq 0 and 0 is regular open in t_i

(4) (i,j)-gpr–closed if τ_j –pcl(A) \subseteq U whenever A \subseteq U and U is regular open in τ_i

The family of all (i,j)-g-closed sets (resp. (i,j)-g*-closed, (i,j)-rg-closed, (i,j)-gpr-closed) subsets of a bitopological space (X, τ_1, τ_2) is denoted by D(i, j) (resp. D*(i, j), D_r(i, j), \xi(i, j)).

Definition 2.6: A subset A of a bitopological space (X, τ_1, τ_2) is called:

- (1) (i,j)- $T_{1/2}$ space if every (i,j)-g-closed sets is τ_i closed.
- (2) (i,j)-T_b space if every (i,j)-gs-closed set is τ_i closed.
- (3) (i,j)- $_{\alpha}T_{b}$ space if every (i,j)- α g-closed set is τ_{i} closed.

Definition 2.7: A function $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is called

 $\begin{array}{l} (1) \ \tau_{j}\text{-} \textit{semi-continuous}^1 \ [\textbf{11}] \ if \ f^{-1}(V) \ is \ semi-open \ in \ (X, \ \tau_1, \ \tau_2) \ for \ every \ open \ set \ V \ of \ (Y, \ \sigma_1, \ \sigma_2) \ . \\ (2) \ \tau_{j}\text{-} \ \alpha\text{-continuous}^{12} \ [\textbf{15}] \ if \ f^{-1}(V) \ is \ \alpha\text{-closed in } (X, \ \tau_1, \ \tau_2) \ for \ every \ closed \ set \ V \ of \ (Y, \ \sigma_1, \ \sigma_2) \ . \\ (3) \ \tau_{j}\text{-} \ \sigma_k\text{-continuous}^{12} \ [\textbf{15}] \ if \ f^{-1}(V) \ is \ \alpha\text{-closed in } (X, \ \tau_1, \ \tau_2) \ for \ every \ closed \ set \ V \ of \ (Y, \ \sigma_1, \ \sigma_2) \ . \\ (4) \ (i,j)\text{-}gs\text{-continuous}^{14} \ [\textbf{7}] \ if \ f^{-1}(V) \ is \ gs\text{-closed in } (X, \ \tau_1, \ \tau_2,) \ for \ every \ closed \ set \ V \ of \ (Y, \ \sigma_1, \ \sigma_2) \ . \\ (5) \ (i,j)\text{-}gsp\text{-continuous}^{14} \ [\textbf{7}] \ if \ f^{-1}(V) \ is \ gsp\text{-closed in } (X, \ \tau_1, \ \tau_2,) \ for \ every \ closed \ set \ V \ of \ (Y, \ \sigma_1, \ \sigma_2) \ . \\ \end{array}$

3. g[#] semi –closed sets in Bitopological spaces:

In this section we introduce the concept of $g^{\#}$ semi –closed sets in bitopological spaces and discuss the related properties.

Definition 3.1: A Subset A of a space (X, τ_i, τ_j) is called a (i,j)-g[#] semi –closed set(written (i,j)-g[#]s -closed) if τ_j – scl(A) \subseteq U whenever A \subseteq U and U is α g-open in τ_i

Remark 3.2: By setting $\tau_i = \tau_j$ in Definition 3.1, a (i,j)-g[#] semi –closed set is a g[#] semi –closed set[17]. © *2012, IJMA. All Rights Reserved*

Theorem 3.3: Every τ_j -semi-closed (resp. τ_j . α -closed, (i,j)-g[#]s -closed)set is a (i,j)-g[#]s -closed(resp. (i,j)-g[#]s -closed, (i,j)-g[#]s -closed) set. The converses are not true.

Proof: Follows from the definitions.

The following examples show that a (1, 2)-g[#]s –closed (resp. (1, 2)-gs-closed) set need not be τ_2 -semi-closed, τ_2 - α -closed.

Example 3.4: Let $X = \{a, b, c\}$, $\tau_1 = \{\phi, X, \{a, b\}\}$, $\tau_2 = \{\phi, X, \{a\}\}$ then $\{a, c\}$ is $(1,2)-g^{\#}s$ -closed but not τ_2 -semiclosed.

Example 3.5: Let $X = \{a, b, c\}$, $\tau_1 = \{\phi, X, \{a\}\}$, $\tau_2 = \{\phi, X, \{a\}, \{b, c\}\}$ then $\{b\}$ is (1,2)-gs -closed but not (1,2)-g[#]s - closed.

Example 3.6: Let $X = \{a, b, c\}$, $\tau_1 = \{\phi, X, \{a, b\}\}$, $\tau_2 = \{\phi, X, \{a\}\}$ then $\{a, c\}$ is (1,2)-g[#]s -closed but not τ_2 - α -closed Thus the class of (i,j)-g[#]s -closed sets properly contains the class of τ_j -closed sets, the class of τ_j - α -closed sets and the class of τ_j -semi-closed sets.

Theorem 3.7: Every τ_j –closed (resp. (i, j)-g[#]s -closed) set is (i, j)-g[#]s –closed (resp. (i, j)-gsp -closed) set. But the converses are not true.

Proof: Proof follows from the definitions.

