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1. Introduction:

Norman Levine introduced generalized closed sets in 1970. After him various Authors studied different versions of
generalized sets and related topological properties. Recently V.K. Sharma and the author of the present paper defined
separation axioms for g-open; gs-open; sg-open; rg-open sets and studied their basic properties.

Definition 1.1: A < X is called generalized closed[resp: regular generalized; generalized regular]{briefly: g-closed; rg-
closed; garclosed}if cl{A}cU whenever AcCU and U is open[resp: regular open, open] and generalized[resp: regular
generalized; generalized regular] open if its complement is generalized[resp: regular generalized; generalized regular]
closed.

Note 1: The class of regular open sets, open sets, g-open sets, ga-open sets are denoted by RO(X), T(X), aO(X), and
go0O(X) respectively. Clearly RO(X) c 1(X) c aO(X) c gaO(X).

Note 2: Ae gaO(X, x) means A is generalized a-open neighborhood of X containing x.
Definition 1.2: AcX is called clopen[resp: ga~clopen] if it is both open[resp: g a~open] and closed[resp: ga~closed]

Definition 1.3: A function f> X — Y is said to be

(i) g-continuous [resp: ga-continuous] if inverse image of closed set is g-closed [resp: go-closed] and g-irresolute
[resp: go-irresolute] if inverse image of g-closed [resp: ga-closed] set is g-closed [resp: ga~closed]

(iii) goropen if the image of open set ga~open

(iv) gahomeomorphism [resp: gac-homeomorphism] if f is bijective, ga-continuous [resp: garirresolute] and f ™ is
go-continuous [resp: ga-irresolute]

Definition 1.4: X is said to be

(i) compact [resp: nearly compact, semi-compact, g-compact, ga-compact] if every open[resp: regular-open, semi-
open, g-open, go~open] cover has a finite sub cover.

(ii) Ty [resp: Ty, sTy, go] space if for each x # ye X 3 Uet(X)[resp: RO(X); SO(X); GO(X)] containing either x or y.
(iii) Ty [resp: 1Ty, g1,]{T> [resp: r'T», g5,]} space if for each x # ye X 3 {disjoint} U, Vet(X) [resp: RO(X); GO(X)], G
and H containing x and y respectively.

@iv) Typ [resp: 1Ty, sTj] if every generalized [resp: regular generalized, semi-generalized] closed set is closed [resp:
regular-closed, semi-closed]
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2. goi-Continuity and product spaces:

Theorem 2.1: Let Y and {X:0e I} be Topological Spaces. Let f: Y— IIX,, be a function. If f is ga-continuous, then
e f: Y X, is ga-continuous.

Converse of the above theorem is not true in general as shown by the following Example:

Example 2.1: Let X = {pv q, 1, S}; Tx = {¢’ {p}v {q}’ {S}’ {P’ q}’ {pv S}v{q’ S}’ {pv q, r}9 {p’ q, S}v X}v Yl = YZ = {aa
bl tvi = {d, {a}. Y1}; Tva= {9, {a}, Y2}; Y =Y 1XY2 = {(a, a), (a, b), (b, a), (b, b)} and 1y = {9, {(a, @)}, {(a, a),
(a,b)}, {(a, a), (b, )}, {(a, a), (a, b), (b, @)}, Y1x Ya}.

Define f: X— Y by f(p) = (a, a), f(q) = (b, b), f(r) = (a, b), f(s) = (b, a). It is easy to see that ,;®f and m,®f are go-
continuous. However {(b, b)} is closed in Y but f T, b)) = {q} is not ga-closed in X. Therefore f is not go-
continuous.

Theorem 2.2: If Y is Ty, and {X,:0e I} be Topological Spaces. Let f: Y— IIX, be a function, then f is go-
continuous iff Ty® f* Y— X, is go-continuous.

Corollary 2.3: (i) Let f: Xq— Y, be a function and let f: TIX,— ITY be defined by fixe)oe1 = (fa (Xo))aer- If fis ga-
continuous then each f; is go-continuous.

