International Journal of Mathematical Archive-3(2), 2012, Page: 688-693 (Ca)MA Available online through www.ijma.info ISSN 2229-5046

ON THE FORCING HULL AND FORCING GEODETIC NUMBERS OF GRAPHS

J. John
Department of Mathematics, Government college of Engineering Thirunelveli-627 007, India
E-mail: johnramesh1971@yahoo.co.in
V. Mary Gleeta*
Department of Mathematics, Cape Institute of TechnologyLevengipuram-627 114, India
E-mail: gleetass@gmail.com

(Received on: 10-02-12; Accepted on: 29-02-12)

Abstract

In this paper, we prove that, for any non-negative integers a, b, c and d with $a<c<d, b<d, c>a+1$ and $d>b+c-a$, there exists a connected graph G such that $f_{h}(G)=a, f_{g}(G)=b, h(G)=c$ and $g(G)=d$, where $f_{h}(G)$, $f_{g}(G), h(G)$ and $g(G)$ are the forcing hull number, the forcing geodetic number, the hull number and the geodetic number of a graph respectively. This result solves a problem of Li-Da Tong [Li-Da Tong, The forcing hull and forcing geodetic numbers of graphs, Discrete Applied Mathematics, 157 (2009), 1159-1163].

Keywords: hull number, geodetic number, forcing hull number, forcing geodetic number.
AMS Subject Classification: 05C12.

1. INTRODUCTION

By a graph $G=(V, E)$, we mean a finite undirected connected graph without loops or multiple edges. The order and size of G are denoted by p and q respectively. For basic graph theoretic terminology, we refer to Harary [1, 8]. A convexity on a finite set V is a family C of subsets of V, convex sets which are closed under intersection and which contains both V and the empty set. The pair (V, E) is called a convexity space. A finite graph convexity space is a pair (V, E), formed by a finite connected graph $G=(V, E)$ and a convexity C on V such that (V, E) is a convexity space satisfying that every member of C induces a connected subgraph of G. Thus, classical convexity can be extended to graphs in a natural way. We know that a set X of R^{n} is convex if every segment joining two points of X is entirely contained in it. Similarly a vertex set W of a finite connected graph is said to be convex set of G if it contains all the vertices lying in a certain kind of path connecting vertices of $W[2,7]$. The distance $d(u, v)$ between two vertices u and v in a connected graph G is the length of a shortest $u-v$ path in G. An $u-v$ path of length $d(u, v)$ is called an $u-v$ geodesic. A vertex x is said to lie on a $u-v$ geodesic P if x is a vertex of P including the vertices u and v. For two vertices u and v, let $I[u, v]$ denotes the set of all vertices which lie on $u-v$ geodesic. For a set S of vertices, let $I[S]=U_{u, v \in S} I[u, v]$. The set S is convex if $I[S]=S$. Clearly if $S=\{v\}$ or $S=V$, then S is convex. The convexity number, denoted by $C(G)$, is the cardinality of a maximum proper convex subset of V. The smallest convex set containing S is denoted by $I_{h}(S)$ and called the convex hull of S. Since the intersection of two convex sets is convex, the convex hull is well defined. Note that $S \subseteq I[S] \subseteq I_{h}(S) \subseteq V$. A subset $S \subseteq V$ is called a geodetic set if $I[S]=V$ and a hull set if $I_{h}(S)=V$. The geodetic number $g(G)$ of G is the minimum order of its geodetic sets and any geodetic set of order $g(G)$ is a minimum geodetic set or simply a g - set of G. Similarly, the hull number $h(G)$ of G is the minimum order of its hull sets and any hull set of order $h(G)$ is a minimum hull set or simply a h-set of G. The geodetic number of a graph is studied in [1, 5, 9] and the hull number of a graph is studied in [1,6]. It was shown in [9] that determining the geodetic number of a graph is NP-hard problem. A vertex v of G is said to be a geodetic vertex of G if v belongs to every minimum geodetic set of G. A subset $T \subseteq W$ is called a forcing subset for W if W is the unique minimum geodetic set containing T. A forcing subset for W of minimum cardinality is a minimum forcing subset of W. The forcing geodetic number of W, denoted by $f(W)$, is the cardinality of a minimum forcing subset of W. The forcing geodetic number of G, denoted by $f(G)$, is $f(G)=\min \{f(W)\}$, where the minimum is taken over all minimum geodetic sets W in G. The forcing geodetic number of a graph was introduced in [3]. A vertex v of G is said to be a hull vertex of G if v belongs to every minimum hull set of G.A subset $T \subseteq S$ is called a forcing subset for S if S is the unique minimum hull set containing T. A forcing subset for S of minimum cardinality is a minimum forcing subset of S. The forcing hull number of S, denoted by $f_{h}(S)$, is the cardinality of a minimum forcing subset of S. The forcing hull number of G, denoted by $f_{h}(G)$,is $f_{h}(G)=\min \left\{f_{h}(S)\right\}$, where the minimum

