International Journal of Mathematical Archive-3(2), 2012, Page: 586-594

$(1, 2)^*$ - \ddot{g} -CLOSED AND $(1, 2)^*$ - \ddot{g} -OPEN MAPS IN BITOPOLOGICAL SPACES

¹M. Kamaraj, ²K. Kumaresan, ³O. Ravi* and ⁴A. Pandi

¹Department of Mathematics, Govt. Arts College, Melur, Madurai District, Tamil Nadu, India E-mail: kamarajm17366@rediffmail.com

²Department of Mathematics, Thiagarajar College of Preceptors, Madurai, Tamil Nadu, India E-mail: pothumbukk@yahoo.com

^{3,4}Department of Mathematics, P. M. Thevar College, Usilampatti, Madurai District, Tamil Nadu, India E-mail: siingam@yahoo.com, Pandi2085@yahoo.com

(Received on: 09-01-12; Accepted on: 13-02-12)

ABSTRACT

A set A in a bitopological space X is said to be $(1,2)^*$ - \ddot{g} -closed set if $\tau_{1,2}$ -cl(A) $\subseteq U$ whenever A $\subseteq U$ and U is $(1,2)^*$ -sg-open in X. In this paper, we introduce $(1,2)^*$ - \ddot{g} -closed map from a bitopological space (X, τ_1, τ_2) to a bitopological space (Y, σ_1, σ_2) as the image of every $\tau_{1,2}$ -closed set is $(1,2)^*$ - \ddot{g} -closed, and also we prove that the composition of two $(1,2)^*$ - \ddot{g} -closed maps need not be a $(1,2)^*$ - \ddot{g} -closed map. We also obtain some properties of $(1, 2)^*$ - \ddot{g} -closed maps.

2010 Mathematics Subject Classification: 54E55.

Key words and Phrases: Bitopological space, $(1, 2)^*$ - \ddot{g} -closed map, $(1,2)^*$ - \ddot{g}^* -closed map, $(1,2)^*$ - \ddot{g} -open map, $(1,2)^*$ - \ddot{g}^* -open map.

1. INTRODUCTION

Malghan [13] introduced the concept of generalized closed maps in topological spaces. Devi [5] introduced and studied sg-closed maps and gs-closed maps. Recently, Sheik John [22] defined ω -closed maps and studied some of their properties. In this paper, we introduce $(1, 2)^*$ - \ddot{g} -closed maps, $(1, 2)^*$ - \ddot{g} -open maps, $(1, 2)^*$ - \ddot{g}^* -closed maps and $(1, 2)^*$ - \ddot{g}^* -closed maps in bitopological spaces and obtain certain characterizations of these class of maps.

2. PRELIMINARIES

Throughout this paper, (X, τ_1, τ_2) , (Y, σ_1, σ_2) and (Z, η_1, η_2) (briefly, X, Y and Z) will denote bitopological spaces.

Definition 2.1: Let S be a subset of X. Then S is said to be $\tau_{1,2}$ -open [15] if $S = A \cup B$ where $A \in \tau_1$ and $B \in \tau_2$.

The complement of $\tau_{1,2}$ -open set is called $\tau_{1,2}$ -closed.

Notice that $\tau_{1,2}$ -open sets need not necessarily form a topology.

Definition 2.2 [15]: Let S be a subset of a bitopological space X. Then (1) the $\tau_{1,2}$ -closure of S, denoted by $\tau_{1,2}$ -cl(S), is defined as $\cap \{F : S \subseteq F \text{ and } F \text{ is } \tau_{1,2}\text{-closed } \}$. (2) the $\tau_{1,2}$ -interior of S, denoted by $\tau_{1,2}\text{-int}(S)$, is defined as $\cup \{F : F \subseteq S \text{ and } F \text{ is } \tau_{1,2}\text{-open } \}$.

Definition 2.3: A subset A of a bitopological space X is called $(1, 2)^*$ -semi-open set [17] if $A \subseteq \tau_{1,2}$ -cl($\tau_{1,2}$ -int(A)).

*Corresponding author: ³O. Ravi *, *E-mail: siingam@yahoo.com

International Journal of Mathematical Archive- 3 (2), Feb. - 2012

The complement of $(1, 2)^*$ -semi-open set is $(1, 2)^*$ -semi-closed.

The $(1, 2)^*$ -semi-closure [17] of a subset A of X, denoted by $(1, 2)^*$ -scl(A), is defined to be the intersection of all $(1,2)^*$ -semi-closed sets of X containing A. It is known that $(1, 2)^*$ -scl(A) is a $(1,2)^*$ -semi-closed set. For any subset A of an arbitrarily chosen bitopological space, the $(1, 2)^*$ -semi-interior [17] of A, denoted by $(1, 2)^*$ -sint(A), is defined to be the union of all $(1,2)^*$ -semi-open sets of X contained in A.