Example 3.8: Let $X = \{a, b, c\}, \tau_1 = \{\phi, X, \{a\}\}, \tau_2 = \{\phi, X, \{a\}, \{b, c\}\}$ then $\{b\}$ is (1,2)-gsp-closed but not (1,2)-g[#] s-closed.

Example 3.9: Let $X=\{a, b, c\}, \tau_1=\{\phi, X, \{a, b\}\}, \tau_2=\{\phi, X, \{a\}\}$ then $\{b\}$ is (1,2)-g[#] s-closed but not τ_2 -closed. So the class of (i,j)-g[#] s-closed sets(resp. (i, j)-gsp-closed) sets properly contains the class of τ_j -closed (resp. (i, j)-g[#] s-closed) sets. The class of (i, j)-g[#] s-closed sets properly contains the class of τ_j -a closed sets in view of the above theorem since every τ_j -a closed set is a τ_j -semi- closed set.

The following examples shows that (i, j)-g[#]s-closedness is independent from (i, j)-g-closedness, (i, j)-g α -closedness, (i, j)- α -closedness, (i, j)-g α -close

Example 3.10: Let $X=\{a, b, c\}$, $\tau_1=\{\phi, X, \{c\}, \{a, b\}\}$, $\tau_2=\{\phi, X, \{a\}\}$ then the set $\{a, c\}$ is (1,2)-g-closed set, (1,

Proposition 3.11: If A is (i,j)-g[#] s-closed set such that $A \subseteq B \subseteq \tau_i$ -Scl(A) then B is also (i,j)-g[#] s-closed.

Proof: Let U be τ_i - αg -open set such that $B \subseteq U$ then $A \subseteq B \subseteq U$. Since A is (i,j)- $g^{\#}$ s-closed, τ_i -Scl(A) $\subseteq U$.

Now $B \subseteq \tau_j$ -Scl(A) implies τ_j -Scl(B) $\subseteq \tau_j$ -Scl(τ_j -Scl(A)) = τ_j -Scl(A) $\subseteq U \Rightarrow \tau_j$ -Scl(B) $\subseteq U$ Hence B is also (i,j)-g[#] s-closed.

Proposition 3.12: If A is (i,j)-g[#] s-closed then τ_i -Scl(A) – A contains no non-empty τ_i - α g-closed set.

Proof: Let A be an (i,j)-g[#] s-closed set and F be a non-empty τ_i - αg -closed subset such that $F \subseteq \tau_j$ -Scl(A) – A = τ_j -Scl(A) $\cap A^c \therefore F \subseteq \tau_j$ -Scl(A) and $F \subseteq A^c$ Since F^c is τ_i - αg -open and A is (i,j)-g[#] s-closed we have, τ_j -Scl(A) $\subseteq F^c$ i.e $F \subseteq (\tau_j$ -Scl(A))^c Hence $F \subseteq \tau_j$ -Scl(A) $\cap (\tau_j$ -Scl(A))^c = $\phi \therefore \tau_j$ -Scl(A) – A contains no non-empty τ_i - αg -closed set

Corollary 3.13: If A is (i,j)- $g^{\#}$ s-closed set in (X, τ_i , τ_j), then A is τ_j -semi-closed iff

 τ_j -Scl(A) – A is τ_i - α g-closed.

Proof: Necessity: If A is τ_j -semi-closed then τ_j -Scl(A)=A i.e τ_j -Scl(A) – A = ϕ and hence τ_j -Scl(A) – A is τ_i - α g-closed. [by prop.3.12]

Sufficiency: If τ_j -Scl(A)–A is τ_i - αg -closed then by proposition 3.12 we have, τ_j -Scl(A) – A = ϕ [since A is (i,j)-g[#] s-closed] $\therefore \tau_j$ -Scl(A) = A. Hence A is τ_j – semi-closed.

Proposition 3.14: For each element x of (X, τ_i, τ_i) , $\{x\}$ is τ_i - αg -closed (or) $\{x\}^c$ is (i,j)- $g^{\#}$ s-closed.

© 2012, IJMA. All Rights Reserved

Proof: If $\{x\}$ is not τ_i - αg -closed then the only τ_i - αg -open set containing X- $\{x\}$ is X Thus X- $\{x\}$ is (i,j)- $g^{\#}$ s-closed. i.e $\{x\}^c$ is (i,j)- $g^{\#}$ s-closed. Hence Proved.

Proposition 3.15: If A is an τ_i - αg -open and (i,j)- $g^{\#}$ s-closed set of (X, τ_i, τ_j) then A is τ_j -semi-closed.

Proof: Let A be $\tau_i \cdot \alpha g$ -open and $(i,j) \cdot g^{\#} s$ -closed. Since A is $(i,j) \cdot g^{\#} s$ -closed, we have $\tau_j - scl(A) \subseteq U$ whenever $A \subseteq U$ and U is $\tau_i \cdot \alpha g$ -open $\Rightarrow \tau_j - scl(A) = A \Rightarrow A$ is $\tau_j - semi-closed$.

Remark 3.16: An (i,j)-g[#] s-closed set need not be (j,i)-g[#] s-closed.

