M-CONTINUITY AND ITS DECOMPOSITIONS ¹R. G. Balamurugan, ²S. Vijaya and ³O. Ravi* ¹Department of Mathematics, Cauvery International School, Manaparai, Trichy District, Tamil Nadu, India E-mail: rgbala2010@yahoo.com ²Department of Mathematics, Madurai Institute of Engineering and Technology, Pottapalayam, Sivagangai District, Tamil Nadu, India E-mail: viviphd.11@gmail.com ³Department of Mathematics, P. M. Thevar College, Usilampatti, Madurai District, Tamil Nadu, India E-mail: siingam@yahoo.com (Received on: 04-01-12; Accepted on: 09-02-12) #### **ABSTRACT** The aim of this paper is to introduce the notions of R-locally m-closed sets and π -locally m-closed sets and some new subsets of minimal spaces and to obtain decompositions of M-continuity. 2010 Mathematics Subject Classification: 54C10, 54C08, 54C05. **Key words and Phrases:** R-locally m-closed set, π -locally m-closed set, Λ_{mr} -set, $\Lambda_{m\pi}$ -set, (Λ, m) -closed set, $(\Lambda, m\pi)$ -closed set. ### 1. INTRODUCTION In [4] Maki introduced the notions of minimal structures and minimal spaces. Popa and Noiri [6] introduced a new notion of M-continuous functions as a function defined between sets satisfying some minimal conditions. In 1970, the notion of generalized closed (briefly, g-closed) sets were introduced and investigated by Levine [3]. Recently, many modifications of g-closed sets have defined and investigated. One among them is mg-closed sets which were introduced by Noiri and studied in [5]. In [5], he also introduced locally m-closed sets in minimal spaces. In this paper, we introduce the notions of R-locally m-closed sets and π -locally m-closed sets, some new subsets of minimal spaces and obtain decompositions of M-continuity. Also we investigate some properties and characterizations of these sets with some theorems, examples and counter examples. ### 2. PRELIMINARIES **Definition 2.1[4]:** A subfamily $m_x \subset P(X)$ is said to be a minimal structure on X if $\varphi, X \in m_x$. The pair (X, m_x) is called a minimal space (or an m-space). A subset A of X is said to be m-open if $A \in m_x$. The complement of an m-open set is called m-closed set. We set m-Int(A)= $\bigcup \{U: U \subset A, U \in m_x\}$ and m-Cl(A)= $\bigcap \{F: A \subset F, X - F \in m_x\}$. **Lemma 2.2 [6]:** Let (X, m_x) be an m-space and $A \subset X$. Then $x \in m\text{-Cl}(A)$ if and only if $U \cap A \neq \emptyset$ for every $U \in m_x$ containing x. A minimal space (X, m_x) has the property [B] if the union of any family of subsets belonging to m_x belongs to m_x . **Proposition 2.3 [6]:** Let (X, m_x) be a minimal space. - (i) For any two subsets A, B of X, the following properties hold:(a) A ⊂ m-Cl(A) and A = m-Cl(A) if A is a m-closed set. - *Corresponding author: 30. Ravi*, *E-mail: siingam@yahoo.com - (b) m-Int(A) \subset A and A = m-Int(A) if A is an m-open set. - (c) $A \subseteq B \implies m\text{-Cl}(A) \subseteq m\text{-Cl}(B)$ and $A \subseteq B \implies m\text{-Int}(A) \subseteq m\text{-Int}(B)$. - (d) m-Cl(m-Cl(A)) = m-Cl(A). - (e) $(m-Cl(A))^c = m-Int(A^c)$ and $(m-Int(A))^c = m-Cl(A^c)$. - (f) $m\text{-Cl}(\phi) = \phi$; m-Cl(X) = X; $m\text{-Int}(\phi) = \phi$; m-Int(X) = X. - (ii) The following are equivalent. - (a) m_x has the property [B]. - (b) If m-Int(A) = A, then $A \in m_x$. - (c) If m-Cl(B) = B, then $X B \in m_x$. **Definition 2.4 [8]:** A subset A of a