Definition 2.4: A subset A of a bitopological space X is called

(i) (1,2)*-generalized closed (briefly, (1,2)*-g-closed) set [19] if $\tau_{1,2}$ -cl(A) \subseteq U whenever A \subseteq U and U is $\tau_{1,2}$ -open in X. The complement of (1, 2)*-g-closed set is called (1, 2)*-g-open set;

(ii) $(1, 2)^*$ - \hat{g} -closed set [6] if $\tau_{1,2}$ -cl(A) $\subseteq U$ whenever A $\subseteq U$ and U is $(1,2)^*$ -semi-open in X. The complement of $(1, 2)^*$ - \hat{g} -closed set is called $(1,2)^*$ - \hat{g} -open set;

(iii) (1,2)*-semi-generalized closed (briefly, (1,2)*-sg-closed) set [17] if (1,2)*-scl(A) \subseteq U whenever A \subseteq U and U is (1,2)*-semi-open in X. The complement of (1, 2)*-sg-closed set is called (1,2)*-sg-open set;

(iv) (1,2)*-generalized semi-closed (briefly, (1,2)*-gs-closed) set [17] if (1,2)*-scl(A) \subseteq U whenever A \subseteq U and U is $\tau_{1,2}$ -open in X. The complement of (1,2)*-gs-closed set is called (1,2)*-gs-open set;

(v) $(1, 2)^*$ - \ddot{g} -closed set [8] if $\tau_{1,2}$ -cl(A) \subseteq U whenever A \subseteq U and U is $(1,2)^*$ -sg-open in X. The complement of $(1, 2)^*$ - \ddot{g} -closed set is called $(1, 2)^*$ - \ddot{g} -open set.

(vi) $(1,2)^* - \psi$ -closed set [20] if $(1,2)^* - \text{scl}(A) \subseteq U$ whenever $A \subseteq U$ and U is $(1,2)^* - \text{sg-open}$ in X. The complement of $(1,2)^* - \psi$ -closed set is called $(1,2)^* - \psi$ -open set;

The collection of all $(1, 2)^*$ - \ddot{g} -closed sets is denoted by $(1, 2)^*$ - \ddot{G} C(X).

Definition 2.5 [9]:

(i) For any $A \subseteq X$, $(1,2)^* \cdot \ddot{g} \cdot int(A)$ is defined as the union of all $(1,2)^* \cdot \ddot{g}$ -open sets contained in A. That is $(1, 2)^* \cdot \ddot{g} \cdot int(A) = \bigcup \{G : G \subseteq A \text{ and } G \text{ is } (1,2)^* \cdot \ddot{g} \text{ -open} \}.$

(ii) For every set $A \subseteq X$, we define the $(1, 2)^*$ - \ddot{g} -closure of A to be the intersection of all $(1,2)^*$ - \ddot{g} -closed sets containing A.

In symbols, $(1,2)^*$ - \ddot{g} -cl(A) = $\cap \{F : A \subseteq F \in (1,2)^*$ - \ddot{G} C(X) $\}$.

Definition 2.6 [7]: Let X be a bitopological space. Let x be a point of X and G be a subset of X. Then G is called an $(1,2)^*$ - \ddot{g} -neighborhood of x (briefly, $(1,2)^*$ - \ddot{g} -nbhd of x) in X if there exists an $(1,2)^*$ - \ddot{g} -open set U of X such that $x \in U \subset G$.

Definition 2.7 [10]: A space X is called

(i) $T_{(1,2)^*-\hat{g}}$ -space if every $(1, 2)^*-\hat{g}$ -closed set in it is $\tau_{1,2}$ -closed.

(ii) $T_{(1,2)^{*}}\ddot{g}$ -space if every $(1,2)^{*}$ - \ddot{g} -closed set in it is $\tau_{1,2}$ -closed.

Definition 2.8: A map f: $(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is called

(i) $(1, 2)^*$ - \hat{g} -continuous [23] if the inverse image of every $\sigma_{1,2}$ -closed set in Y is $(1,2)^*$ - \hat{g} -closed set in X.

(ii) $(1, 2)^*$ - \ddot{g} -continuous [7] if the inverse image of every $\sigma_{1,2}$ -closed set in Y is $(1,2)^*$ - \ddot{g} -closed set in X.

(iii) $(1, 2)^*$ -sg-irresolute [17] if $f^1(V)$ is $(1, 2)^*$ -sg-open in X, for every $(1, 2)^*$ -sg-open subset V in Y.

(iv) (1, 2)*-continuous [17] if $f^{1}(V)$ is $\tau_{1,2}$ -open in X, for every $\sigma_{1,2}$ -open subset V in Y.

Proposition 2.9 [9]: For any $A \subseteq X$, the following hold:

(i) $(1, 2)^*$ - \ddot{g} -int(A) is the largest $(1, 2)^*$ - \ddot{g} -open set contained in A.

(ii) A is $(1, 2)^*$ - \ddot{g} -open if and only if $(1, 2)^*$ - \ddot{g} -int(A) = A.

Proposition 2.10 [9] For any $A \subseteq X$, the following hold:

(i) (1, 2)*- \ddot{g} -cl(A) is the smallest (1,2)*- \ddot{g} -closed set containing A.

(ii) A is $(1, 2)^*$ - \ddot{g} -closed if and only if $(1, 2)^*$ - \ddot{g} -cl(A) = A.

Proposition 2.11 [9] For any two subsets A and B of X, the following hold:

(i) If A ⊆ B, then (1,2)*- ÿ -cl(A) ⊆ (1,2)*- ÿ -cl(B).
(ii) (1,2)*- ÿ -cl(A ∩ B) ⊂ (1,2)*- ÿ -cl(A) ∩ (1,2)*- ÿ -cl(B).

Theorem 2.12 [7]: A set A is $(1, 2)^*$ - \ddot{g} -open if and only if $F \subseteq \tau_{1,2}$ -int(A) whenever F is $(1,2)^*$ -sg-closed and $F \subseteq A$.