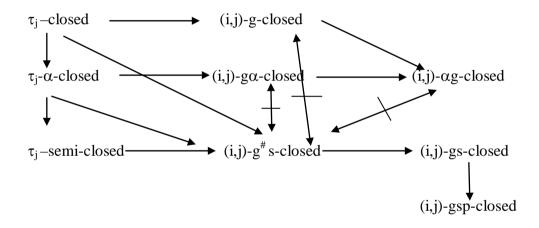
Proof: Consider the Example Let $X = \{a, b, c\}, \tau_1 = \{\phi, X, \{a, b\}\}, \tau_2 = \{\phi, X, \{a\}\}$ then $\{b\}$ is (1, 2)-g[#]s –closed but not (2, 1)-g[#]s –closed

Definition 3.17: The family of all (i,j)-g[#]s-closed set in (X, τ_i, τ_j) is defined as D[#]S(i,j)

Proposition 3.18: If A, $B \in D^{\#}S(i,j)$ then $A \cup B \in D^{\#}S(i,j)$

Proof: Let A, $B \in D^{\#} S(i,j)$. Let us assume that $A \cup B \subseteq U$ where U is $\tau_i - \alpha g$ -open. Implies $A \subseteq U$ and U is $\tau_i - \alpha g$ -open $\Rightarrow \tau_j - scl(A) \subseteq U$ and $B \subseteq U$ and U is $\tau_i - \alpha g$ -open $\Rightarrow \tau_j - scl(B) \subseteq U$ Hence $\tau_j - scl(A) \cup \tau_j - scl(B) \subseteq U$ but $\tau_j - scl(A \cup B) \subseteq U$ $\uparrow_j - scl(A \cup B) \subseteq U$. Therefore $A \cup B$ is $(i,j) - g^{\#}$ s-closed hence $A \cup B \in D^{\#} S(i,j)$. Hence proved.

The following figure shows the relationships of (i,j)-g[#] s-closed sets with other sets



where $A \rightarrow B$ (resp. $A \rightarrow B$) represents A implies B but not conversely (resp. A and B are independent).

4. Applications of (i, j)-g[#] s-closed Set:

In this chapter we introduce four new spaces namely (i,j)- $_{\alpha}T_{b}^{\#}$ space, (i,j)- $T_{b}^{\#}$ space, (i,j)- $T_{b}^{\#\#}$ space, (i,j)- $_{\alpha}T_{b}^{\#}$ space. We now introduce a new space (i,j)- $_{\alpha}T_{b}^{\#}$ space.

Definition 4.1: A space (X, τ_i, τ_j) is called an (i,j)- $_{\alpha}T_b^{\#}$ space if every (i,j)- $g^{\#}$ s-closed set is τ_j -semi-closed.

Proposition 4.2: Every (i,j)- $T_{1/2}$ space is an (i,j)- $_{\alpha}T_{b}^{\#}$ space but not conversely.

Proof: Let (X, τ_i, τ_j) be (i,j)-T_{1/2}-space and A be a (i,j)-g[#]s-closed set of (X, τ_i, τ_j) ... A is (i,j)-gs-closed. Since (X, τ_i, τ_j) is (i,j)-T_{1/2} space, A is τ_j -semi-closed set of (X, τ_i, τ_j)

 \therefore (X, τ_i , τ_j) is an (i,j)- $_{\alpha}T_b^{\#}$ space.

The converse of above proposition need not be true which is shown by the following example.

Example 4.3: Consider the example $X = \{a, b, c\}, \tau_1 = \{\phi, X, \{a\}\}, \tau_2 = \{\phi, X, \{a\}, \{b, c\}\}$ then (X, τ_1, τ_2) is $(1, 2) - \alpha T_b^{\#}$ space but not $(1, 2) - T_{1/2}$ –space.

Theorem 4.4: Every (i,j)- T_b space is an (i,j)- $_{\alpha}T_b^{\#}$ space but not conversely.

Proof: Let (X, τ_i, τ_j) be a (i,j)-T_b space implies every (i,j)-gs-closed set is τ_j -closed. Let A be a (i,j)-g[#] s-closed set. We know that every (i,j)-g[#] s-closed set is (i,j)-gs-closed hence A is (i,j)-gs-closed. Therefore A is τ_j -closed. But every τ_j -closed set is τ_j -semi-closed. Implies A is τ_j -semi-closed. hence (X, τ_i, τ_j) is a (i,j)- $_{\alpha}T_b^{\#}$ space The converse is not true which is shown by the following example.

Example 4.5: Let $X = \{a, b, c\}$, $\tau_1 = \{\phi, X, \{a\}\}$, $\tau_2 = \{\phi, X, \{a\}, \{b, c\}\}$ then (X, τ_1, τ_2) is (1,2)- $_{\alpha}T_b^{\#}$ space but not (1,2)- T_b space

Remark 4.6: A (1, 2)- $_{\alpha}T_{b}^{\#}$ space need not be a (1, 2)- $_{\alpha}T_{b}$ space

Proof: Let X={a, b, c}, $\tau_1 = \{\phi, X, \{a\}\}, \tau_2 = \{\phi, X, \{a\}, \{b, c\}\}$ then (X, τ_1, τ_2) is $(1,2)-_{\alpha}T_b^{\#}$ space but not $(1,2)-_{\alpha}T_b$ space

Characterization of (i,j)- $_{\alpha}T_{b}^{\#}$ space

Theorem 4.7: For a space (X, τ_i, τ_j) the following conditions are equivalent.