[^0]is taken over all minimum hull sets S in G. The forcing hull number of a graph was introduced in [4] and further studied in [10]. A vertex v of G is said to be an extreme vertex of G if the subgraph induced by its neighbors is complete. In [6] Chartrand and Zhang raised the question, for which pair of integers a, b there exists a connected graph G with $f_{h}(G)=a$ and $f_{g}(G)=b$. In [10] Li-Da Tong proved that for every pairs a, b of nonnegative integers, there exists a connected a graph G with $f_{h}(G)=a$ and $f_{g}(G)=b$ and raised the question, for every integers a, b, c and d with $a \leq c \leq d, b \leq d, c$ ≥ 2, does there exists a connected graph G with $f_{h}(G)=a, f_{g}(G)=b, h(G)=c$ and $g(G)=d$. In this paper it is answered that, for every non negative integers a, b, c and d with $a<c<d, b<d, c>a+1$ and $d>c+b-a$, there exists a connected graph G such that $f_{h}(G)=a, f_{g}(G)=b, h(G)=c$ and $g(G)=d$.

Theorem 1.1: [5, 6] If v is an extreme vertex of a graph G, then v belongs to every hull set and geodetic set of G.
Theorem 1.2: [1] For a connected graph $G, h(G)=p$ if and only if $G=K_{p}$.
Theorem 1.3: [4] Let G be a connected graph. Then
(a) $f_{h}(G)=0$ if and only if G has a unique h-set
(b) $f_{h}(G) \leq h(G)-|W|$,where W is the set of all hull vertices of G.

Theorem 1.4: [1] For a connected graph $G, g(G)=p$ if and only if $G=K_{p}$.
Theorem 1.5: [3] Let G be a connected graph. Then
(a) $f_{g}(G)=0$ if and only if G has a unique g-set.
(b) $f_{g}(G) \leq g(G)-|W|$. and W is the set of all geodetic vertices of G.

2. SPECIAL GRAPHS

In this section, we present some graphs from which various graphs arising in theorems are generated using identification.

Let $U_{i}: \alpha_{i}, \beta_{i}, g_{i}, h_{i}, \alpha_{i}(1 \leq i \leq a)$ be a copy of cycle C_{4}. Let V_{i} be the graph obtained from $\boldsymbol{U}_{\boldsymbol{i}}$ by adding a new vertex n_{i} and the edges $\beta_{i} n_{i}, n_{i} h_{i}(1 \leq i \leq a)$. The graph Z_{a} is obtained from V_{i} 's by identifying α_{i} of V_{i} and g_{i-1} of $V_{i-1}(2 \leq i \leq a)$.

Figure: 2.1

The graph G_{a} in Figure 2.2 is obtained from F_{i} 's by identifying the vertices t_{i} of F_{i} and r_{i-1} of $F_{i-1}(2 \leq i \leq a)$, where F_{i} : $s_{i}, t_{i}, u_{i}, v_{i}, r_{i,} s_{i}(1 \leq i \leq a)$ be a copy of cycle C_{5}.