minimal space (X, m_x) is said to be - (a) regular m-open if A = m-Int(m-Cl(A)), - (b) m-semi open if $A \subset m\text{-}Cl(m\text{-}Int(A))$, - (c) m- π -open if it is the finite union of regular m-open sets of A. **Definition 2.5 [5]:** A subset A of a minimal space (X, m_x) is said to be mg-closed if m-Cl(A) \subset U whenever A \subset U and U is m-open in X. **Definition 2.6[5]:** A subset A of an m-space (X, m_x) is said to be locally m-closed if $A = U \cap V$ where U is m-open and V is m-closed. **Lemma 2.7 [8]:** For the subsets of a minimal space (X, m_x) satisfying property [B], every m- π -open set is an m-open set but not conversely. **Example 2.8:** Let (X, m_x) be a minimal space satisfying property [B], such that $X = \{a, b, c\}$ and $m_x = \{\phi, \{c\}, \{a, b\}, \{a, c\}, X\}$. Then $A = \{a, c\}$ is an m-open set but not an m- π -open set. **Remark 2.9 [8]:** The implication in Lemma 2.7 will not hold if m_x does not have property [B] as shown in the following Example 2.10. **Example 2.10:** Let (X, m_x) be a minimal space such that $X = \{a, b, c\}$ and $m_x = \{\phi, X, \{a\}, \{b\}\}$. Then $A = \{a, b\}$ is an m- π -open set but not an m-open set. **Lemma 2.11 [8]:** For the subsets of a minimal space (X, m_x) , every regular m-open set is an m- π -open set but not conversely. **Example 2.12:** Let (X, m_x) be a minimal space such that $X = \{a, b, c\}$ and $m_x = \{\phi, \{a\}, \{b\}, X\}$. Then $A = \{a, b\}$ is an $m-\pi$ -open set but not a regular m-open set. **Remark 2.13 [1]:** For the subsets of a minimal space (X, m_x), every m-open set is m-semi open set but not conversely. **Definition 2.14 [6]:** A function $f:(X, m_x) \to (Y, m_y)$ is said to be M-continuous if for each $x \in X$ and each $V \in m_y$ containing f(x), there exists $U \in m_x$ containing f(x) containing f(x) containing f(x). **Lemma 2.15 [6]:** For a function $f:(X, m_x) \to (Y, m_y)$ where m_x satisfies property [B], the following are equivalent. - 1. f is M-continuous; - 2. $f^{-1}(V)$ is m_x -open for every m_v -open set V of Y; - 3. $f^{1}(K)$ is m_{x} -closed for every m_{y} -closed set K of X. # 3. STRONGER FORMS OF LOCALLY m-CLOSED SETS **Definition 3.1:** A subset A of an m-space (X, m_x) is said to be - (a) R-locally m-closed if $A = U \cap V$ where U is regular m-open and V is m-closed, - (b) π -locally m-closed if $A = U \cap V$ where U is m- π -open and V is m-closed. **Definition 3.2:** A subset A of an m-space (X, m_x) is said to be - (a) m-rg-closed if m-Cl(A) \subset U whenever U is regular m-open in X and A \subset U, - (b) m- π g-closed if m-Cl(A) \subset U whenever U is m- π -open in X and A \subset U, - (c) m ω -closed if m-Cl(A) \subset U whenever U is m-semi open in X and A \subset U. **Lemma 3.3 [9]:** For the subsets of an m-space (X, m_x) , the following implications hold. m-closed \Rightarrow m ω -closed \Rightarrow mg-closed. **Lemma 3.4:** For the subsets of an m-space (X, m_x) satisfying property [B], we have the following implications. mg-closed \Rightarrow m-rg-closed \Rightarrow m-rg-closed. **Lemma 3.5:** Let (X, m_x) be an m-space and $A \subset X$. If A is m-closed, then - (i) A is locally m-closed set but not conversely. - (ii) A is R-locally m-closed set but not conversely. - (iii) A is π -locally m-closed set but not conversely. Remark 3.6: None of the implications in Lemmas 3.3, 3.4 and 3.5 is reversible