1. (X, τ_i, τ_j) is an (i, j)- $_{\alpha}T_b^{\#}$ space

2. Every singleton of X is either τ_i - αg -closed or τ_i - semi-open

Proof: To Prove (1) \Rightarrow (2) Let $x \in X$ and suppose that $\{x\}$ is not $\tau_i -\alpha g$ -closed. Then $X - \{x\}$ is $(i,j) - g^{\#}$ s-closed set since X is the only $\tau_i -\alpha g$ -open set containing X- $\{x\}$. By propositions 3.13 and 3.14 we have, X- $\{x\}$ is τ_j – semiclosed.(i.e) $\{x\}$ is τ_j - semi-open

To Prove (2) \Rightarrow (1)Let A be a (i,j)-g[#]-closed set of (X, τ_i , τ_j).Clearly A $\subseteq \tau_j$ -scl(A).Let $x \in X$. by (2) {x} is either τ_i - α g-closed or τ_j - semi-open

Case (i) Suppose $\{x\}$ is $\tau_i \ -\alpha g$ -closed. If $x \notin A$, then $\tau_j - \text{scl}(A)$ -A contains the $\tau_i \ -\alpha g$ -closed set $\{x\}$ and A is (i,j)- $g^{\#}$ s-closed set. By theorem 3.13, we arrive at a contradiction. Thus $x \in A$.

Case (ii) Suppose that $\{x\}$ is τ_j - semi-open. Since $x \in \tau_j - scl(A)$, then $\{x\} \cap A \neq \phi$. So $x \in A$. Thus in any case $x \in A$. So $\tau_j - scl(A) \subseteq A \therefore A = \tau_j - scl(A)$ (or) equivalently A is τ_j - semi-closed. Thus (X, τ_i, τ_j) is an (i,j)- $_{\alpha}T_b^{\#}$ space.

We now introduce a new space (i,j)-T_b[#]

Definition 4.8: A space (X, τ_i, τ_j) is called (i,j)- $T_b^{\#}$ space if every (i,j)- $g^{\#}$ s-closed set is τ_j -closed.

Theorem 4.9: Every (i,j)- $T_b^{\#}$ space is an (i,j)- $_{\alpha}T_b^{\#}$ space but not conversely.

Proof: Let (X, τ_i, τ_j) be (i,j)- $T_b^{\#}$ space. \Rightarrow Every (i,j)- $g^{\#}$ s-closed set is τ_j – closed Therefore every (i,j)- $g^{\#}$ s-closed set is τ_j – semi closed. Hence (X, τ_i, τ_j) is (i,j)- $_{\alpha}T_b^{\#}$ space. Hence proved.

Example 4.10: Let X={a,b,c}, $\tau_1 = \{\phi, X, \{c\}, \{a,b\}\}, \tau_2 = \{\phi, X, \{a\}\}$ then (X, τ_1, τ_2) is $(1,2)-_{\alpha}T_b^{\#}$ space but not $(1,2)-T_b^{\#}$ space.

Theorem 4.11: Every (i,j)-T_b space is (i,j)-T_b[#] space but not conversely.

Proof: Let (X, τ_i, τ_j) be (i,j)-T_b space and A be a (i,j)-g[#]s-closed set

Then by theorem 3.3 A is (i,j)-gs-closed .Since (X, τ_i, τ_j) is a (i,j)-T_b space, then A is τ_j -closed.

 \therefore (X, τ_i , τ_j) is a (i,j)-T_b[#] space. Hence proved.

Example 4.12: Let X={a, b, c}, $\tau_1 = \{\phi, X, \{a\}\}, \tau_2 = \{\phi, X, \{a\}, \{b, c\}\}$. Then (X, τ_1, τ_2) is (1,2)-T[#]_b space but not (1,2)-T^b_b space

Theorem 4.13: If (X, τ_i, τ_j) is a (i,j)- $T_b^{\#}$ space, then every singleton of X is either τ_i - αg -closed or τ_j -open.

Proof: Let $x \in X$ and suppose that $\{x\}$ is not τ_i - αg -closed. Then X- $\{x\}$ is not τ_i - αg -open. Then X is the only τ_i - αg -open set containing X- $\{x\}$. So X- $\{x\}$ is (i,j)- $g^{\#}s$ -closed Since (X, τ_i, τ_j) is a (i,j)- $T_b^{\#}$ space, then X- $\{x\}$ is τ_j -closed or equivalently $\{x\}$ is τ_j -open.

Remark 4.14: (i,j)- $T_b^{\#}$ ness is independent from (i,j)- $_{\alpha}T_b$ ness and (i,j)- $T_{1/2}$ ness

Proof: Consider the space $(X,\tau_1,\tau_2), X = \{a, b, c\}, \tau_1 = \{\phi, X, \{a\}\}, \tau_2 = \{\phi, X, \{a\}, \{b, c\}$ Then (X,τ_1,τ_2) is $(1,2)-T_b^{\#}$ space but not $(1,2)-T_{1/2}$ -space and $(1,2)-\alpha T_b$ space.

We introduce another new space (i,j)-T^{##} space

Definition 4.15: A space (X, τ_i, τ_j) is called (i,j)- $T_b^{\#}$ space if every (i,j)- $g^{\#}$ s-closed set is $\tau_i - \alpha$ -closed

Theorem 4.16: Every (i,j)- $T_b^{\#}$ space ((i,j)- $T_b)$ space is a (i,j)- $T_b^{\#\#}$ space but not conversely.