Figure: 2.2

Let $J_{i}: e_{i}, f_{i}, l_{i}, c_{i}, e_{i}(1 \leq i \leq a)$ be a copy of cycle C_{4}. Let R_{i} be the graph obtained from J_{i} by adding two new vertices p_{i}, q_{i} and the edges $p_{i} c_{i}, p_{i} f_{i}, p_{i} q_{i}, q_{i} l_{i}(1 \leq i \leq a)$. The graph L_{a} in Figure 2.3 is obtained from R_{i} 's by identifying e_{i} of R_{i} and l_{i-1} of $R_{i-1}(2 \leq i \leq a)$.

Figure: 2.3

Let $P_{i}: k_{i}, b_{i}, m_{i}, d_{i}, k_{i}(1 \leq i \leq a)$ be a copy of cycle C_{4}. Let Q_{i} be the graph obtained from P_{i} by adding three new vertices w_{i}, x_{i}, y_{i} and the edges $w_{i} b_{i}, w_{i} x_{i}, x_{i} y_{i}, y_{i} d_{i},(1 \leq i \leq a)$. The graph T_{a} is obtained from Q_{i}^{\prime} s by identifying k_{i} of Q_{i} and m_{i-1} of $Q_{i-1}(2 \leq i \leq a)$.

T_{a}
Figure: 2.4

3. SOME REALIZATION RESULTS

Theorem 3.1: For every pair a, b of integers with $2 \leq a \leq b$, there exists a connected graph G such that $f_{h}(G)=f_{g}(G)=0, h(G)=a$ and $g(G)=b$.

Proof: If $a=b$, let $G=K_{a}$. Then by Theorems1.3 (a) and 1.2, $f_{h}(G)=0$ and $h(G)=$ a. Also by Theorems1.4 and 1.5(a) that $g(G)=b$ and $f_{g}(G)=0$. For $a<b$, let G be the graph obtained from Z_{b-a} by adding new vertices $x, z_{1}, z_{2}, \ldots, z_{a-1}$ and joining the edges $\alpha_{1} x, g_{b-a} z_{1}, g_{b-a} z_{2}, ., ., ., g_{b-a} z_{a-1}$. Let $Z=\left\{x, z_{1}, z_{2}, \ldots, z_{a-1}\right\}$ be the set of end vertices of G. It is clear that Z is a hull set of G and so by Theorem 1.1, Z is the unique h-set of G so that $h(G)=a$, and hence by Theorem 1.3(a), $f_{h}(G)=0$. Since the vertices $n_{i}(1 \leq i \leq a)$ do not lie on any geodesic joining a pair of vertices in Z, we see that Z is not a geodetic set of G. Now it is easily seen that $W=Z \cup\left\{n_{1}, n_{2}, \ldots, n_{b-a}\right\}$ is the unique g-set of G so that $g(G)=|W|=\mathrm{b}$ and hence by Theorems 1.5(a), $f_{g}(G)=0$.

Theorem: 3.2 For every integers a, b and c with $0 \leq a<b \leq c$, and $b>a+1$, there exists a connected graph G such that $f_{g}(G)=0, f_{h}(G)=a, h(G)=b$ and $g(G)=c$.

Proof:

Case 1: If $a=0$, then the graph G constructed in Theorem 3.1 satisfies the requirements of this theorem.
Case 2: $a \geq 1$.

