International Journal of Mathematical Archive-3(2), 2012, Page: 688-693 MA Available online through <u>www.ijma.info</u> ISSN 2229 - 5046

ON THE FORCING HULL AND FORCING GEODETIC NUMBERS OF GRAPHS

J. John

Department of Mathematics, Government college of Engineering Thirunelveli-627 007, India E-mail: johnramesh1971@yahoo.co.in

V. Mary Gleeta*

Department of Mathematics, Cape Institute of TechnologyLevengipuram-627 114, India E-mail: gleetass@gmail.com

(Received on: 10-02-12; Accepted on: 29-02-12)

ABSTRACT

In this paper, we prove that, for any non-negative integers a, b, c and d with a < c < d, b < d, c > a + 1 and d > b + c - a, there exists a connected graph G such that $f_h(G) = a$, $f_g(G) = b$, h(G) = c and g(G) = d, where $f_h(G)$, $f_g(G)$, h(G) and g(G) are the forcing hull number, the forcing geodetic number, the hull number and the geodetic number of a graph respectively. This result solves a problem of Li-Da Tong [Li-Da Tong, The forcing hull and forcing geodetic numbers of graphs, Discrete Applied Mathematics, 157 (2009), 1159-1163].

Keywords: hull number, geodetic number, forcing hull number, forcing geodetic number.

AMS Subject Classification: 05C12.

1. INTRODUCTION

By a graph G = (V, E), we mean a finite undirected connected graph without loops or multiple edges. The order and size of G are denoted by p and q respectively. For basic graph theoretic terminology, we refer to Harary [1, 8]. A convexity on a finite set V is a family C of subsets of V, convex sets which are closed under intersection and which contains both V and the empty set. The pair (V, E) is called a convexity space. A finite graph convexity space is a pair (V, E), formed by a finite connected graph G = (V, E) and a convexity C on V such that (V, E) is a convexity space satisfying that every member of C induces a connected subgraph of G. Thus, classical convexity can be extended to graphs in a natural way. We know that a set X of R^n is convex if every segment joining two points of X is entirely contained in it. Similarly a vertex set W of a finite connected graph is said to be convex set of G if it contains all the vertices lying in a certain kind of path connecting vertices of W[2,7]. The distance d(u,v) between two vertices u and v in a connected graph G is the length of a shortest u - v path in G. An u - v path of length d(u, v) is called an u - v geodesic. A vertex x is said to lie on a u-v geodesic P if x is a vertex of P including the vertices u and v. For two vertices u and v, let I[u,v] denotes the set of all vertices which lie on u - v geodesic. For a set S of vertices, let $I[S] = \bigcup_{u,v \in S} I[u, v]$. The set S is convex if I[S] = S. Clearly if $S = \{v\}$ or S = V, then S is convex. The *convexity* number, denoted by C(G), is the cardinality of a maximum proper convex subset of V. The smallest convex set containing S is denoted by $I_h(S)$ and called the *convex hull* of S. Since the intersection of two convex sets is convex, the convex hull is well defined. Note that $S \subseteq I[S] \subseteq I_b(S) \subseteq V$. A subset $S \subseteq V$ is called a geodetic set if I[S] = V and a hull set if $I_{h}(S) = V$. The geodetic number g(G) of G is the minimum order of its geodetic sets and any geodetic set of order g(G) is a minimum geodetic set or simply a g- set of G. Similarly, the hull number h(G) of G is the minimum order of its hull sets and any hull set of order h(G) is a minimum hull set or simply a h- set of G. The geodetic number of a graph is studied in [1, 5, 9] and the hull number of a graph is studied in [1,6]. It was shown in [9] that determining the geodetic number of a graph is NP-hard problem. A vertex v of G is said to be a geodetic vertex of G if v belongs to every minimum geodetic set of G. A subset $T \subseteq W$ is called a forcing subset for W if W is the unique minimum geodetic set containing T. A forcing subset for W of minimum cardinality is a minimum forcing subset of W. The forcing geodetic number of W, denoted by f(W), is the cardinality of a minimum forcing subset of W. The forcing geodetic number of G, denoted by f(G), is $f(G) = \min\{f(W)\}$, where the minimum is taken over all minimum geodetic sets W in G. The forcing geodetic number of a graph was introduced in [3]. A vertex v of G is said to be a hull vertex of G if v belongs to every minimum hull set of G.A subset $T \subseteq S$ is called a *forcing subset* for S if S is the unique minimum hull set containing T. A forcing subset for S of minimum cardinality is a minimum forcing subset of S. The forcing hull number of S, denoted by $f_h(S)$, is the cardinality of a minimum forcing subset of S. The forcing hull number of G, denoted by $f_h(G)$, is $f_h(G) = \min\{f_h(S)\}$, where the minimum