as seen in the following Examples. **Example 3.7:** Let (X, m_x) be an m-space such that $X = \{a, b, c\}$ and $m_x = \{\phi, X, \{b\}, \{a, b\}, \{a, c\}\}\}$. Then $A = \{b, c\}$ is an mo-closed set but not an m-closed. **Example 3.8:** Let (X, m_x) be an m-space such that $X = \{a, b, c\}$ and $m_x = \{\phi, X, \{c\}\}$. Then $A = \{a\}$ is an mg-closed set but not an $m\omega$ -closed. **Example 3.9:** Let (X, m_x) be an m-space satisfying property [B] such that $X = \{a, b, c\}$ and $m_x = \{\phi, X, \{c\}, \{a, b\}, \{a, c\}\}$. Then $A = \{a\}$ is an m- π g-closed set but not an mg-closed. **Example 3.10:** Let (X, m_x) be an m-space satisfying property [B] such that $X = \{a, b, c\}$ and $m_x = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$. Then $A = \{a, b\}$ is an m-rg-closed set but not an m- π g-closed. **Example 3.11:** Let (X, m_x) be an m-space such that $X = \{a, b, c\}$ and $m_x = \{\phi, X, \{a\}, \{b\}\}$. Then - (i) $A = \{b\}$ is locally m-closed set but not a m-closed set. - (ii) $A = \{a\}$ is both R-locally m-closed set and π -locally m-closed set but not a m-closed. **Proposition 3.12:** Let (X, m_x) be an m-space and A a subset of X. - 1. If A is m- π -open, then A is π -locally m-closed set. - 2. If A is R-locally m-closed set, then A is π -locally m-closed set. **Proposition 3.13:** Let (X, m_x) be an m-space satisfying property [B] and A a subset of X. Then the following holds. If A is π -locally m-closed set, then A is locally m-closed set. **Remark 3.14:** The converses of the above Propositions 3.12 and 3.13 need not be true as shown in the following examples. **Example 3.15:** Let (X, m_x) be an m-space such that $X = \{a, b, c\}$ and $m_x = \{\phi, \{a\}, \{b\}, X\}$. Then $A = \{a, c\}$ is π -locally m-closed set but not m- π -open. **Example 3.16:** Let (X, m_x) be an m-space such that $X = \{a, b, c, d\}$ and $m_x = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}, X\}$. Then $A = \{a, b, c\}$ is π -locally m-closed set but it is not R-locally m-closed set. **Example 3.17:** Let (X, m_x) be an m-space satisfying property [B] such that $X = \{a, b, c\}$ and $m_x = \{\phi, X, \{c\}, \{a, b\}, \{a, c\}\}$. Then $A = \{a\}$ is locally m-closed set but not π -locally m-closed set. **Remark 3.18:** For the subsets of an m-space (X, m_x) satisfying property [B], by Propositions 3.12 and 3.13, we have the following implications. R-locally m-closed set \Rightarrow π -locally m-closed set \Rightarrow locally m-closed set. **Theorem 3.19:** A subset A of an m-space (X, m_x)satisfying property [B] is m-closed if and only if it is - (i) locally m-closed and mg-closed. [4] - (ii) R-locally m-closed and m-rg-closed. - (iii) π -locally m-closed and m- π g-closed. **Proof:** (i) Necessity is trivial. We prove only sufficiency. Let A be locally m-closed set and mg-closed set. Since A is locally m-closed, $A = U \cap V$, where U is m-open and V is m-closed. So, we have $A = U \cap V \subset U$. Since A is mg-closed, m-Cl(A) \subset U. Also $A = U \cap V \subset V$ and V is m-closed, then m-Cl(A) \subset V. Consequently, we have m-Cl(A) \subset U \cap V = A and hence A is m-closed. (ii) and (iii) It is similar to that of (i). **Theorem 3.20:** For a subset A of an m-space (X, m_x) satisfying property [B], the following are equivalent. - (i) A is m-closed. - (ii) A is R-locally m-closed and mg-closed. - (iii) A