Definition 2.13: A map f: $(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is called (i) $(1, 2)^*$ -g-closed [19] if f (V) is $(1, 2)^*$ -g-closed in Y, for every $\tau_{1,2}$ -closed set V of X. (ii) $(1, 2)^*$ -sg-closed [17] if f (V) is $(1, 2)^*$ -sg-closed in Y, for every $\tau_{1,2}$ -closed set V of X. (iii) $(1, 2)^*$ -gs-closed [17] if f (V) is $(1, 2)^*$ -gs-closed in Y, for every $\tau_{1,2}$ -closed set V of X. (iv) $(1, 2)^*$ - ψ -closed [20] if f (V) is $(1, 2)^*$ - ψ -closed in Y, for every $\tau_{1,2}$ -closed set V of X. (v) $(1, 2)^*$ -closed [17] if f (V) is $\sigma_{1,2}$ -closed in Y, for every $\tau_{1,2}$ -closed set V of X.

3. $(1, 2)^*$ - \ddot{g} -CLOSED MAPS

We introduce the following definition:

Definition 3.1: A map f: $(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is said to be $(1, 2)^*$ - \ddot{g} -closed if the image of every $\tau_{1,2}$ -closed set in X is $(1,2)^*$ - \ddot{g} -closed in Y.

Example 3.2: Let $X = Y = \{a, b, c\}, \tau_1 = \{\phi, X, \{a\}\}$ and $\tau_2 = \{\phi, X, \{b\}\}$. Then the sets in $\{\phi, X, \{a\}, \{b\}, \{a, b\}\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, X, \{c\}, \{a, c\}, \{b, c\}\}$ are called $\tau_{1,2}$ -closed. Let $\sigma_1 = \{\phi, Y\}$ and $\sigma_2 = \{\phi, Y, \{a, b\}\}$. Then the sets in $\{\phi, Y, \{a, b\}\}$. Then the sets in $\{\phi, Y, \{a, b\}\}$ are called $\sigma_{1,2}$ -open in Y and the sets in $\{\phi, Y, \{c\}\}$ are called $\sigma_{1,2}$ -closed in Y. Let f: $(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be the identity map. Then f is an $(1, 2)^*$ - \ddot{g} -closed map.

Proposition 3.3: A map $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is $(1,2)^*$ - \ddot{g} -closed if and only if $(1, 2)^*$ - \ddot{g} -cl(f(A)) $\subseteq f(\tau_{1,2}$ -cl(A)) for every subset A of X.

Proof: Suppose that f is $(1,2)^*$ - \ddot{g} -closed and A \subseteq X. Then $\tau_{1,2}$ -cl(A) is $\tau_{1,2}$ -closed in X and so $f(\tau_{1,2}$ -cl(A)) is $(1,2)^*$ - \ddot{g} -closed in Y. We have $f(A) \subseteq f(\tau_{1,2}$ -cl(A)) and by Propositions 2.10 and 2.11, $(1,2)^*$ - \ddot{g} -cl(f(A)) $\subseteq (1,2)^*$ - \ddot{g} -cl(f($\tau_{1,2}$ -cl(A))) = f($\tau_{1,2}$ -cl(A)).

Conversely, let A be any $\tau_{1,2}$ -closed set in X. Then A = $\tau_{1,2}$ -cl(A) and so f(A) = f($\tau_{1,2}$ -cl(A)) \supseteq (1,2)*- \ddot{g} -cl(f(A)), by hypothesis. We have f (A) \subseteq (1, 2)*- \ddot{g} -cl(f(A)). Therefore f (A) = (1, 2)*- \ddot{g} -cl(f(A)). That is f (A) is (1, 2)*- \ddot{g} -closed by Proposition 2.10 and hence f is (1, 2)*- \ddot{g} -closed.

Proposition 3.4: Let $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be a map such that $(1,2)^* - \ddot{g} - cl(f(A)) \subseteq f(\tau_{1,2} - cl(A))$ for every subset $A \subseteq X$. Then the image f(A) of a $\tau_{1,2}$ -closed set A in X is \ddot{g} -closed in Y.

Proof: Let A be a $\tau_{1,2}$ -closed set in X. Then by hypothesis $(1,2)^*$ - \ddot{g} -cl(f(A)) \subseteq f($\tau_{1,2}$ -cl(A)) = f(A) and so $(1,2)^*$ - \ddot{g} -cl(f(A)) = f(A). Therefore f (A) is \ddot{g} -closed in Y.

Theorem 3.5: A map $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is $(1,2)^*$ - \ddot{g} -closed if and only if for each subset S of Y and each $\tau_{1,2}$ open set U containing $f^1(S)$ there is an $(1,2)^*$ - \ddot{g} -open set V of Y such that $S \subseteq V$ and $f^1(V) \subseteq U$.

Proof: Suppose f is $(1, 2)^*$ - \ddot{g} -closed. Let $S \subseteq Y$ and U be an $\tau_{1,2}$ -open set of X such that $f^1(S) \subseteq U$. Then $V = (f(U^c))^c$ is an $(1,2)^*$ - \ddot{g} -open set containing S such that $f^1(V) \subseteq U$.

For the converse, let F be a $\tau_{1,2}$ -closed set of X. Then $f^{1}((f(F))^{c}) \subseteq F^{c}$ and F^{c} is $\tau_{1,2}$ -open. By assumption, there exists an $(1,2)^{*}$ - \ddot{g} -open set V in Y such that $(f(F))^{c} \subseteq V$ and $f^{1}(V) \subseteq F^{c}$ and so $F \subseteq (f^{1}(V))^{c}$. Hence $V^{c} \subseteq f(F) \subseteq f((f^{1}(V))^{c}) \subseteq V^{c}$ which implies $f(F) = V^{c}$. Since V^{c} is $(1, 2)^{*}$ - \ddot{g} -closed, f (F) is $(1, 2)^{*}$ - \ddot{g} -closed and therefore f is $(1, 2)^{*}$ - \ddot{g} -closed.