is taken over all minimum hull sets *S* in *G*. The forcing hull number of a graph was introduced in [4] and further studied in [10]. A vertex *v* of *G* is said to be an extreme *vertex* of *G* if the subgraph induced by its neighbors is complete. In [6] Chartrand and Zhang raised the question, for which pair of integers *a*, *b* there exists a connected graph *G* with $f_h(G) = a$ and $f_g(G) = b$. In [10] Li-Da Tong proved that for every pairs *a*, *b* of nonnegative integers, there exists a connected a graph *G* with $f_h(G) = a$ and $f_g(G) = b$ and raised the question, for every integers *a*, *b*, *c* and *d* with $a \le c \le d$, $b \le d$, $c \ge 2$, does there exists a connected graph *G* with $f_h(G) = a, f_g(G) = b, h(G) = c$ and g(G) = d. In this paper it is answered that, for every non negative integers *a*, *b*, *c* and *d* with a < c < d, b < d, c > a + 1 and d > c + b - a, there exists a connected graph *G* such that $f_h(G) = a, f_g(G) = b, h(G) = c$ and g(G) = d.

Theorem 1.1: [5, 6] If v is an extreme vertex of a graph G, then v belongs to every hull set and geodetic set of G.

Theorem 1.2: [1] For a connected graph G, h(G) = p if and only if $G = K_p$.

Theorem 1.3: [4] Let *G* be a connected graph. Then (a) $f_h(G) = 0$ if and only if *G* has a unique *h*-set (b) $f_h(G) \le h(G) - |W|$, where *W* is the set of all hull vertices of *G*.

Theorem 1.4: [1] For a connected graph G, g(G) = p if and only if $G = K_p$.

Theorem 1.5: [3] Let *G* be a connected graph. Then (a) $f_g(G) = 0$ if and only if *G* has a unique *g*-set. (b) $f_g(G) \le g(G) - |W|$. and *W* is the set of all geodetic vertices of *G*.

2. SPECIAL GRAPHS

In this section, we present some graphs from which various graphs arising in theorems are generated using identification.

Let $U_i: \alpha_i, \beta_i, g_i, h_i, \alpha_i \ (1 \le i \le a)$ be a copy of cycle C_4 . Let V_i be the graph obtained from U_i by adding a new vertex n_i and the edges $\beta_i n_i, n_i h_i \ (1 \le i \le a)$. The graph Z_a is obtained from V_i 's by identifying α_i of V_i and g_{i-1} of $V_{i-1} \ (2 \le i \le a)$.

Figure: 2.1

The graph G_a in Figure 2.2 is obtained from F_i 's by identifying the vertices t_i of F_i and r_{i-1} of F_{i-1} $(2 \le i \le a)$, where F_i : s_i , t_i , u_i , v_i , r_i , s_i $(1 \le i \le a)$ be a copy of cycle C_5 .

Figure: 2.2

Let $J_i: e_i, f_i, l_i, c_i, e_i \ (1 \le i \le a)$ be a copy of cycle C_4 . Let R_i be the graph obtained from J_i by adding two new vertices p_i , q_i and the edges $p_ic_i, p_if_i, p_iq_i, q_il_i \ (1 \le i \le a)$. The graph L_a in Figure 2.3 is obtained from R_i 's by identifying e_i of R_i and l_{i-1} of $R_{i-1} \ (2 \le i \le a)$.

Figure: 2.3

Let $P_i: k_i, b_i, m_i, d_i, k_i \ (1 \le i \le a)$ be a copy of cycle C_4 . Let Q_i be the graph obtained from P_i by adding three new vertices w_i, x_i, y_i and the edges $w_i b_i, w_i x_i, x_i y_i, y_i d_i$, $(1 \le i \le a)$. The graph T_a is obtained from Q_i 's by identifying k_i of Q_i and m_{i-1} of $Q_{i-1} \ (2 \le i \le a)$.