Sub case2a: $b=c$. Let G be the graph obtained from T_{a} by adding new vertices $x, z_{1}, \mathrm{z}_{2}, \ldots, \mathrm{z}_{b-a-1}$ and joining the edges $x k_{1}, m_{a} z_{1}, m_{a} z_{2}, ., \ldots, m_{a} z_{b-a-1}$. Let $Z=\left\{x, z_{1}, z_{2}, \ldots, z_{b-a-1}\right\}$ be the set of end vertices of G. Let W be any geodetic set of G. Then by Theorem $1.1, Z \subseteq W$. It is clear that Z is not a geodetic set of G. For $1 \leq i \leq a$. let $H_{i}=\left\{w_{i}, x_{i}, y_{i}\right\}$. We observe that every g-set of G must contain only the vertex x_{i} from each $H_{i}(1 \leq i \leq a)$ so that $g(G) \geq b-a+a=b$. Now, $W=Z \cup\left\{x_{1}, x_{2}, \ldots, x_{a}\right\}$ is a geodetic set of G so that $g(G) \leq b-a+a=b$. Thus $g(G)=b$. Also it is easily seen that W is the unique g-set of G and so by Theorem 1.5(a), $f_{g}(G)=0$. Now it is clear that Z is not a hull set of G. We observe that every h-set of G must contain at least one vertex from each $H_{i}(1 \leq i \leq a)$ so that $h(G) \geq b-a+a=b$. Now, $S=Z \cup\left\{w_{1}, w_{2}, \ldots, w_{a}\right\}$ is a hull set of G so that $h(G) \leq b-a+a=b$. Thus $h(G)=b$. Next, we show that $f_{h}(G)=a$. Since every h-set contains Z, it follows from Theorem 1.3(b) that $f_{h}(G) \leq h(G)-|Z|=b-(b-a)=a$. Now, since $h(G)=c$ and every h-set of G contains Z, it is easily seen that every h-set S is of the form $Z \cup\left\{d_{1}, d_{2}, \ldots, d_{a}\right\}$, where $d_{i} \in H_{i}(1 \leq i \leq a)$. Let T be any proper subset of S with $|T|<a$. Then it is clear that there exists some j such that $T \cap H_{j}=\Phi$, which shows that $f_{h}(G)=a$.

Sub case 2b: $b<c$. Let G be the graph obtained from T_{a} and Z_{c-b} by identifying vertex m_{a} of T_{a} and α_{1} of Z_{c-b} and adding the new vertices $x, z_{1}, z_{2} \ldots z_{b-a-1}$ and joining the edges $x k_{1}, g_{c-b} z_{1}, g_{c-b} z_{2}, \ldots g_{c-b} z_{b-a-1}$. Let $Z=\left\{x, z_{1}, z_{2}, \ldots, z_{b-a-1}\right\}$ be the set of end vertices of G. Let W be any geodetic set of G. Then by Theorem $1.1, Z \subseteq W$. It is clear Z is not a geodetic set of G. For $₫ i \leq a$. let $H_{i}=\left\{w_{i}, x_{i}, y_{i}\right\}$. We observe that every g-set of G must contain only the vertex x_{i} from each $H_{i}(1 \leq i \leq a)$ and only the vertex x_{i} from each $H_{i}(1 \leq i \leq a)$ and only the vertex n_{i} $(1 \leq i \leq c-b)$ so that $g(G) \geq b-a+a+c-b=c$.

Now $W=Z \cup\left\{x_{1}, x_{2}, \ldots, x_{a}\right\} \cup\left\{n_{1}, n_{2}, \ldots, n_{c-b}\right\}$ is a geodetic set of G so that $g(G) \leq b-a+a+c-b=c$. Thus $g(G)=c$. Also it is easily seen that W is the unique g-set of G and so by Theorem1.5 (a) $f_{g}(G)=0$. It is clear that Z is not a hull set of G. We observe that every h-set of G must contain at least one vertex from each $H_{i}(1 \leq i \leq a)$ so that $h(G) \geq b-a+a=b$. Now, $S=Z \cup\left\{w_{1}, w_{2}, \ldots, w_{a}\right\}$ is a hull set of G so that $h(G) \leq$ $b-a+a=b$. Thus $h(G)=b$. Next, we show that $f_{h}(G)=a$. Since every h-set contains Z, it follows from Theorem 1.3(b) that $f_{h}(G) \leq h(G)-|Z|=b-(b-a)=a$. Now, since $h(G)=b$ and every h-set of G contains Z, it is easily seen that every h-set S is of the form $Z \cup\left\{d_{1}, d_{2}, \ldots, d_{a}\right\}$, where $d_{i} \in H_{i}(1 \leq i \leq$ $a)$. Let T be any proper subset of S with $|T|<a$. Then it is clear that there exists some j such that $T \cap H_{j}=\Phi$, which shows that $f_{h}(G)=a$.

Theorem 3.3: For every integers a, b and c with $0 \leq a<b<c, b \geq 2$ and $c>a+b$, there exists a connected graph G such that $f_{h}(G)=0, f_{g}(G)=a, h(G)=b$ and $g(G)=c$.