Proposition 3.6: If $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is $(1,2)^*$ -sg-irresolute $(1,2)^*$ - \ddot{g} -closed and A is an $(1,2)^*$ - \ddot{g} -closed subset of X, then f(A) is $(1,2)^*$ - \ddot{g} -closed in Y.

Proof: Let U be an $(1, 2)^*$ -sg-open set in Y such that $f(A) \subseteq U$. Since f is $(1, 2)^*$ -sg-irresolute, $f^1(U)$ is an $(1,2)^*$ -sg-open set containing A. Hence $\tau_{1,2}$ -cl(A) $\subseteq f^1(U)$ as A is $(1,2)^*$ - \ddot{g} -closed in X. Since f is $(1,2)^*$ - \ddot{g} -closed, $f(\tau_{1,2}$ -cl(A)) is an $(1,2)^*$ - \ddot{g} -closed set contained in the $(1,2)^*$ -sg-open set U, which implies that $\tau_{1,2}$ -cl($f(\tau_{1,2}$ -cl(A))) $\subseteq U$ and hence $\tau_{1,2}$ -cl(f(A)) $\subseteq U$. Therefore, f (A) is an $(1,2)^*$ - \ddot{g} -closed set in Y.

The following example shows that the composition of two $(1, 2)^*$ - \ddot{g} -closed maps need not be a $(1, 2)^*$ - \ddot{g} -closed.

Example 3.7: Let X, Y and f be as in Example 3.2. Let $Z = \{a, b, c\}$ and $\eta_1 = \{\phi, Z, \{c\}\}$ and $\eta_2 = \{\phi, Z, \{a, b\}\}$. Then the sets in $\{\phi, Z, \{c\}, \{a, b\}\}$ are called $\eta_{1,2}$ -open and the sets in $\{\phi, Z, \{c\}, \{a, b\}\}$ are called $\eta_{1,2}$ -closed. Let g: $(Y, \sigma_1, \sigma_2) \rightarrow (Z, \eta_1, \eta_2)$ be the identity map. Then both f and g are $(1, 2)^*$ - \ddot{g} -closed maps but their composition g o f: $(X, \tau_1, \tau_2) \rightarrow (Z, \eta_1, \eta_2)$ is not an $(1, 2)^*$ - \ddot{g} -closed map, since for the $\tau_{1,2}$ -closed set $\{b, c\}$ in X, (g o f) $(\{b, c\}) = \{b, c\}$, which is not an $(1, 2)^*$ - \ddot{g} -closed set in Z.

Corollary 3.8: Let $f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be $(1,2)^*$ - \ddot{g} -closed and $g : (Y, \sigma_1, \sigma_2) \rightarrow (Z, \eta_1, \eta_2)$ be $(1,2)^*$ - \ddot{g} -closed and $(1,2)^*$ -sg-irresolute, then their composition $g \circ f : (X, \tau_1, \tau_2) \rightarrow (Z, \eta_1, \eta_2)$ is $(1,2)^*$ - \ddot{g} -closed.

Proof: Let A be a $\tau_{1, 2}$ -closed set of X. Then by hypothesis f (A) is an $(1, 2)^*$ - \ddot{g} -closed set in Y. Since g is both $(1,2)^*$ - \ddot{g} -closed and $(1,2)^*$ -sg-irresolute by Proposition 3.6, $g(f(A)) = (g \circ f) (A)$ is $(1,2)^*$ - \ddot{g} -closed in Z and therefore g o f is $(1,2)^*$ - \ddot{g} -closed.

Proposition 3.9: Let f: $(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ and g: $(Y, \sigma_1, \sigma_2) \rightarrow (Z, \eta_1, \eta_2)$ be $(1, 2)^*$ - \ddot{g} -closed maps where Y is a T $_{(1,2)^*}$. \ddot{g} -space. Then their composition g o f: $(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is $(1, 2)^*$ - \ddot{g} -closed.

Proof: Let A be a $\tau_{1,2}$ -closed set of X. Then by assumption f (A) is $(1, 2)^*$ - \ddot{g} -closed in Y. Since Y is a T $_{(1,2)^*}$ - \ddot{g} -space, f(A) is $\sigma_{1,2}$ -closed in Y and again by assumption g(f(A)) is $(1,2)^*$ - \ddot{g} -closed in Z. That is (g o f) (A) is $(1, 2)^*$ - \ddot{g} -closed in Z and so g o f is $(1, 2)^*$ - \ddot{g} -closed.

Proposition 3.10: If $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is $(1,2)^*$ - \ddot{g} -closed, $g: (Y, \sigma_1, \sigma_2) \rightarrow (Z, \eta_1, \eta_2)$ is $(1,2)^*$ - \ddot{g} -closed (resp. $(1,2)^*$ -g-closed, $(1,2)^*$ - ψ -closed, $(1,2)^*$ -sg-closed and $(1,2)^*$ -gs-closed) and Y is a T $_{(1,2)^*}$ - \ddot{g} -space, then their composition g o f: $(X, \tau_1, \tau_2) \rightarrow (Z, \eta_1, \eta_2)$ is $(1,2)^*$ - \ddot{g} -closed (resp. $(1,2)^*$ -g-closed, $(1,2)^*$ - ψ -closed, $(1,2)^*$ -sg-closed and $(1,2)^*$ -g-closed (resp. $(1,2)^*$ -g-closed, $(1,2)^*$ -g-closed, $(1,2)^*$ -g-closed, $(1,2)^*$ -g-closed, $(1,2)^*$ -g-closed (resp. $(1,2)^*$ -g-closed) and Y is a T $_{(1,2)^*}$ -g-closed, $(1,2)^*$ -g-closed) and Y is a T $_{(1,2)^*}$ -g-closed, $(1,2)^*$ -g-closed) and $(1,2)^*$ -g-closed).