Proof: Let (X, τ_i, τ_j) be a (i,j)- $T_b^{\#}$ space and A be a (i,j)- $g^{\#}$ s-closed set of (X, τ_i, τ_j) Since (X, τ_i, τ_j) is a (i,j)- $T_b^{\#}$ space, A is τ_j -closed. Since every τ_j -closed set is τ_j - α -closed set. Implies A is τ_j - α -closed \therefore (X, τ_i, τ_j) is a (i,j)- $T_b^{\#}$ space. Let (X, τ_i, τ_j) be (i,j)- T_b space. \Rightarrow every (i,j)-gs-closed set is τ_j -closed. Let A be (i,j)- $g^{\#}$ s-closed We know that every (i,j)- $g^{\#}$ s-closed set is (i,j)-gs-closed implies A is (i,j)-gs-closed. Since (X, τ_i, τ_j) is (i,j)- T_b space \Rightarrow A is τ_j -closed But τ_j -closed is τ_j - α -closed.

 \therefore A is $\tau_i - \alpha$ -closed. Hence every (i,j)-g[#]s-closed set is $\tau_i - \alpha$ -closed \Rightarrow (X, τ_i , τ_j) is (i,j)-T^{##} space.

Example 4.17: Let X={a, b, c}, $\tau_1 = \{\phi, X, \{c\}, \{a, b\}\}, \tau_2 = \{\phi, X, \{a\}\}$ then (X, τ_1, τ_2) is $(1,2)-T_b^{\#}$ space but not $(1,2)-T_b^{\#}$ ((1,2)-T_b) space.

Thus the class of (i,j)-T^{##} spaces properly contains the class of (i,j)-T[#] spaces and hence the class of (i,j)-T_b spaces.

Theorem 4.18: If (X, τ_i, τ_j) is a (i,j)- $T_b^{\#}$ space, then every singleton of X is either τ_i - α g-closed or τ_j - α -open.

Proof: Suppose that (X, τ_i, τ_j) is a (i,j)- $T_b^{\#\#}$ space. Suppose that $\{x\}$ is not $\tau_i - \alpha g$ -closed for some $x \in X$. Then X- $\{x\}$ is not $\tau_i - \alpha g$ -open Then X is the only $\tau_i - \alpha g$ -open set containing X- $\{x\}$ So X- $\{x\}$ is a (i,j)- $g^{\#}$ s-closed. Since (X, τ_i, τ_j) is a (i,j)- $T_b^{\#\#}$ space, X- $\{x\}$ is $\tau_j - \alpha$ -closed or equivalently $\{x\}$ is $\tau_j - \alpha$ -open

We now introduce a new space (i,j)-[#]T_b space

Definition 4.19: A space (X, τ_i, τ_j) is called a (i,j)-[#] T_b space if every (i,j)-gs-closed set is (i,j)-g[#]s-closed

Theorem 4.20: Every (i,j)- $T_{1/2}$ space is a (i,j)- $^{\#}T_b$ space but not conversely.

Proof: Let (X, τ_i, τ_j) be a (i,j)-T_{1/2} space. Let A be a (i,j)-gs-closed set. Since (X, τ_i, τ_j) is (i,j)-T_{1/2} space. A is τ_j – semi-closed. Therefore A is (i,j)-g[#]s-closed . hence (X, τ_i, τ_j) is a (i,j)-[#]T_b space. Hence proved.

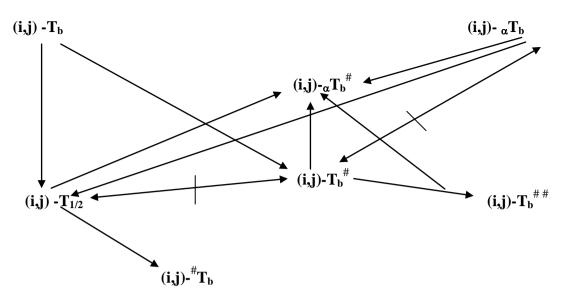
Example 4.21: Let X={a, b, c}, $\tau_1 = \{\phi, X, \{a, c\}, \{c\}\}, \tau_2 = \{\phi, X, \{a\}\}$ then (X, τ_1, τ_2) is $(1, 2)^{-\#}T_b$ space but not $(1, 2)^{-T_{1/2}}$ space.

Remark 4.22: A (i,j)-[#] T_b space need not be a (i,j)- T_b ((i,j)- $_{\alpha}T_b)$ space.

Proof: In example 4.21 we have (X, τ_1, τ_2) is (1,2)-[#]T_b space but not (1,2)-T_b space and (1,2)- $_{\alpha}$ T_b space

Theorem 4.23: A space (X, τ_i, τ_j) is (i,j)- $T_{1/2}$ -space if and only if (X, τ_i, τ_j) is (i,j)- ${}^{\#}T_b$ and (i,j)- ${}_{\alpha}T_b$ space.