Figure: 2.4

3. SOME REALIZATION RESULTS

Theorem 3.1: For every pair *a*, *b* of integers with $2 \le a \le b$, there exists a connected graph *G* such that $f_h(G) = f_g(G) = 0$, h(G) = a and g(G) = b.

Proof: If a = b, let $G = K_a$. Then by Theorems1.3 (a) and 1.2, $f_h(G) = 0$ and h(G) = a. Also by Theorems1.4 and 1.5(a) that g(G) = b and $f_g(G) = 0$. For a < b, let G be the graph obtained from $Z_{b \cdot a}$ by adding new vertices $x, z_1, z_2, ..., z_{a-1}$ and joining the edges $a_1x, g_{b \cdot a}z_1, g_{b \cdot a}z_2, ..., g_{b \cdot a}z_{a-1}$. Let $Z = \{x, z_1, z_2, ..., z_{a-1}\}$ be the set of end vertices of G. It is clear that Z is a hull set of G and so by Theorem 1.1, Z is the unique h-set of G so that h(G) = a, and hence by Theorem 1.3(a), $f_h(G)=0$. Since the vertices n_i ($1 \le i \le a$) do not lie on any geodesic joining a pair of vertices in Z, we see that Z is not a geodetic set of G. Now it is easily seen that $W = Z \cup \{n_1, n_2, ..., n_{b \cdot a}\}$ is the unique g-set of G so that g(G) = |W| = b and hence by Theorems 1.5(a), $f_g(G)=0$.

Theorem: 3.2 For every integers *a*, *b* and *c* with $0 \le a < b \le c$, and b > a+1, there exists a connected graph *G* such that $f_g(G) = 0$, $f_h(G) = a$, h(G) = b and g(G) = c.

Proof:

Case 1: If a = 0, then the graph G constructed in Theorem 3.1 satisfies the requirements of this theorem.

Case 2: $a \ge 1$.

© 2012, IJMA. All Rights Reserved

Sub case2a: b = c. Let G be the graph obtained from T_a by adding new vertices $x, z_1, z_2, \dots, z_{b-a-1}$ and joining the edges $xk_1, m_a z_1, m_a z_2, \dots, m_a z_{b-a-1}$. Let $Z = \{x, z_1, z_2, \dots, z_{b-a-1}\}$ be the set of end vertices of G. Let W be any geodetic set of G. Then by Theorem 1.1, $Z \subseteq W$. It is clear that Z is not a geodetic set of G. For $1 \le i \le a$. let $H_i = \{w_i, x_i, y_i\}$. We observe that every g-set of G must contain only the vertex x_i from each H_i ($1 \le i \le a$) so that $g(G) \ge b-a+a = b$. Now, $W=Z \cup \{x_1, x_2, \dots, x_a\}$ is a geodetic set of G so that $g(G) \le b-a+a=b$. Thus g(G) = b. Also it is easily seen that W is the unique g-set of G and so by Theorem 1.5(a), $f_g(G)=0$.Now it is clear that Z is not a hull set of G. We observe that every h-set of G must contain at least one vertex from each H_i ($1 \le i \le a$) so that $h(G) \ge b-a+a=b$. Thus h(G) = b. Next, we show that $f_h(G)=a$. Since every h-set contains Z, it follows from Theorem 1.3(b) that $f_h(G) \le h(G)-|Z|=b-(b-a)=a$. Now, since h(G) = c and every h-set of G contains Z, it is easily seen that every h-set S is of the form $Z \cup \{d_1, d_2, \dots, d_a\}$, where $d_i \in H_i(1 \le i \le a)$. Let T be any proper subset of S with |T| < a. Then it is clear that there exists some j such

that $T \cap H_i = \Phi$, which shows that $f_h(G) = a$.