is R-locally m-closed and m-rg-closed. **Theorem 3.21:** For a subset A of an m-space (X, m_x) satisfying property [B], the following are equivalent. - (i) A is m-closed. - (ii) A is π -locally m-closed and m ω -closed. - (iii) A is locally m-closed and mg-closed. **Theorem 3.22:** For a subset A of an m-space (X, m_x) satisfying property [B], the following are equivalent. - (i) A is m-closed. - (ii) A is locally m-closed and mω-closed. - (iii) A is locally m-closed and mg-closed. **Theorem 3.23:** For a subset A of an m-space (X, m_x) satisfying property [B], the following are equivalent. - (i) A is m-closed. - (ii) A is R-locally m-closed and mω-closed. - (iii) A is π -locally m-closed and mg-closed. - (iv) A is π -locally m-closed and m- π g-closed. #### Theorem 3.24 For a subset A of an m-space (X, m_x) satisfying property [B], the following are equivalent. - (i) A is m-closed. - (ii) A is R-locally m-closed and mg-closed. - (iii) A is R-locally m-closed and m-πg-closed. - (iv) A is R-locally m-closed and m-rg-closed. # Remark 3.25 - 1. The notions of locally m-closed sets and mg-closed sets (resp. mω-closed sets) are independent. - 2. The notions of π -locally m-closed sets and mg-closed sets (resp. m ω -closed sets, m- π g-closed sets) are independent. - 3. The notions of R-locally m-closed sets and mg-closed sets (resp. $m\omega$ -closed sets, m-rg-closed sets, m- π g-closed sets) are independent. ### Example 3.26 - (i) Let (X, m_x) be an m-space such that $X = \{a, b, c\}$ and $m_x = \{\phi, \{c\}, \{a, b\}, \{a, c\}, X\}$. Then $A = \{b, c\}$ is both mg-closed set and $m\omega$ -closed set but it is not locally m-closed set. - (ii) Let (X, m_x) be an m-space such that $X = \{a, b, c\}$ and $m_x = \{\phi, \{a\}, \{c\}, X\}$. Then $A = \{c\}$ is locally m-closed set but it is not mg-closed set. - (iii) Let (X, m_x) be an m-space such that $X = \{a, b, c\}$ and $m_x = \{\phi, \{a\}, \{b\}, X\}$. Then $A = \{a\}$ is locally m-closed set but it is not m ω -closed. ### Example 3.27 (i) Let (X, m_x) be an m-space satisfying property [B] such that $X = \{a, b, c\}$ and $m_x = \{\phi, \{c\}, \{a, b\}, \{a, c\}, X\}$. Then $A = \{b, c\}$ is both mg-closed set and m ω -closed set but it is neither R-locally m-closed set nor π -locally m-closed set. Moreover it is both m-rg-closed set and m- π g-closed set. (ii) Let (X, m_x) be an m-space satisfying property [B] such that $X = \{a, b, c, d\}$ and $m_x = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}, X\}$. Then $A = \{a\}$ is both R-locally m-closed set and π -locally m-closed set but it is neither mg-closed set nor m ω -closed set. Moreover it is neither m-rg-closed set nor m- π g-closed set. #### 4. ON NEW SUBSETS OF MINIMAL SPACES **Definition 4.1 [2]:** Let A be a subset of a minimal space (X, m_x) . Then the m-kernel of the set A, is denoted by $\Lambda_m(A)$, is the intersection of all m-open supersets of A. **Definition 4.2[2]:** A subset A of a minimal space (X, m_x) is called Λ_m -set if $A = \Lambda_m(A)$. **Definition 4.3** [2]: A subset A of an m-space (X, m_x) is called (Λ, m) -closed if $A = U \cap V$ where U is Λ_m -set and V is m-closed. #### **Lemma 4.4:** - (i) Every locally m-closed set is (Λ, m) -closed. - (ii) Every m-closed set is (Λ, m) -closed but not conversely.