Case 1: $a=0$. Then the graph G constructed in Theorem 3.1 satisfies the requirements of this theorem.
Case 2: $a \geq 1$. Let G be the graph obtained from L_{a} and Z_{c-b-a} by identifying the vertex l_{a} of L_{a} and α_{1} of Z_{c-b-a} and adding new vertices $x, z_{1}, z_{2}, \ldots, z_{b-1}$ and joining the edges $e_{1} x, g_{c-b-a} z_{1}, g_{c-b-a} z_{2}, \ldots, g_{c-b-a} z_{b-1}$. Let $Z=\left\{x, z_{1}, z_{2}, \ldots, z_{b-1}\right\}$ be the set of end vertices of G. It is clear that Z is a hull set of G and so by Theorem $1.1, Z$ is the unique h-set of G so that $h(G)=b$, and hence by Theorem $1.3(a), f_{h}(G)=0$. Next we show that $g(G)=c$. Let W be any geodetic set of G

Then by Theorem 1.1, $Z \subseteq W$. It is clear Z is not a geodetic set of G. For $\underline{\underline{E}} i \leq \mathrm{a}$, let $Q_{i}=\left\{p_{i}, q_{i}\right\}$.
We observe that every g-set of G must contain at least one vertex from each $Q_{i}(1 \leq i \leq a)$ and each $n_{i}(1 \leq i \leq c-b-a)$ so that $g(G) \geq b+a+c-b-a=c$. Now, $W=Z \cup\left\{p_{1}, p_{2}, \ldots, p_{a}\right\} \cup\left\{n_{1}, n_{2}, \ldots, n_{c-b-a}\right\}$ is a geodetic set of G so that $g(G) \leq b+a+c-b-a=c$. Thus $g(G)=c$. Next, we show that $f_{g}(G)=a$. Since every g-set contains $W_{1}=Z \cup\left\{n_{1}, n_{2}, \ldots, n_{c-b-a}\right\}$, it follows from Theorem $1.5(\mathrm{~b})$ that $f_{g}(G) \leq g(G)-\left|W_{1}\right|=c-(c-a)=a$. Now, since $g(G)=c$ and every g-set of G contains W_{1}, it is easily seen that every g-set W is of the form $Z \cup\left\{n_{1}, n_{2}, \ldots, n_{c-b-a}\right\} \cup\left\{d_{1}, d_{2}, \ldots, d_{a}\right\}$, where $d_{i} \in Q_{i}(1 \leq i \leq a)$. Let T be any proper subset of W with $|T|<a$. Then it is clear that there exists some j such that $T \cap Q_{j}=\Phi$, which shows that $f_{g}(G)=a$.

Theorem 3.4: For every integers a, b and c with $0 \leq a<b \leq c$ and $b>a+1$, there exists a connected graph G such that $f_{h}(G)=f_{g}(G)=a, h(G)=b$ and $g(G)=c$.

Proof:

Case 1: $a=0$ Then the graph G constructed in Theorem 3.1 satisfies the requirements of this theorem.
Case2: $a \geq 1$.
Sub case 2a: $b=c$. Let G be the graph obtained from G_{a} by adding new vertices $x, z_{1}, z_{2}, \ldots, z_{b-a-1}$ and joining the edges $x t_{1}, r_{a} z_{1}, r_{a} z_{2}, \ldots, r_{a} z_{b-a-1}$. Let $Z=\left\{x, z_{1}, z_{2}, \ldots, z_{b-a-1}\right\}$ be the set of end vertices of G. By Theorem1.1, every g-set of G
contains Z. Let $F_{i}=\left\{u_{i}, v_{i}\right\}(1 \leq i \leq a)$. First, we show that $h(G)=b$. Since the vertices u_{i}, v_{i} do not lie on the geodesic joining any pair of vertices of Z, it is clear that Z is not a hull set of G. We observe that every h-set of G must contain at least one vertex from each $F_{i}(1 \leq i \leq a)$. Thus, $h(G) \geq b-a+a=b$. On the other hand, since the set $S=Z \cup\left\{v_{1}, v_{2}, \ldots\right.$, $\left.v_{a}\right\}$ is a hull set of G, it follows that $h(G) \leq|S|=b$. Hence $h(G)=b$. Next, we show that $f_{h}(G)=a$. By Theorem 1.1, every hull set of G contains Z and so it follows from Theorem 1.3(b) that $f_{h}(G) \leq h(G)-|Z|=a$. Now, since $h(G)=b$ and every h-set of G contains Z, it is easily seen that every h-set S is of the form $Z \cup\left\{c_{1}, c_{2}, \ldots, c_{a}\right\}$, where $c_{i} \in F_{i}(1 \leq i$ $\leq a$). Let T be any proper subset of S with $|T|<a$. Then it is clear that there exists some j such that $T \cap F_{j}=\Phi$, which shows that $f_{h}(G)=a$. By similar way we can prove that $g(G)=b$ and $f_{g}(G)=a$.