Proof: Similar to Proposition 3.9.

Proposition 3.11: Let $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be a $(1,2)^*$ -closed map and $g: (Y, \sigma_1, \sigma_2) \rightarrow (Z, \eta_1, \eta_2)$ be an $(1,2)^*$ - \ddot{g} -closed map, then their composition g o $f: (X, \tau_1, \tau_2) \rightarrow (Z, \eta_1, \eta_2)$ is $(1,2)^*$ - \ddot{g} -closed.

Proof: Similar to Proposition 3.9.

© 2012, IJMA. All Rights Reserved

Remark 3.12: If $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is an $(1,2)^*$ - \ddot{g} -closed and $g: (Y, \sigma_1, \sigma_2) \rightarrow (Z, \eta_1, \eta_2)$ is $(1,2)^*$ -closed, then their composition need not be an $(1,2)^*$ - \ddot{g} -closed map as seen from the following example.

Example 3.13: Let X, Y and f be as in Example 3.2. Let $Z = \{a, b, c\}$ and $\eta_1 = \{\phi, Z, \{a\}\}$ and $\eta_2 = \{\phi, Z, \{a, b\}\}$. Then the sets in $\{\phi, Z, \{a\}, \{a, b\}\}$ are called $\eta_{1,2}$ -open and the sets in $\{\phi, Z, \{c\}, \{b, c\}\}$ are called $\eta_{1,2}$ -closed. Let g: $(Y, \sigma_1, \sigma_2) \rightarrow (Z, \eta_1, \eta_2)$ be the identity map. Then f is an $(1, 2)^*$ - \ddot{g} -closed map and g is a $(1, 2)^*$ -closed map. But their composition g o f : $(X, \tau_1, \tau_2) \rightarrow (Z, \eta_1, \eta_2)$ is not an $(1, 2)^*$ - \ddot{g} -closed map, since for the $\tau_{1,2}$ -closed set $\{a, c\}$ in X, (g o f) ($\{a, c\}$) = $\{a, c\}$, which is not an $(1, 2)^*$ - \ddot{g} -closed set in Z.

Definition 3.14: A map f: $(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is called

(i) $(1, 2)^*$ - \ddot{g} -irresolute if the inverse image of every $(1, 2)^*$ - \ddot{g} -closed set in Y is $(1, 2)^*$ - \ddot{g} -closed in X.

(ii) strongly $(1,2)^*$ - \ddot{g} -continuous if the inverse image of every $(1,2)^*$ - \ddot{g} -open set in Y is $\tau_{1,2}$ -open in X.

Theorem 3.15: Let $f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ and $g : (Y, \sigma_1, \sigma_2) \rightarrow (Z, \eta_1, \eta_2)$ be two maps such that their composition $g \circ f : (X, \tau_1, \tau_2) \rightarrow (Z, \eta_1, \eta_2)$ is an $(1,2)^*$ - \ddot{g} -closed map. Then the following statements are true.

- (i) If f is $(1, 2)^*$ -continuous and surjective, then g is $(1, 2)^*$ - \ddot{g} -closed.
- (ii) If g is $(1, 2)^*$ - \ddot{g} -irresolute and injective, then f is $(1, 2)^*$ - \ddot{g} -closed.
- (iii) If f is $(1, 2)^*$ -ĝ-continuous, surjective and (X, τ) is a $T_{(1,2)^*}$ -ĝ-space, then g is $(1,2)^*$ - \ddot{g} -closed.
- (iv) If g is strongly $(1, 2)^*$ \ddot{g} -continuous and injective, then f is $(1, 2)^*$ -closed.

Proof:

(i) Let A be a $\sigma_{1,2}$ -closed set of Y. Since f is $(1,2)^*$ -continuous, f¹(A) is $\tau_{1,2}$ -closed in X and since g o f is $(1,2)^*$ - \ddot{g} - closed, (g o f)(f¹(A)) is $(1,2)^*$ - \ddot{g} -closed in Z. That is g(A) is $(1,2)^*$ - \ddot{g} -closed in Z, since f is surjective. Therefore g is an $(1, 2)^*$ - \ddot{g} -closed map.

(ii) Let B be a $\tau_{1,2}$ -closed set of X. Since g o f is $(1, 2)^*$ - \ddot{g} -closed, (g o f) (B) is $(1, 2)^*$ - \ddot{g} -closed in Z. Since g is $(1, 2)^*$ - \ddot{g} -irresolute, g⁻¹((g o f)(B)) is $(1,2)^*$ - \ddot{g} -closed set in Y. That is f(B) is $(1,2)^*$ - \ddot{g} -closed in Y, since g is injective. Thus f is an $(1, 2)^*$ - \ddot{g} -closed map.