[2] **Example 4.5:** Let (X, m_x) be an m-space such that $X = \{a, b, c\}$ and $m_x = \{\phi, \{a\}, \{b\}, X\}$. Then $A = \{a\}$ is (Λ, m) -closed set but not m-closed. **Lemma 4.6** [2]: For a subset A of an m-space (X, m_x) satisfying property [B], the following conditions are equivalent. - (i) A is (Λ, m) -closed. - (ii) $A = L \cap m\text{-Cl}(A)$ where L is Λ_m -set. - (iii) $A = \Lambda_m(A) \cap m\text{-Cl}(A)$. **Lemma 4.7:** A subset $A \subset (X, m_x)$ is mg-closed if and only if m-Cl(A) $\subset \Lambda_m(A)$. **Proof:** Suppose that $A \subset X$ is mg-closed set. Let $x \in m\text{-Cl}(A)$. Suppose $x \notin \Lambda_m(A)$. Then there exists an m-open set U containing A such that $x \notin U$. Since A is mg-closed set, $A \subset U$ and U is m-open implies that $m\text{-Cl}(A) \subset U$ and so $x \notin m\text{-Cl}(A)$, a contradiction. Therefore $m\text{-Cl}(A) \subset \Lambda_m(A)$. Conversely, suppose $m\text{-Cl}(A) \subset \Lambda_m(A) \subset U$. Therefore A is mg-closed. **Theorem 4.8:** For a subset A of an m-space (X, m_x) satisfying property [B], the following conditions are equivalent. - (i) A is m-closed. - (ii) A is mg-closed and locally m-closed. - (iii) A is mg-closed and (Λ, m) -closed. **Proof:** (i) \Rightarrow (ii) \Rightarrow (iii) Obvious. (iii) \Rightarrow (i) Since A is mg-closed, so by Lemma 4.7, m-Cl(A) $\subset \Lambda_m(A)$. Since A is (Λ, m) -closed, so by Lemma 4.6, $A = \Lambda_m(A) \cap m\text{-Cl}(A) = m\text{-Cl}(A)$. Hence A is m-closed. The following two examples show that the concepts of mg-closed sets and (Λ, m) -closed sets are independent. **Example 4.9:** Let (X, m_x) be an m-space such that $X = \{a, b, c, d\}$ and $m_x = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}, X\}$. Then $A = \{a, c\}$ is (Λ, m) -closed set but not mg-closed. **Example 4.10:** Let (X, m_x) be an m-space such that $X = \{a, b, c\}$ and $m_x = \{\phi, \{b\}, \{a, b\}, \{a, c\}, X\}$. Then $A = \{b, c\}$ is mg-closed set but not (Λ, m) -closed. **Definition 4.11:** Let A be a subset of a minimal space (X, m_x) . Then - (i) The m-r-kernel of the set A, denoted by m-r-ker(A), is the intersection of all regular m-open supersets of A. - (ii) The m- π -kernel of the set A, denoted by m- π -ker(A), is the intersection of all m- π -open supersets of A. **Definition 4.12:** A subset A of a minimal space (X, m_x) is called - (i) Λ_{mr} -set if A = m-r-ker(A). - (ii) $\Lambda_{m\pi}$ -set if $A = m-\pi$ -ker(A). **Definition 4.13:** A subset A of an m-space (X, m_x) is called - (i) (Λ, mr) -closed if $A = L \cap F$ where L is Λ_{mr} -set and F is m-closed. - (ii) $(\Lambda, m\pi)$ -closed if $A = L \cap F$ where L is $\Lambda_{m\pi}$ -set and F is m-closed. **Lemma 4.14:** Every m-closed set is (Λ, mr) -closed but not conversely. - (i) Every π -locally m-closed set is $(\Lambda, m\pi)$ -closed. - (ii) Every m-closed set is $(\Lambda, m\pi)$ -closed but not conversely. - (iii) Every R-locally m-closed set is (Λ, mr) -closed. **Example 4.15:** Let (X, m_x) be an m-space such that $X = \{a, b, c\}$ and $m_x = \{\phi, \{a\}, \{b\}, X\}$. Then - 1. $A = \{a\}$ is (Λ, mr) -closed set but not m-closed. - 2. $A = \{a\}$ is $(\Lambda, m\pi)$ -closed set but not m-closed. **Lemma 4.16:** For a subset A of an m-space (X, m_x) satisfying property [B], the following are equivalent. - (a) 1. A is (Λ, mr) -closed. - 2. $A = L \cap m\text{-Cl}(A)$ where L is Λ_{mr} -set. - 3. $A = m\text{-r-ker}(A) \cap m\text{-Cl}(A)$. - (b) 