Sub case 2b: $b<c$. Let G be the graph obtained from G_{a} and Z_{c-b} by identifying the vertex r_{a} of G_{a} and α_{1} of Z_{c-b} and then adding new vertices $x, z_{1}, z_{2}, \ldots, z_{b-a-1}$ and joining the edges $x t_{1}, g_{c-b} z_{1}, g_{c-b} z_{2}, \ldots, g_{c-b} z_{b-a-1}$. First, we show that $h(G)=$ b. Since the vertices u_{i}, v_{i} do not lie on the geodesic joining any pair of vertices of Z, it is clear that Z is not a hull set of G. Let $F_{i}=\left\{u_{i}, v_{i}\right\}$. We observe that every h-set of G must contain at least one vertex from each $F_{i}(1 \leq i \leq a)$. Thus, $h(G)$ $\geq b-a+a=b$. On the other hand, since the set $S=Z \cup\left\{v_{1}, v_{2} \ldots v_{a}\right\}$ is a hull set of G, it follows that $h(G) \leq|S|=b$.

Hence $h(G)=b$. Next, we show that $f_{h}(G)=a$. By Theorem 1.1, every hull set of G contains Z and so it follows from Theorem 1.3(b) that $f_{h}(G) \leq h(G)-|Z|=a$. Now, since $h(G)=b$ and every h-set of G contains Z, it is easily seen that every h-set S is of the form $Z \cup\left\{c_{1}, c_{2}, \ldots, c_{a}\right\}$, where $c_{i} \in F_{i}(1 \leq i \leq a)$. Let T be any proper subset of S with $|T|<a$. Then it is clear that there exists some j such that $T \cap F_{j}=\Phi$, which shows that $f_{h}(G)=a$. Next, we show that $g(G)=c$. Since the vertices u_{i}, v_{i}, n_{i} do not lie on the geodesic joining any pair of vertices of Z, it is clear that Z is not a geodetic set of G. We observe that every g-set of G must contain at least one vertex from each $F_{i}(1 \leq i \leq a)$ and each $n_{i}(1 \leq i \leq$ $c-b)$. Thus, $g(G) \geq b-a+a+c-b=c$. On the other hand, since the set $W=Z \cup\left\{v_{1}, v_{2} \ldots v_{a}\right\} \cup\left\{n_{1}, n_{2}, \ldots, n_{c-b}\right\}$ is a geodetic set of G, it follows that $g(G) \leq|W|=c$. Hence $g(G)=c$. Next, we show $f_{g}(G)=a$. Since every g - set of G contains $W_{1}=Z \cup\left\{n_{1}, n_{2}, \ldots, n_{c-b}\right\}$ and so it follows from Theorem 1.5 (b) that $f_{g}(G) \leq g(G)-\left|W_{1}\right|=a$. Now, since $g(G)=c$ and every g-set of G contains W_{1}, it is easily seen that every g-set W is of the form $W_{1} \cup\left\{c_{1}, c_{2}, \ldots, c_{a}\right\}$, where $c_{i} \in F_{i}(1 \leq i \leq a)$. Let T be any proper subset of W with $|T|<a$. Then it is clear that there exists some j such that $T \cap F_{j}$ $=\Phi$, which shows that $f_{g}(G)=a$.