(iii) Let C be a $\sigma_{1,2}$ -closed set of Y. Since f is $(1, 2)^*$ - \hat{g} -continuous, f¹(C) is $(1, 2)^*$ - \hat{g} -closed in X. Since X is a T $(1, 2)^*$ - \hat{g} -space, f¹(C) is $\tau_{1,2}$ -closed in X and so as in (i), g is an $(1,2)^*$ - \ddot{g} -closed map.

(iv) Let D be a $\tau_{1,2}$ -closed set of X. Since g o f is (1, 2)*- \ddot{g} -closed, (g o f) (D) is (1, 2)*- \ddot{g} -closed in Z. Since g is strongly (1, 2)*- \ddot{g} -continuous, g⁻¹((g o f) (D)) is $\sigma_{1,2}$ -closed in Y. That is f (D) is $\sigma_{1,2}$ -closed set in Y, since g is injective. Therefore f is a (1, 2)*-closed map.

In the next theorem we show that $(1, 2)^*$ -normality is preserved under $(1, 2)^*$ -continuous $(1, 2)^*$ - \ddot{g} -closed maps.

Theorem 3.16: If $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is a $(1,2)^*$ -continuous, $(1,2)^*$ - \ddot{g} -closed map from a $(1,2)^*$ -normal space X onto a space Y, then Y is $(1,2)^*$ -normal.

Proof: Let A and B be two disjoint $\sigma_{1,2}$ -closed subsets of Y. Since f is $(1, 2)^*$ -continuous, $f^1(A)$ and $f^1(B)$ are disjoint $\tau_{1,2}$ -closed sets of X. Since X is $(1, 2)^*$ -normal, there exist disjoint $\tau_{1,2}$ -open sets U and V of X such that $f^1(A) \subseteq U$ and $f^1(B) \subseteq V$. Since f is $(1, 2)^*$ - \ddot{g} -closed, by Theorem 3.5, there exist disjoint $(1, 2)^*$ - \ddot{g} -open sets G and H in Y such that $A \subseteq G$, $B \subseteq H$, $f^1(G) \subseteq U$ and $f^1(H) \subseteq V$. Since U and V are disjoint, $\sigma_{1,2}$ -int (G) and $\sigma_{1,2}$ -int (H) are disjoint $\sigma_{1,2}$ -open sets in Y. Since A is $\sigma_{1,2}$ -closed, A is $(1, 2)^*$ -sg-closed and therefore we have by Theorem 2.12, $A \subseteq \sigma_{1,2}$ -int(G). Similarly $B \subseteq \sigma_{1,2}$ -int(H) and hence Y is $(1,2)^*$ -normal.

Analogous to an $(1, 2)^*$ - \ddot{g} -closed map, we define an $(1, 2)^*$ - \ddot{g} -open map as follows:

Definition 3.17: A map $f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is said to be an $(1,2)^*$ - \ddot{g} -open map if the image f(A) is $(1,2)^*$ - \ddot{g} - open in Y for each $\tau_{1,2}$ -open set A in X.

Proposition 3.18: For any bijection f: $(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$, the following statements are equivalent:

(i) $f^{1:}(Y, \sigma_1, \sigma_2) \rightarrow (X, \tau_1, \tau_2)$ is $(1,2)^*$ - \ddot{g} -continuous.

(ii) f is $(1,2)^*$ - \ddot{g} -open map.

(iii) f is $(1,2)^*$ - \ddot{g} -closed map.

Proof:

(i) \Rightarrow (ii). Let U be an $\tau_{1,2}$ -open set of X. By assumption, $(f^{-1})^{-1}(U) = f(U)$ is $(1, 2)^*$ - \ddot{g} -open in Y and so f is $(1, 2)^*$ - \ddot{g} -open.

(ii) \Rightarrow (iii). Let F be a $\tau_{1,2}$ -closed set of X. Then F^c is $\tau_{1,2}$ -open set in X. By assumption, f (F^c) is $(1,2)^*$ - \ddot{g} -open in Y. That is f (F^c) = (f (F))^c is $(1, 2)^*$ - \ddot{g} -open in Y and therefore f (F) is $(1, 2)^*$ - \ddot{g} -closed in Y. Hence f is $(1, 2)^*$ - \ddot{g} -closed.

(iii) \Rightarrow (i). Let F be a $\tau_{1, 2}$ -closed set of X. By assumption, f (F) is (1, 2)*- \ddot{g} -closed in Y. But f (F) = (f¹)⁻¹(F) and therefore f¹ is (1, 2)*- \ddot{g} -continuous.

In the next two theorems, we obtain various characterizations of $(1, 2)^*$ - \ddot{g} -open maps.

Theorem 3.19: Assume that the collection of all $(1, 2)^*$ - \ddot{g} -open sets of Y is closed under arbitrary union. Let f: $(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be a map. Then the following statements are equivalent:

(i) f is an $(1,2)^*$ - \ddot{g} -open map.

(ii) For a subset A of X, $f(\tau_{1,2}\text{-int}(A)) \subseteq (1,2)^*$ - \ddot{g} -int(f(A)).

(iii) For each $x \in X$ and for each $\tau_{1,2}$ -neighborhood U of x in X, there exists an $(1,2)^*$ - \ddot{g} -neighborhood W of f(x) in Y such that $W \subset f(U)$.

Proof:

(i) \Rightarrow (ii). Suppose f is (1,2)*- \ddot{g} -open. Let A \subseteq X. Then $\tau_{1,2}$ -int(A) is $\tau_{1,2}$ -open in X and so f($\tau_{1,2}$ -int(A)) is (1,2)*- \ddot{g} - open in Y. We have f($\tau_{1,2}$ -int(A)) \subseteq f(A). Therefore by Proposition 2.9, f ($\tau_{1,2}$ -int(A)) \subseteq (1,2)*- \ddot{g} -int(f(A)).