Sub case 2b: b < c. Let *G* be the graph obtained from T_a and $Z_{c\cdot b}$ by identifying vertex m_a of T_a and a_1 of $Z_{c\cdot b}$ and adding the new vertices $x, z_1, z_2..., z_{b\cdot a\cdot 1}$ and joining the edges $xk_{1},g_{c\cdot b}z_1,g_{c\cdot b}z_2,...g_{c\cdot b}z_{b\cdot a\cdot 1}$. Let $Z = \{x,z_1,z_2,...,z_{b\cdot a\cdot 1}\}$ be the set of end vertices of *G*. Let *W* be any geodetic set of *G*. Then by Theorem 1.1, $Z \subseteq W$. It is clear *Z* is not a geodetic set of *G*. For $\leq i \leq a$. let $H_i = \{w_i, x_i, y_i\}$. We observe that every *g*-set of *G* must contain only the vertex x_i from each $H_i(1 \leq i \leq a)$ and only the vertex x_i from each $H_i(1 \leq i \leq a)$ and only the vertex n_i $(1 \leq i \leq c \cdot b)$ so that $g(G) \geq b - a + a + c - b = c$.

Now $W=Z\cup\{x_1,x_2,\ldots,x_a\}\cup\{n_1,n_2,\ldots,n_{c-b}\}$ is a geodetic set of G so that $g(G) \le b-a+a+c-b=c$. Thus g(G) = c. Also it is easily seen that W is the unique g-set of G and so by Theorem 1.5 (a) $f_g(G)=0$. It is clear that Z is not a hull set of G. We observe that every h-set of G must contain at least one vertex from each $H_i(1 \le i \le a)$ so that $h(G) \ge b-a+a = b$. Now, $S=Z \cup \{w_1,w_2,\ldots,w_a\}$ is a hull set of G so that $h(G) \le b-a+a = b$. Now, $S=Z \cup \{w_1,w_2,\ldots,w_a\}$ is a hull set of G so that $h(G) \le b-a+a = b$. Now, $S=Z \cup \{w_1,w_2,\ldots,w_a\}$ is a hull set of G so that $h(G) \le b-a+a = b$. Now, $f_h(G) = a$. Since every h-set contains Z, it follows from Theorem 1.3(b) that $f_h(G) \le h(G)-|Z|=b-(b-a) = a$. Now, since h(G) = b and every h-set of G contains Z, it is easily seen that every h-set S is of the form $Z \cup \{d_1,d_2,\ldots,d_a\}$, where $d_i \in H_i(1 \le i \le a)$. Let T be any proper subset of S with |T| < a. Then it is clear that there exists some j such that $T \cap H_j = \Phi$, which shows that $f_h(G) = a$.

Theorem 3.3: For every integers *a*, *b* and *c* with $0 \le a < b < c$, $b \ge 2$ and c > a + b, there exists a connected graph *G* such that $f_h(G) = 0$, $f_g(G) = a$, h(G) = b and g(G) = c.

Case 1: a = 0. Then the graph G constructed in Theorem 3.1 satisfies the requirements of this theorem.

Case 2: $a \ge 1$. Let *G* be the graph obtained from L_a and Z_{c-b-a} by identifying the vertex l_a of L_a and α_1 of Z_{c-b-a} and adding new vertices $x, z_1, z_2, ..., z_{b-1}$ and joining the edges $e_1x, g_{c-b-a}z_1, g_{c-b-a}z_{2,...}, g_{c-b-a}z_{b-1}$. Let $Z = \{x, z_1, z_2, ..., z_{b-1}\}$ be the set of end vertices of *G*. It is clear that *Z* is a hull set of *G* and so by Theorem 1.1, *Z* is the unique *h-set* of *G* so that h(G) = b, and hence by Theorem 1.3(*a*), $f_h(G)=0$. Next we show that g(G) = c. Let *W* be any geodetic set of *G*

Then by Theorem 1.1, $Z \subseteq W$. It is clear Z is not a geodetic set of G. For \underline{k} $i \leq a$, let $Q_i = \{p_i, q_i\}$.

We observe that every g-set of G must contain at least one vertex from each Q_i $(1 \le i \le a)$ and each n_i $(1 \le i \le c-b-a)$ so that $g(G) \ge b+a+c-b-a = c$. Now, $W=Z \cup \{p_1, p_2, \dots, p_a\} \cup \{n_1, n_2, \dots, n_{c-b-a}\}$ is a geodetic set of G so that $g(G) \le b+a+c-b-a=c$. Thus g(G) = c. Next, we show that $f_g(G)=a$. Since every g-set contains $W_1=Z\cup \{n_1, n_2, \dots, n_{c-b-a}\}$, it follows from Theorem 1.5(b) that $f_g(G) \le g(G)-|W_1|=c-(c-a) = a$. Now, since g(G)=c and every g-set of G contains W_1 , it is easily seen that every g-set W is of the form $Z\cup\{n_1, n_2, \dots, n_{c-b-a}\} \cup \{d_1, d_2, \dots, d_a\}$, where $d_i \in Q_i(1 \le i \le a)$. Let T be any proper subset of W with |T|<a. Then it is clear that there exists some j such that $T \cap Q_j = \Phi$, which shows that $f_g(G) = a$.