Theorem 3.5: For every integers a, b, c and d with $0 \leq a \leq b<c \leq d, d$ and $c>b+1$, there exists a connected graph G such that $f_{g}(G)=a, f_{h}(G)=b, h(G)=c$ and $g(G)=d$.

Proof:

Case 1: $a=b=0$. Then the graph G constructed in Theorem 3.1 satisfies the requirements of this theorem.
Case 2: $a=0, b \geq 1$. Then the graph G constructed in Theorem 3.2 satisfies the requirements of this theorem.
Case 3: $1 \leq a=b$. Then the graph G constructed in Theorem 3.4 satisfies the requirements of this theorem.
Case 4: $1 \leq a<b$.
Sub case 4a: $c=d$. Let G be the graph obtained from G_{a} and T_{b-a} by identifying the vertex r_{a} of G_{a} and k_{1} of T_{b-a} and then adding new vertices $x, z_{1}, z_{2}, \ldots, z_{c-b-1}$ and joining the edges $x t_{1}, m_{b-a} z_{1}, m_{b-a} z_{2}, \ldots, m_{b-a} z_{c-b-1}$. Let $Z=\left\{x, z_{1}, z_{2}, \ldots, z_{c-b}\right.$ $\left.{ }_{1}\right\}$ be the set of end vertices of G. Let $F_{i}=\left\{u_{i}, v_{i}\right\}$ and $H_{i}=\left\{w_{i}, x_{i}, y_{i}\right\}$. It can be easily seen that any h-set of G is of the form $S=Z \cup\left\{c_{1}, c_{2}, \ldots, c_{a}\right\} \cup\left\{d_{1}, d_{2}, \ldots, d_{b-a}\right\}$, where $c_{i} \in F_{i}(1 \leq i \leq a)$ and $d_{j} \in H_{j}(1 \leq j \leq b-a)$.Then as in earlier theorems it can be seen that $f_{h}(G)=b$ and $h(G)=c$. Any g-set is of the form $W=Z \cup\left\{x_{1}, x_{2}, \ldots, x_{b-a}\right\} \cup\left\{c_{1}, c_{2}, \ldots, c_{a}\right\}$, where $c_{i} \in F_{\mathrm{i}}(1 \leq i \leq a)$. Then as in earlier theorems it can be seen that $f_{g}(G)=a$ and $g(G)=c$.

Sub case 4b: $c<d$ Let G_{1} be the graph obtained from G_{a} and T_{b-a} by identifying the vertex r_{a} of G_{a} and k_{1} of T_{b-a}.Now let G be the graph obtained from G_{1} and Z_{d-c} by identifying the vertex m_{b-a} of G_{1} and α_{1} of Z_{d-c} and then adding new vertices $x, z_{1}, z_{2}, \ldots, z_{c-b-1}$ and joining the edges $x t_{1}, g_{d-c} Z_{1}, g_{d-c} Z_{2}, ., ., ., g_{d-c} Z_{c-b-1}$. Let $Z=\left\{x, Z_{1}, z_{2}, \ldots, z_{c-b-1}\right\}$ be the set of end vertices of G. Let $F_{i}=\left\{u_{i}, v_{i}\right\}$ and $H_{i}=\left\{w_{i}, x_{i}, y_{i}\right\}$. It can be easily seen that any h-set of G is of the form $S=Z \cup$ $\left\{c_{1}, c_{2}, \ldots, c_{a}\right\} \cup\left\{d_{1}, d_{2}, \ldots, d_{b-a}\right\}$, where $c_{i} \in F_{i}(1 \leq i \leq a)$ and $d_{j} \in H_{j}(1 \leq j \leq b-a)$.Then as in earlier theorems it can be seen that $f_{h}(G)=b$ and $h(G)=c$. Any g-set is of the form $W=Z \cup\left\{x_{1}, x_{2}, \ldots, x_{b-a}\right\} \cup\left\{n_{1}, n_{2}, \ldots, n_{d-c}\right\} \cup\left\{c_{1}, c_{2}, \ldots, c_{a}\right\}$, where $c_{i} \in F_{i}(1 \leq i \leq a)$. Then as in earlier theorems it can be seen that $f_{g}(G)=a$ and $g(G)=d$.