(ii) \Rightarrow (iii). Suppose (ii) holds. Let $x \in X$ and U be an arbitrary $\tau_{1,2}$ -neighborhood of x in X. Then there exists an $\tau_{1,2}$ -open set G such that $x \in G \subseteq U$. By assumption, $f(G) = f(\tau_{1,2}\text{-int}(G)) \subseteq (1,2)^*$ - \ddot{g} -int(f(G)). This implies $f(G) = (1,2)^*$ - \ddot{g} -int(f(G)). By Proposition 2.9, we have f(G) is $(1, 2)^*$ - \ddot{g} -open in Y. Further, $f(x) \in f(G) \subseteq f(U)$ and so (iii) holds, by taking W = f(G).

(iii) \Rightarrow (i). Suppose (iii) holds. Let U be any $\tau_{1,2}$ -open set in X, $x \in U$ and f(x) = y. Then $y \in f(U)$ and for each $y \in f(U)$, by assumption there exists an $(1,2)^*$ - \ddot{g} -neighborhood W_y of y in Y such that $W_y \subseteq f(U)$. Since W_y is an $(1, 2)^*$ - \ddot{g} -neighborhood of y, there exists an $(1, 2)^*$ - \ddot{g} -open set Vy in Y such that $y \in V_y \subseteq W_y$.

Therefore, f (U) = $\cup \{ V_y : y \in f(U) \}$ is an $(1,2)^*$ - \ddot{g} -open set in Y. Thus f is an $(1,2)^*$ - \ddot{g} -open map.

Theorem 3.20: A map $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is $(1,2)^*$ - \ddot{g} -open if and only if for any subset S of Y and for any $\tau_{1,2}$ -closed set F containing $f^1(S)$, there exists an $(1,2)^*$ - \ddot{g} -closed set K of Y containing S such that $f^1(K) \subseteq F$.

Proof: Similar to Theorem 3.5.

Corollary 3.21: A map $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is $(1,2)^*$ - \ddot{g} -open if and only if

 $f^{1}((1,2)^{*}-\ddot{g} - cl(B)) \subseteq \tau_{1,2} - cl(f^{1}(B))$ for each subset B of Y.

Proof: Suppose that f is $(1, 2)^*$ - \ddot{g} -open. Then for any $B \subseteq Y$, $f^1(B) \subseteq \tau_{1,2}$ -cl($f^1(B)$). By Theorem 3.20, there exists an $(1, 2)^*$ - \ddot{g} -closed set K of Y such that $B \subseteq K$ and $f^1(K) \subseteq \tau_{1,2}$ -cl ($f^1(B)$).

Therefore, $f^{1}((1,2)^{*}-\ddot{g} - cl(B)) \subseteq (f^{1}(K)) \subseteq \tau_{1,2} - cl(f^{1}(B))$, since K is an $(1,2)^{*}-\ddot{g}$ -closed set in Y.

Conversely, let S be any subset of Y and F be any $\tau_{1,2}$ -closed set containing $f^1(S)$. Put $K = (1, 2)^*$ - \ddot{g} -cl(S). Then K is an $(1, 2)^*$ - \ddot{g} -closed set and $S \subseteq K$. By assumption, $f^1(K) = f^1((1,2)^*$ - \ddot{g} -cl(S)) $\subseteq \tau_{1,2}$ -cl($f^1(S)$) $\subseteq F$ and therefore by Theorem 3.20, f is $(1,2)^*$ - \ddot{g} -open.

Finally in this section, we define another new class of maps called $(1, 2)^*$ - \ddot{g}^* -closed maps which are stronger than $(1, 2)^*$ - \ddot{g} -closed maps.

Definition 3.22: A map $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be $(1,2)^*$ - \ddot{g}^* -closed if the image f(A) is $(1,2)^*$ - \ddot{g} - closed in Y for every $(1,2)^*$ - \ddot{g} -closed set A in X.

For example the map f in Example 3.2 is an $(1, 2)^*$ - \ddot{g}^* -closed map.

Remark 3.23: Since every $\tau_{1,2}$ -closed set is an $(1,2)^*$ - \ddot{g} -closed set we have $(1,2)^*$ - \ddot{g}^* -closed map is an $(1,2)^*$ - \ddot{g} -closed map. The converse is not true in general as seen from the following example.

Example 3.24: Let $X = Y = \{a, b, c\}$ $\tau_1 = \{\phi, X, \{a, b\}\}$ and $\tau_2 = \{\phi, X\}$. Then the sets in $\{\phi, X, \{a, b\}\}$ are called $\tau_{1,2}$ -open and the sets in $\{\phi, X, \{c\}\}$ are called $\tau_{1,2}$ -closed. Let $\sigma_1 = \{\phi, Y, \{a\}\}$ and $\sigma_2 = \{\phi, Y, \{a, b\}\}$. Then the sets in $\{\phi, Y, \{a\}, \{a, b\}\}$ are called $\sigma_{1,2}$ -open and the sets in $\{\phi, Y, \{c\}, \{b, c\}\}$ are called $\sigma_{1,2}$ -closed.

Let f: $(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be the identity map. Then f is an $(1, 2)^*$ - \ddot{g} -closed but not $(1, 2)^*$ - \ddot{g}^* -closed map.