Proof: Let (X, τ_i, τ_j) be a (i,j)- $T_{1/2}$ space. By proposition 3.3, every (i,j)- $T_{1/2}$ is an (i,j)- $_{\alpha}T_b^{\#}$ space. But every (i,j)- $T_{1/2}$ space is a (i,j)- $^{\#}T_b$ space. (X, τ_i, τ_j) is a (i,j)- $^{\#}T_b$ and (i,j)- $_{\alpha}T_b^{\#}$ space. Conversely, suppose that (X, τ_i, τ_j) is a (i,j)- $^{\#}T_b$ and (i,j)- $_{\alpha}T_b^{\#}$ space. Let A be (i,j)-g-closed set. Since every (i,j)-g-closed set is (i,j)-gs-closed \Rightarrow A is (i,j)-gs-closed Since (X, τ_i, τ_j) is a (i,j)- $^{\#}T_b$ space, A is (i,j)-g[#]s-closed set. Since (X, τ_i, τ_j) is an (i,j)- $_{\alpha}T_b^{\#}$ space , A is τ_j -semiclosed \therefore by theorem 6.5[8], (X, τ_i, τ_j) is a (i,j)- $T_{1/2}$ space. Hence proved. The following diagram shows the inter relationships between the separation axioms discussed in this section.



where $A \longrightarrow B$ (resp. $A \iff B$) represents A implies B but B need not imply A (resp. A and B are independent).

5. g[#]s –continuous maps in bitopological spaces:

We introduce the following definition.

Definition 5.1: A function $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is called (i,j)- $g^{\#}s$ –continuous if $f^{-1}(V)$ is (i,j)- $g^{\#}s$ – closed set of (X, τ_1, τ_2) for every closed set V of (Y, σ_1, σ_2) .

Proposition 5.2: If f: $(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is $\tau_j \cdot \sigma_k$ -continuous then it is $(i, j) \cdot g^{\#}s$ -continuous but not conversely.

Proof: follows from the definitions.

Example 5.3: Let $X = \{a, b, c\}, \tau_1 = \{\phi, X, \{a, b\}\}, \tau_2 = \{\phi, X, \{a\}\} \text{ and } Y = \{p, q\}, \sigma_1 = \{\phi, Y, \{p\}\}, \sigma_2 = \{\phi, Y, \{q\}\}.$ Define a map f: $(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ by f(a) = q, f(b) = f(c) = p. then f is (1,2)-g[#]s -continuous but not $\tau_1 - \sigma_2$ -continuous.

Proposition 5.4: If $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is (i, j)- $g^{\#}s$ –continuous, then it is (i, j)- gs –continuous and (i, j)- gsp – continuous but not conversely.

Proof: follows from the definitions.

The converses are not true which is shown by the following examples.

Example 5.5: Let $X = \{a, b, c\}, \tau_1 = \{\phi, X, \{a\}\}, \tau_2 = \{\phi, X, \{a\}, \{b, c\}\}$ and $Y = \{p, q\}, \sigma_1 = \{\phi, Y, \{p\}\}, \sigma_2 = \{\phi, Y, \{q\}\}$. Define a map $f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ by f(a) = f(c) = q, f(b) = p. then f is (1, 2)- gs –continuous but not (1, 2)- $g^{\#}s$ –continuous.

Example 5.6: Let $X = \{a,b,c\}, \tau_1 = \{\phi, X, \{a\}\}, \tau_2 = \{\phi, X, \{a\}, \{b,c\}\}$ and $Y = \{p, q\}, \sigma_1 = \{\phi, Y, \{p\}\}, \sigma_2 = \{\phi, Y, \{q\}\}$. Define a map $f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ by f(a) = f(c) = q, f(b) = p. then f is (1, 2)- gsp –continuous but not (1, 2)- g[#]s –continuous.

Remark 5.7: (I, j) - $g^{\#}s$ –continuous and (i, j)- g-continuous are independent which are shown by the following example.

Let $X = \{a, b, c\}, \tau_1 = \{\phi, X, \{c\}, \{a, b\}\}, \tau_2 = \{\phi, X, \{a\}\}$ and $Y = \{p, q\}, \sigma_1 = \{\phi, Y, \{p\}\}, \sigma_2 = \{\phi, Y, \{q\}\}$. Define a map $f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ by f(a) = f(c) = q, f(b) = p. then f is (1, 2)- g-continuous but not (1, 2)- g[#]s – continuous.

Theorem 5.8: Let $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be a map.

1. If (X, τ_1, τ_2) is an (i,j)-T_{1/2} space then f is (i,j)- g –continuous if it is (i,j)- g[#]s –continuous. 2. If (X, τ_1, τ_2) is an (i,j)-T_b[#] space then f is τ_j - σ_k –continuous. Iff it is (i,j)- g[#]s –continuous.

© 2012, IJMA. All Rights Reserved

Proof:

1. Let V be a σ_k - closed set Since f is (i, j)-g-continuous, f⁻¹(V) is (i, j)-g-closed But (X, τ_1 , τ_2) is an (i,j)-T_{1/2} space

We have every (i,j)- g-closed set is τ_i -closed.

We know that every τ_i – closed set is (i,j)- g[#]s –closed.

 \therefore f⁻¹ (V) is (i,j)-g[#]s -closed. Hence f is (i,j)-g[#]s -continuous.

2. Obviously, f is (i,j)-g[#]s-continuous. Conversely, suppose that f is (i,j)-g[#]s- continuous. Let V be a σ_{k} closed set.