Theorem 3.6: For every integers a, b, c and d with $0 \leq a<c<d$ and $a \leq b<d, d>c+b-a$ and $c>a+1$,there exists a connected graph G such that $f_{h}(G)=a, f_{g}(G)=b, h(G)=c$ and $g(G)=d$.

Proof:

Case 1: $a=b=0$. Then the graph G constructed in of Theorem 3.1 satisfies the requirements of this theorem.
Case 2: $a=0, b \geq 1$. Then the graph G constructed in Theorem 3.3 satisfies the requirements of this theorem.

Case 3: $1 \leq a=b$. Then the graph G constructed in Theorem 3.4 satisfies the requirements of this theorem.
Case 4: $1 \leq a<b$. Let G_{1} be the graph obtained from G_{a} and L_{b-a} by identifying the vertex r_{a} of G_{a} and e_{1} of L_{b-a}. Now let G be the graph obtained from G_{1} and $Z_{d-c-b+a}$ by identifying the vertex l_{b-a} of G_{1} and α_{1} of $Z_{d-c-b+a}$ and then adding new vertices $x, z_{1}, z_{2}, \ldots, z_{c-a-1}$ and joining the edges $x t_{1}, g_{d-c-b+a} z_{1}, g_{d-c-b+a} z_{2}, ., \ldots, ., g_{d-c-b+a} z_{c-a-1}$. Let $Z=\left\{x, z_{1}, z_{2} \ldots z_{c-a-1}\right\}$ be the set of end vertices of G. Let $F_{i}=\left\{u_{i}, v_{i}\right\}$. It is clear that any h-set is of the form $S=Z \cup\left\{c_{1}, c_{2} \ldots c_{a}\right\}$, where $c_{i} \in F_{i}(1$ $\leq i \leq a)$.Then as in earlier theorems it can be seen that $f_{h}(G)=a$ and $h(G)=c$. Let $Q_{i}=\left\{p_{i}, q_{i}\right\}$. It is clear that any g-set is of the form $W=Z \cup\left\{n_{1}, n_{2} \ldots n_{d-c-b+a}\right\} \cup\left\{c_{1}, c_{2}, \ldots, c_{a}\right\} \cup\left\{d_{1}, d_{2}, \ldots, d_{b-a}\right\}$, where $c_{i} \in F_{i}(1 \leq i \leq a)$ and $d_{j} \in Q_{j}$ $(1 \leq j \leq b-a)$. Then as in earlier theorems it can be seen that $f_{g}(G)=b$ and $g(G)=d$.

REFERENCES

[1] F. Buckley and F. Harary, Distance in Graphs, Addison-Wesley, Redwood City, CA, 1990
[2] G. Chartrand and Ping Zhang, Convex sets in graphs, Congressus Numerantium 136(1999), pp.19-32.
[3] G. Chartrand and P. Zhang, The forcing geodetic number of a graph, Discuss. Math. Graph Theory, 19 (1999), 4558.
[4] G. Chartrand and P. Zhang, The forcing hull number of a graph, J. Combin Math. Comput. 36(2001), 81-94.
[5] G. Chartrand, F. Harary and P. Zhang, On the geodetic number of a graph, Networks, (2002) 1-6.
[6] M. G. Evertt, S. B. Seidman, The hull number of a graph , Discrete Math. 57 (1985), 217-223.
[7] M. Faber, R.E. Jamison, convexity in graphs and hypergraphs, SIAM Journal Algebraic Discrete Methods 7(1986) 433-444.
[8] F. Harary, Graph Theory, Addison-Wesley, 1969.
[9] F. Harary, E. Loukakis and C. Tsouros, The geodetic number of a graph, Math. Comput Modeling 17(11) (1993) 8995.
[10]Li-Da Tong, The forcing hull and forcing geodetic numbers of graphs, Discrete Applied Math. 157 (2009)11591163

[^0]: *Corresponding author: V. Mary Gleeta*, * E-mail: gleetass@gmail.com