1. A is $(\Lambda, m\pi)$ -closed. - 2. $A = L \cap m\text{-Cl}(A)$ where L is $\Lambda_{m\pi}$ -set. - 3. $A = m-\pi-\ker(A) \cap m-\operatorname{Cl}(A)$. #### **Lemma 4.17** - (i) A subset $A \subset (X, m_x)$ is m- π g-closed if and only if m-Cl(A) \subset m- π -ker(A). - (ii) A subset $A \subset (X, m_x)$ is m-rg-closed if and only if m-Cl(A) \subset m-r-ker(A). **Theorem 4.18:** For a subset A of an m-space (X, m_x) satisfying property [B], the following are equivalent. - (a) 1. A is m-closed. - 2. A is m- π -closed and π -locally m-closed. - 3. A is m- π g-closed and (Λ , m π)-closed. - (b) 1. A is m-closed. - 2. A is m-rg-closed and R-locally m-closed. - 3. A is m-rg-closed and (Λ, mr) -closed. Remark 4.19: By Examples 4.20 and 4.21, we realize that the following concepts are independent. - 1. $(\Lambda, m\pi)$ -closed sets and m- π g-closed sets. - 2. (Λ, mr) -closed sets and m-rg-closed sets. **Example 4.20:** Let (X, m_x) be an m-space satisfying property [B], such that $X = \{a, b, c\}$ and $m_x = \{\phi, \{a\}, \{b\}, X\}$. Then - (i) $A = \{a\}$ is $(\Lambda, m\pi)$ -closed but not m- π g-closed. - (ii) $A = \{c\}$ is m- π g-closed but not $(\Lambda, m\pi)$ -closed. ### **Example 4.21** - (i) Let (X, m_x) be an m-space satisfying property [B], such that $X = \{a, b, c\}$ and $m_x = \{\phi, \{b\}, \{a, b\}, \{a, c\}, X\}$. Then $A = \{b, c\}$ is m-rg-closed but not (Λ, mr) -closed. - (ii) Let (X, m_x) be an m-space satisfying property [B], such that $X = \{a, b, c\}$ and $m_x = \{\phi, \{a\}, \{b\}, X\}$. Then $A = \{a\}$ is (Λ, mr) -closed but not m-rg-closed. # 5. DECOMPOSITIONS OF M-CONTINUITY **Definition 5.1:** A function $f:(X, m_x) \to (Y, m_y)$ where m_x satisfies property [B] is said to be M-g-continuous(resp. M-rg-continuous, M-ω-continuous, M-πg-continuous) if $f^1(A)$ is mg-closed (resp. m-rg-closed, mω-closed, m-πg-closed) in (X, m_x) for every m-closed set A of (Y, m_y) . **Definition 5.2:** A function $f:(X, m_x) \rightarrow (Y, m_y)$ where m_x satisfies property [B] is called - (i) locally M-continuous if $f^{-1}(A)$ is locally m-closed in (X, m_x) for every m-closed set A of (Y, m_y) . - (ii) R-locally M-continuous if $f^{-1}(A)$ is R-locally m-closed in (X, m_x) for every m-closed set A of (Y, m_y) . - (iii) π -locally M-continuous if $f^1(A)$ is π -locally m-closed in (X, m_x) for every m-closed set A of (Y, m_y) . **Theorem 5.3:** A function $f: (X, m_x) \to (Y, m_y)$ where m_x satisfies property [B] is M-continuous if and only if it is - (i) locally M-continuous and M-g-continuous. - (ii) R-locally M-continuous and M-rg-continuous - (iii) π -locally M-continuous and M- π g-continuous. **Proof:** It is an immediate consequence of Theorem 3.19. **Theorem 5.4:** Let (X, m_x) be an m-space satisfying property [B]. For a function $f: (X, m_x) \to (Y, m_y)$, the following are equivalent. - (1) f is M-continuous. - (2) f is R-locally M-continuous and M-g-continuous. - (3) f is R-locally M-continuous and M-rg-continuous. **Proof:** It is an immediate consequence of Theorem 3.20. **Theorem 5.5:** Let (X, m_x) be an m-space satisfying property [B]. For a function $f: (X, m_x) \to (Y, m_y)$, the following are equivalent. - (1) f is M-continuous. - (2) f is π -locally M-continuous and M- ω -continuous. - (3) f is locally M-continuous and M-g-continuous. **Proof:** It is an immediate consequence of Theorem 3.21. **Theorem 