Theorem 3.4: For every integers *a*, *b* and *c* with $0 \le a < b \le c$ and b > a + 1, there exists a connected graph *G* such that $f_h(G) = f_g(G) = a$, h(G) = b and g(G) = c.

Proof:

Case 1: a = 0 Then the graph G constructed in Theorem 3.1 satisfies the requirements of this theorem.

Case2: $a \ge 1$.

Sub case 2a: b = c. Let *G* be the graph obtained from G_a by adding new vertices $x, z_1, z_2, ..., z_{b-a-1}$ and joining the edges $xt_1, r_az_1, r_az_2, ..., r_az_{b-a-1}$. Let $Z = \{x, z_1, z_2, ..., z_{b-a-1}\}$ be the set of end vertices of *G*. By Theorem1.1, every *g*-set of *G*

J. John & V. Mary Gleeta*/ On the Forcing Hull and Forcing Geodetic Numbers of Graphs / IJMA- 3(2), Feb.-2012, Page: 688-693

contains *Z*. Let $F_i = \{u_i, v_i\}$ $(1 \le i \le a)$. First, we show that h(G) = b. Since the vertices u_i, v_i do not lie on the geodesic joining any pair of vertices of *Z*, it is clear that *Z* is not a hull set of *G*. We observe that every *h*-set of *G* must contain at least one vertex from each F_i $(1 \le i \le a)$. Thus, $h(G) \ge b - a + a = b$. On the other hand, since the set $S = Z \cup \{v_1, v_2, ..., v_a\}$ is a hull set of *G*, it follows that $h(G) \le |S| = b$. Hence h(G) = b. Next, we show that $f_h(G) = a$. By Theorem 1.1, every hull set of *G* contains *Z* and so it follows from Theorem 1.3(b) that $f_h(G) \le h(G) - |Z| = a$. Now, since h(G) = b and every *h*-set of *G* contains *Z*, it is easily seen that every *h*-set *S* is of the form $Z \cup \{c_1, c_2, ..., c_a\}$, where $c_i \in F_i(1 \le i \le a)$. Let *T* be any proper subset of *S* with |T| < a. Then it is clear that there exists some *j* such that $T \cap F_j = \Phi$, which shows that $f_h(G) = a$. By similar way we can prove that g(G) = b and $f_e(G) = a$.

Sub case 2b: b < c. Let *G* be the graph obtained from G_a and Z_{c-b} by identifying the vertex r_a of G_a and α_1 of Z_{c-b} and then adding new vertices $x, z_1, z_2, ..., z_{b-a-1}$ and joining the edges $xt_1, g_{c-b}z_1, g_{c-b}z_2, ..., g_{c-b}z_{b-a-1}$. First, we show that h(G) = b. Since the vertices u_i, v_i do not lie on the geodesic joining any pair of vertices of *Z*, it is clear that *Z* is not a hull set of *G*. Let $F_i = \{u_i, v_i\}$. We observe that every *h*-set of *G* must contain at least one vertex from each F_i ($1 \le i \le a$). Thus, $h(G) \ge b - a + a = b$. On the other hand, since the set $S = Z \cup \{v_1, v_2, ..., v_a\}$ is a hull set of *G*, it follows that $h(G) \le |S| = b$.