Since f is (i,j)- $g^{\#}s$ –continuous

we have $f^{-1}(V)$ is (i,j)- $g^{\#}s$ –closed. But (X, τ_1, τ_2) is an (i, j)- $T_b^{\#}$ space we have

 $f^{-1}(V)$ is τ_i - closed $\therefore f$ is $\tau_i - \sigma_k$ -continuous Hence proved.

Theorem 5.9: Every $\tau_i - \sigma_k$ – semi-continuous map is (i, j)- $g^{\#}s$ – continuous but not conversely.

Proof: obvious.

The following example supports that the converse of the above theorem is not true in general.

Example 5.10: Let $X = \{a, b, c\}, \tau_1 = \{\phi, X, \{a, b\}\}, \tau_2 = \{\phi, X, \{a\}\}$ and $Y = \{a, b, c\}, \sigma_1 = \{\phi, Y, \{a\}\}, \tau_2 = \{\phi, X, \{a\}\}$ $\sigma_2 = \{\phi, Y, \{b,c\}\}$. Define a map f: $(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ by f(a) = b, f(b) = a, f(c) = c. then f is (1, 2)- $g^{\#}s - g^{\#}s - g$ continuous but not τ_1 - σ_2 -semi-continuous.

Theorem 5.11: Every $\tau_i - \sigma_k - \alpha$ -continuous map is (i, j)- g[#]s-continuous. But not conversely.

Proof: follows from definitions.

The converse of the above theorem is not true which is shown by the following example.

Example 5.12: Let $X = \{a, b, c\}, \tau_1 = \{\phi, X, \{a, b\}\}, \tau_2 = \{\phi, X, \{a\}\} \text{ and } Y = \{a, b, c\}, \sigma_1 = \{\phi, Y, \{a\}\}, \tau_2 = \{\phi, X, \{a\}\} \text{ and } Y = \{a, b, c\}, \sigma_1 = \{\phi, Y, \{a\}\}, \tau_2 = \{\phi, X, \{a\}\}, \tau_2 = \{\phi, Y, \{a\}\}, \tau_2 = \{\phi, X, \{a\}\}, \tau_2$ $\sigma_2 = \{\phi, Y, \{b, c\}\}$. Define a map f: $(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ by f(a) = b, f(b) = a, f(c) = c. then f is (1, 2)- $g^{\#}s$ continuous but not $\tau_1 - \sigma_2 - \alpha$ –continuous.

Thus the class of (i, j)- g[#]s-continuous maps properly contains the class of τ_i - σ_k -continuous maps, the class of τ_i - σ_k - α continuous maps, the class of τ_i - σ_k -semi-continuous maps. And also the class of (i, j)- g[#]s-continuous maps is properly contained in the class of (i, j)- gs- continuous maps and hence in the class of (i, j)- gsp-continuous maps.

Theorem 5.13:Let $f: (X,\tau_1,\tau_2) \to (Y,\sigma_1,\sigma_2)$ be (i,j)- $g^{\#}$ s-continuous map. If (X,τ_1,τ_2) , the domain of f is an (i,j)- $_{\alpha}T_b^{\#}$ space, then f is $\tau_i - \sigma_k$ -semi-continuous.

Proof: Let V be σ_k -closed set in (Y,σ_1,σ_2) . Then f⁻¹ (V) is (i,j)-g[#]s -closed, since f is (i,j)-g[#]s -continuous. Since (X, τ_1, τ_2) is an (i,j)- $_aT_b^{\dagger}$ space, every (i,j)- g^{\pm}s-closed set is τ_i -semi-closed \Rightarrow f⁻¹ (V) is τ_i -semi-closed hence f is τ_i - σ_k -semi-continuous. Hence proved.

Theorem 5.14: Let $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be (i, j)- $g^{\#}$ s-continuous map. If (X, τ_1, τ_2) , the domain of f is (i, j)- $T_b^{\#}$ space, then f is $\tau_i - \sigma_k - \alpha$ -continuous.

Proof: Let V be σ_k -closed set in (Y, σ_1, σ_2) . Then f⁻¹ (V) is (i, j) - g[#]s -closed, since f is (i, j) - g[#]s -continuous. Since continuous. Hence proved.

Theorem 5.15: Let f: $(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be (i, j)- g[#]s-continuous map. If (X, τ_1, τ_2) , the domain of f is (i,j)-T[#]_h space, then f is $\tau_i - \sigma_k$ -continuous.

Proof: Let V be σ_k -closed set in (Y,σ_1,σ_2) . Then f⁻¹(V) is (i,j)-g[#]s -closed, since f is (i,j)-g[#]s -continuous. Since (X, τ_1, τ_2) is an (i,j)-T[#]_b space, every (i,j)-g[#]s-closed set is τ_i -closed \Rightarrow f⁻¹ (V) is τ_i -closed hence f is τ_i - σ_k continuous. Hence proved. © 2012, IJMA. All Rights Reserved 563

Theorem 5.16: Let f: $(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be (i,j)-gs-continuous map. If (X, τ_1, τ_2) , the domain of f is (i,j)- ${}^{\#}T_b$ space, then f is (i,j)-g ${}^{\#}s$ -continuous.

Proof: Let V be σ_k -closed set in (Y, σ_1, σ_2) .