Since {a, c} is $(1, 2)^*$ - \ddot{g} -closed set in X, but its image under f is {a, c} which is not $(1,2)^*$ - \ddot{g} -closed set in Y.

Proposition 3.25: A map $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is $(1,2)^*$ - \ddot{g}^* -closed if and only if $(1,2)^*$ - \ddot{g} -cl(f(A)) $\subseteq f((1,2)^*$ - \ddot{g} -cl(A)) for every subset A of X.

Proof: Similar to Proposition 3.3.

Analogous to $(1, 2)^*$ - \ddot{g}^* -closed map we can also define $(1, 2)^*$ - \ddot{g}^* -open map.

Proposition 3.26: For any bijection f: $(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$, the following statements are equivalent:

- (i) $f^{1:}(Y, \sigma_1, \sigma_2) \rightarrow (X, \tau_1, \tau_2)$ is \ddot{g} -irresolute.
- (ii) f is $(1,2)^*$ \ddot{g}^* -open map.
- (iii) f is $(1,2)^*$ \ddot{g}^* -closed map.

Proof: Similar to Proposition 3.18.

Proposition 3.27: If $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is $(1,2)^*$ -sg-irresolute and $(1,2)^*$ - \ddot{g} -closed, then it is an $(1,2)^*$ - \ddot{g}^* -closed map.

Proof: The proof follows from Proposition 3.6.

REFERENCES

[1] Arya, S. P. and Nour, T. M.: Characterizations of s-normal spaces, Indian J. Pure. Appl. Math., 21(8)(1990), 717-719.

[2] Bhattacharya, P. and Lahiri, B. K.: Semi-generalized closed sets in topology, Indian J. Math., 29(3)(1987), 375-382.

[3] Caldas, M.: Semi-generalized continuous maps in topological spaces, Portugaliae Mathematica., 52 Fasc. 4(1995), 339-407.

[4] Crossley, S. G. and Hildebrand, S. K.: Semi-closure, Texas J. Sci., 22(1971), 99-112.

[5] Devi, R.: Studies on generalizations of closed maps and homeomorphisms in topological spaces, Ph.D Thesis, Bharathiar University, Coimbatore (1994).

[6] Jafari, S. Lellis Thivagar, M. and Nirmala Mariappan.: On (1, 2)*-αĝ-closed sets, J. Adv. Math. Studies, 2(2) (2009), 25-34.

[7] Kamaraj, M. Kumaresan, K. Ravi, O. and Pandi, A.: $(1, 2)^*$ - \ddot{g} -closed sets and decomposition of $(1, 2)^*$ -continuity (submitted).

[8] Kamaraj, M. Kumaresan, K. Ravi, O. and Pandi, A.: $(1,2)^*$ - \ddot{g} -closed sets in bitopological spaces, International Journal of Advances and Pure and Applied Mathematics, 1(3) (2011), 98-111.

[9] Kamaraj, M. Kumaresan, K. Ravi, O. and Pandi, A.: $(1,2)^*$ - \ddot{g} -interior and $(1,2)^*$ - \ddot{g} -closure in bitopological spaces (submitted).

[10] Kamaraj, M. Kumaresan, K. Ravi, O. and Pandi, A.: On $T_{(1,2)^*}$ \ddot{g} -spaces (submitted).

[11] Levine, N.: Generalized closed sets in topology, Rend. Circ. Math. Palermo, 19(2)(1970), 89-96.

[12] Levine, N.: Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36-41.

[13] Malghan, S. R.: Generalized closed maps, J. Karnataka Univ. Sci., 27(1982), 82-88.

[14] Ravi, O. and Ganesan, S.: \ddot{g} -closed and \ddot{g} -open maps, Archimedes Journal of Mathematics,

[15] Ravi, O. and Lellis Thivagar, M.: On stronger forms of (1, 2)*-quotient mappings in bitopological spaces, Internat. J. Math. Game Theory and Algebra, 14 (6) (2004), 481-492.

[16] Ravi, O. Ekici, E. and Lellis Thivagar, M.: On (1,2)*-sets and decompositions of bitopological (1,2)*-continuous mappings, Kochi J. Math., 3(2008), 181-189.

[17] Ravi, O. and Thivagar, M. L.: A bitopological (1, 2)*-semi-generalized continuous maps, Bull. Malaysian Math. Sci. Soc., (2) (29) (1) (2006), 76-88.

[18] Ravi, O. Thivagar, M. L. and Ekici, E.: Decomposition of (1, 2)*-continuity and complete (1, 2)*-continuity in bitopological spaces, Analele Universitatii Din Oradea. Fasc. Matematica Tom XV (2008), 29-37.

[19] Ravi, O. Thivagar, M. L. and Jinjinli.: Remarks on extensions of (1,2)*-g-closed maps, Archimedes J. Math., 1(2)(2011), 177-187.

[20] Ravi, O. Pandi, A. and Latha, R.: Contra-pre-(1, 2)*-semi-continuous functions, Bessel Journal of Mathematics (To appear).

[21] Sheik John, M.: A study on generalizations of closed sets and continuous maps in topological and bitopological spaces, Ph. D Thesis, Bharathiar University, Coimbatore, September 2002.

[22] Sundaram, P. Maki, H. and Balachandran, K.: Semi-generalized continuous maps and semi- $T_{1/2}$ -spaces, Bull. Fukuoka Univ. Ed. III, 40(1991), 33-40.

[23] Veera Kumar, M. K. R. S.: \hat{g} -closed sets in Topological spaces, Bull. Allahabad Math. Soc., 18(2003), 99-112.