5.6:** For a function $f:(X, m_x) \to (Y, m_y)$ where m_x satisfies property [B], the following are equivalent. - (1) f is M-continuous. - (2) f is locally M-continuous and M-ω-continuous. - (3) f is locally M-continuous and M-g-continuous. **Proof:** It is an immediate consequence of Theorem 3.22. ### Theorem 5.7 Let (X, m_x) be an m-space satisfying property [B]. For a function $f: (X, m_x) \to (Y, m_y)$, the following are equivalent. - (1) f is M-continuous. - (2) f is R-locally M-continuous and M-ω-continuous. - (3) f is π -locally M-continuous and M-g-continuous. - (4) f is π -locally M-continuous and M- π g-continuous. **Proof:** It is an immediate consequence of Theorem 3.23. **Theorem 5.8:** Let (X, m_x) be an m-space satisfying property [B]. For a function $f: (X, m_x) \to (Y, m_y)$, the following are equivalent. - (1) f is M-continuous. - (2) f is R-locally M-continuous and M-g-continuous. - (3) f is R-locally M-continuous and M- π g-continuous. - (4) f is R-locally M-continuous and M-rg-continuous. **Proof:** It is an immediate consequence of Theorem 3.24. **Definition 5.9:** A function $f:(X, m_x) \to (Y, m_y)$ where m_x satisfies property [B] is said to be (Λ, M) -continuous (resp. $(\Lambda, M\pi)$ -continuous, (Λ, Mr) -continuous) if $f^1(A)$ is (Λ, m) -closed (resp. $(\Lambda, m\pi)$ -closed, (Λ, mr) -closed) in (X, m_x) for every m-closed set A of (Y, m_y) **Theorem 5.10:** For a function $f:(X, m_x) \to (Y, m_y)$, satisfying property [B], the following are equivalent. - (1) f is M-continuous. - (2) f is M-g-continuous and locally M-continuous. - (3) f is M-g-continuous and (Λ, M) -continuous. **Proof:** It is an immediate consequence of Theorem 4.8. **Theorem 5.11:** For a function $f:(X, m_x) \to (Y, m_y)$ satisfying property [B], the following are equivalent. - (a) 1. f is M-continuous. - 2. f is M- π g-continuous and π -locally M-continuous. - 3. f is M- π g-continuous and (Λ , M π)-continuous. - (b) 1. f is M-continuous. - 2. f is M-rg-continuous and R-locally M-continuous. - 3. f is M-rg-continuous and (Λ, Mr) -continuous. **Proof:** It is an immediate consequence of Theorem 4.18. ### REFERENCES - [1] J. Antony Rex Rodrigo, O. Ravi, R. G. Balamurugan and K. Vijayalakshmi, A unified theory for modifications of \hat{g} -closed sets, International Journal of Advances in Pure and Applied Mathematics, 1 (1) (2011), 53-67. - [2] F. Cammaroto and T. Noiri, On Λm-sets and related topological spaces, Acta Math. Hungar., 109(3)(2005), 261-279. - [3] N. Levine, Generalized closed sets in topology, Rend.Circ.Mat.Palermo(2), 19(1970), 89-96. - [4] H. Maki, On generalizing semi-open and preopen sets, Report for Meeting on Topological Spaces Theory and its Applications, August 1996, Yatsushiro College of Technology, 13-18. - [5] T. Noiri, A unified theory for modifications of g-closed sets, Rendiconti del circolo matematico di Palermo, Serie II, Tomo LVI (2007), 171-184. - [6] V. Popa and T. Noiri, On M-continuous functions, Anal. Univ. "Dunarea de Jos" Galati, Ser. Mat. Fiz. Mec. Teor., (2), 18 (23) (2000), 31-41. - [7] O. Ravi, R. Senthilkumar, A. R. Thilagavathi and K. Indirani, m- $I_{\pi g}$ -closed sets and M- $I_{\pi g}$ -continuity, submitted. - [8] E. Rosas, N. Rajesh and C. Carpintero, Some new types of open and closed sets in Minimal Structures I¹, International Mathematical Forum, 44 (4) (2009), 2169 2184. ******