Hence h(G) = b. Next, we show that $f_h(G) = a$. By Theorem 1.1, every hull set of *G* contains *Z* and so it follows from Theorem 1.3(b) that $f_h(G) \le h(G) - |Z| = a$. Now, since h(G) = b and every *h*-set of *G* contains *Z*, it is easily seen that every *h*-set *S* is of the form $Z \cup \{c_1, c_2, ..., c_a\}$, where $c_i \in F_i(1 \le i \le a)$. Let *T* be any proper subset of *S* with |T| < a. Then it is clear that there exists some *j* such that $T \cap F_j = \Phi$, which shows that $f_h(G) = a$. Next, we show that g(G) = c. Since the vertices u_i, v_i, n_i do not lie on the geodesic joining any pair of vertices of *Z*, it is clear that *Z* is not a geodetic set of *G*. We observe that every *g*-set of *G* must contain at least one vertex from each F_i ($1 \le i \le a$) and each n_i ($1 \le i \le c$ -b). Thus, $g(G) \ge b - a + a + c - b = c$. On the other hand, since the set $W = Z \cup \{v_1, v_2..., v_a\} \cup \{n_1, n_2, ..., n_{c-b}\}$ is a geodetic set of *G*, it follows that $g(G) \le |W| = c$. Hence g(G) = c. Next, we show $f_g(G) = a$. Since every *g*-set of *G* contains $W_1 = Z \cup \{n_1, n_2, ..., n_{c-b}\}$ and so it follows from Theorem 1.5 (b) that $f_g(G) \le g(G) - |W_1| = a$. Now, since $c_i \in F_i(1 \le i \le a)$. Let *T* be any proper subset of *W* with |T| < a. Then it is clear that there exists some *j* such that $T \cap F_j = \Phi$, which shows that $f_g(G) \le g(G) - |W_1| = a$. Now, since $c_i \in F_i(1 \le i \le a)$. Let *T* be any proper subset of *W* with |T| < a. Then it is clear that there exists some *j* such that $T \cap F_j = \Phi$, which shows that $f_g(G) = a$.

Theorem 3.5: For every integers *a*, *b*, *c* and *d* with $0 \le a \le b < c \le d$, *d* and c > b + 1, there exists a connected graph *G* such that $f_g(G) = a, f_h(G) = b, h(G) = c$ and g(G) = d.

Proof:

Case 1: a = b = 0. Then the graph G constructed in Theorem 3.1 satisfies the requirements of this theorem.

Case 2: $a = 0, b \ge 1$. Then the graph G constructed in Theorem 3.2 satisfies the requirements of this theorem.

Case 3: $1 \le a = b$. Then the graph G constructed in Theorem 3.4 satisfies the requirements of this theorem.

Case 4: $1 \le a < b$.

Sub case 4a: c = d. Let *G* be the graph obtained from G_a and T_{b-a} by identifying the vertex r_a of G_a and k_1 of T_{b-a} and then adding new vertices $x, z_1, z_2, ..., z_{c-b-1}$ and joining the edges $xt_1, m_{b-a}z_1, m_{b-a}z_2, ..., m_{b-a}z_{c-b-1}$. Let $Z = \{x, z_1, z_2, ..., z_{c-b-1}\}$ be the set of end vertices of *G*. Let $F_i = \{u_i, v_i\}$ and $H_i = \{w_i, x_i, y_i\}$. It can be easily seen that any *h*-set of *G* is of the form $S = Z \cup \{c_1, c_2, ..., c_a\} \cup \{d_1, d_2, ..., d_{b-a}\}$, where $c_i \in F_i (1 \le i \le a)$ and $d_j \in H_j (1 \le j \le b-a)$. Then as in earlier theorems it can be seen that $f_h(G) = b$ and h(G) = c. Any *g*-set is of the form $W = Z \cup \{x_1, x_2, ..., x_{b-a}\} \cup \{c_1, c_2, ..., c_a\}$, where $c_i \in F_i (1 \le i \le a)$.

Sub case 4b: c < d Let G_1 be the graph obtained from G_a and T_{b-a} by identifying the vertex r_a of G_a and k_1 of T_{b-a} . Now let G be the graph obtained from G_1 and Z_{d-c} by identifying the vertex m_{b-a} of G_1 and α_1 of Z_{d-c} and then adding new vertices $x, z_1, z_2, ..., z_{c-b-1}$ and joining the edges $xt_1, g_{d-c}z_1, g_{d-c}z_2, ..., g_{d-c}z_{c-b-1}$. Let $Z = \{x, z_1, z_2, ..., z_{c-b-1}\}$ be the set of end vertices of G. Let $F_i = \{u_b v_i\}$ and $H_i = \{w_i, x_i, y_i\}$. It can be easily seen that any h-set of G is of the form $S = Z \cup \{c_1, c_2, ..., c_a\} \cup \{d_1, d_2, ..., d_{b-a}\}$, where $c_i \in F_i$ ($1 \le i \le a$) and $d_j \in H_j$ ($1 \le j \le b-a$). Then as in earlier theorems it can be seen that $f_h(G) = b$ and h(G) = c. Any g-set is of the form $W = Z \cup \{x_1, x_2, ..., x_{b-a}\} \cup \{n_1, n_2, ..., n_{d-c}\} \cup \{c_1, c_2, ..., c_a\}$, where $c_i \in F_i$ ($1 \le i \le a$). Then as in earlier theorems it can be seen that $f_g(G) = a$ and g(G) = d.