Then $f^{-1}(V)$ is (i, j)- gs –closed, since f is (i, j)- gs –continuous. Since (X, τ_1, τ_2) is an (i, j)- ${}^{\#}T_b$ space we have every (i, j)- gs-closed set is (i, j)- $g^{\#}s$ –closed. $\Rightarrow f^{-1}(V)$ is (i, j)- $g^{\#}s$ –closed hence f is (i, j)- $g^{\#}s$ –continuous. Hence proved.

WE INTRODUCE THE FOLLOWING DEFINITION

Definition 5.17: A function $f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is called (i,j)- $g^{\#}s$ –irresolute map if $f^{-1}(V)$ is (i,j)- $g^{\#}s$ – closed set of (X, τ_1, τ_2) for every (i,j)- $g^{\#}s$ – closed set of (Y, σ_1, σ_2) .

Theorem 5.18: Every (i, j)- g[#]s –irresolute map is (i, j)- g[#]s –continuous but not conversely.

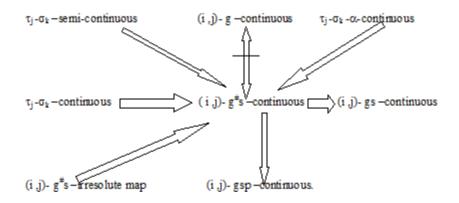
Proof: Let f is (i, j)- $g^{\#}s$ –irresolute Let V be σ_k –closed set. Then f⁻¹ (V) is (i, j)- $g^{\#}s$ –closed, since f is (i, j)- $g^{\#}s$ – irresolute. hence f is (i, j)- $g^{\#}s$ –continuous. Hence proved.

The converse of the above theorem is not true which is shown by the following example. Consider example 5.10

From example 5.10 we have, f is $(1, 2) - g^{\#}s$ –continuous.

But f is not (1,2)- $g^{\#}s$ –irresolute because{b} is (1,2)- $g^{\#}s$ –closed and f⁻¹ ({b}) = {a} and {a} is not (1,2)- $g^{\#}s$ – closed. Hence proved.

Remark 5.19: The following diagram summarizes the above discussions.



where $A_{\longrightarrow} B$ (resp. $A_{\leftrightarrow} B$) represents A implies B but B need not imply A (resp. A and B are independent).

REFERENCES:

[1] M.E.ABD EL-MONSEF, S.N.EL-DEEB AND MAHMOUD, β-open sets and β-continuous mapping, Bull Fac. Sci. Assiut Univ.12(1983) 77-90

[2] D.ANDRUEVIC, Semi-preopen sets, Mat.Vesnik38 (1) (1986)24-32.

[3] S.P.ARYA AND T.NOUR, Characterizations of s-normal spaces, Indian J. Pure. Appl. Math. 12(8) (1990)717-719.

[4] K.BALACHANDRAN, P.SUNDARAM AND H.MAKI, On generalized continuous maps in topological spaces, Mem. Fac. Sci. Kochi Univ. Ser.A. Math. 12(1991)5-13.

[5] S.G. CROSSLEY AND S.K.HILDEBRAND, semi-topological properties, Fund. Math. 74(1972)233-254.

[6] R.DEVI, K.BALACHANDRAN AND H.MAKI, Generalized α -closed maps and α -generalized closed maps, Indian J.Pure. Appl. Math. 29(1)(1998)37-49.

[7] R.DEVI, K.BALACHANDRAN AND H.MAKI, Semi-generalized homeomorphisms and generalized semi-homeomorphisms in topological spaces, Indian. J.Pure.Appl.Math.26 (3) (1995)271-284.

[8] R.DEVI, H.MAKI AND K.BALACHANDRAN, Semi-generalized closed maps and generalized semi-closed maps Mem. Fac. Sci. Kochi. Univ. Ser. A. Math. 14 (1993) 41-54.

[9] J.DONTCHEV, On generalizing semi-pre open sets, Mem. Fac. Sci. Kochi Univ.Ser.A.Math.16 (1995)35-48.

[10] N.LEVINE, generalized closed sets in topology, Rend. Circ. Mat. Palermo 19(2) (1970)

[11] N.LEVINE, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963)36-41.

[12] H.MAKI, R.DEVI AND K.BALACHANDRAN, Associated topologies of generalized α -closed sets and α -generalized closed sets, Mem. Fac. Sci. Kochi Univ.Ser.A.Math.15(1994)51-63.

[13] H.MAKI, R.DEVI AND K.BALACHANDRAN, Generalized α -closed sets in topology, Bull. Fukuoka Univ. Ed .part III 42(1993)13-21.

[14] A.S.MASHHOUR, M.E.ABD EL-MONSEF AND S.N.EL-DEEB, On pre-continuous and weak pre-continuous mappings, Proc. Math. And Phys. Soc. Egypt 53(1982)47-53.

[15] A.S.MASHHOUR, I.A.HASANEIN AND S.N.EL.DEEB, α -continuous and α -open mappings, Acta ath.Hung.41 (3-4) (1983)213-218.

[15] O.NJASTAD, On some classes of nearly open sets, Pacific J.Math.15 (1965)961-870.

[16] M.K.R.S.VEERA KUMAR, g[#] semi closed sets in topological spaces, Indian Journal of mathematics Vol.44, No.1, 2002, 73-87.