Theorem 3.6: For every integers *a*, *b*, *c* and *d* with $0 \le a < c < d$ and $a \le b < d$, d > c+b-a and c > a+1, there exists a connected graph *G* such that $f_h(G) = a$, $f_g(G) = b$, h(G) = c and g(G) = d.

Proof:

Case 1: a = b = 0. Then the graph G constructed in of Theorem 3.1 satisfies the requirements of this theorem.

Case 2: $a = 0, b \ge 1$. Then the graph *G* constructed in Theorem 3.3 satisfies the requirements of this theorem. © 2012, IJMA. All Rights Reserved

J. John & V. Mary Gleeta*/ On the Forcing Hull and Forcing Geodetic Numbers of Graphs / IJMA- 3(2), Feb.-2012, Page: 688-693

Case 3: $1 \le a = b$. Then the graph *G* constructed in Theorem 3.4 satisfies the requirements of this theorem.

Case 4: $1 \le a < b$. Let G_1 be the graph obtained from G_a and L_{b-a} by identifying the vertex r_a of G_a and e_1 of L_{b-a} . Now let G be the graph obtained from G_1 and $Z_{d-c-b+a}$ by identifying the vertex l_{b-a} of G_1 and a_1 of $Z_{d-c-b+a}$ and then adding new vertices $x, z_1, z_2, \dots, z_{c-a-1}$ and joining the edges $xt_1, g_{d-c-b+a}z_1, g_{d-c-b+a}z_2, \dots, g_{d-c-b+a}z_{c-a-1}$. Let $Z = \{x, z_1, z_2, \dots, z_{c-a-1}\}$ be the set of end vertices of G. Let $F_i = \{u_i, v_i\}$. It is clear that any h-set is of the form $S = Z \cup \{c_1, c_2, \dots, c_a\}$, where $c_i \in F_i(1 \le i \le a)$. Then as in earlier theorems it can be seen that $f_h(G) = a$ and h(G) = c. Let $Q_i = \{p_i, q_i\}$. It is clear that any g-set is of the form $W = Z \cup \{n_1, n_2, \dots, n_{d-c-b+a}\} \cup \{c_1, c_2, \dots, c_a\} \cup \{d_1, d_2, \dots, d_{b-a}\}$, where $c_i \in F_i(1 \le i \le a)$ and $d_j \in Q_j$ $(1 \le j \le b-a)$. Then as in earlier theorems it can be seen that $f_g(G) = b$ and g(G) = d.

REFERENCES

[1] F. Buckley and F. Harary, Distance in Graphs, Addison-Wesley, Redwood City, CA, 1990

[2] G. Chartrand and Ping Zhang, Convex sets in graphs, Congressus Numerantium 136(1999), pp.19-32.

[3] G. Chartrand and P. Zhang, The forcing geodetic number of a graph, *Discuss. Math. Graph Theory*, 19 (1999), 45-58.

[4] G. Chartrand and P. Zhang, The forcing hull number of a graph, J. Combin Math. Comput. 36(2001), 81-94.

[5] G. Chartrand, F. Harary and P. Zhang, On the geodetic number of a graph, Networks, (2002) 1-6.

[6] M. G. Evertt, S. B. Seidman, The hull number of a graph, Discrete Math. 57 (1985), 217-223.

[7] M. Faber, R.E. Jamison, convexity in graphs and hypergraphs, *SIAM Journal Algebraic Discrete Methods* 7(1986) 433-444.

[8] F. Harary, Graph Theory, Addison-Wesley, 1969.

[9] F. Harary, E. Loukakis and C. Tsouros, The geodetic number of a graph, *Math. Comput Modeling* **17**(11) (1993) 89-95.

[10] Li-Da Tong, The forcing hull and forcing geodetic numbers of graphs, *Discrete Applied Math.157* (2009)1159-1163