(ii) For each o, let X be 1T}, and let f,: Xo—Y, be a function and let f: I1X,— ITY, be defined by f(Xo)oe1 = (fu
(Xa))ac 1> then fis goi-continuous iff each f,, is gai-continuous.

3. go; spacesi=0,1,2:

Definition 3.1: X is said to be

(i) a goy space if for each pair of distinct points X, y of X, there exists a go-open set G containing either of the point x
ory.

(ii)a gy [resp: got,] space if for each pair of distinct points x, y of X there exists [resp: disjoint] goi-open sets G and H
containing x and y respectively.

Note 3:
1) Ti—> Ti—> o — gay,1=0, 1, 2. but the converse is not true in general.
>11)X is gop, = X is goy, — X is gol.

Example 3.1: Let X = {a, b, c} and T = {0, X}, then X is go; but not 1Ty and Ty, i =0, 1, 2.fori=0, 1, 2.
Example 3.2: Let X ={a, b,c,d} and Tt = {¢, {b}, {a, b}, {b, c}, {a, b, c}, X} then X is not go; fori =0, 1, 2.
Remark 3.1: If X is Ty, then rT; and go; are one and the same fori=0,1,2.

Theorem 3.1: The following are true

(i) Every [resp: regular open] open subspace of ga; space is go; fori=0, 1, 2.
(i1)The product of goy; spaces is again go; fori=0, 1, 2.

(iii) goi-continuous image of T;[resp: r'T;] spaces is ga; fori =0, 1, 2.

(iv) X is goy iff V xe X, 3 Ue galO(X) containing x such that the subspace U is goi.
(v) Xis goy iff distinct points of X have disjoint ga-closures.

(vi) If X is gai; then distinct points of X have disjoint ga-closures.

Theorem 3.2: The following are equivalent:

(i) X is gou,

(ii) Each one point set is ga-closed.

(iii)Each subset of X is the intersection of all goi-open sets containing it.

(iv) For any xe X, the intersection of all go-open sets containing the point is the set {x}.

Theorem 3.3: Suppose x is a ga-limit point of a subset of A of a go; space X. Then every neighborhood of x contains
infinitely many distinct points of A.

Theorem 3.4: The following are true
(i) Xis ga, iff the intersection of all ga-closed, go-neighborhoods of each point of the space is reduced to that point.
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(ii) If to each point xe X, there exist a ga-closed, goi-open subset of X containing x which is also a go, subspace of X,
then X is got,
(iii) If X is g, then the diagonal A in XxX is go-closed.
(iv) In gai,-space, ga-limits of sequences, if exists, are unique.
(v) In a go, space, a point and disjoint go.-compact subspace can be separated by disjoint goi-open sets.
(vi) Every gai-compact subspace of a g, space is ga-closed.

Corollary 3.1: The following are true

(i) Ina T, [resp: 'Ty; g,] space, each singleton set is got-closed.

(ii) If X is T, [resp: r'Ty; g;] then distinct points of X have disjoint goi-closures.

(iii)If X is T, [resp: 1Ty; g,] then the diagonal A in XXX is got-closed.

(iv) Show that in a T, [resp: r'T5; g,] space, a point and disjoint compact[resp: nearly-compact; g-compact] subspace can
be separated by disjoint goi-open sets

(v) Every compact [resp: nearly-compact; g-compact] subspace of a T, [resp: r'T»; g,] space is gat-closed.

Theorem 3.5: The following are true

(1) Iff: X— Y is injective, go-irresolute and Y is go; then X is goy, i =0, 1, 2.

(ii) If f: X— Y is injective, ga-continuous and Y is T; then X is gay;, i =0, 1, 2.

(iii) If f- X— Y is injective, r-irresolute[r-continuous] and Y is rT; then X is goy, i =0, 1, 2.

(iv) The property of being a space is go, is a gai-Topological property.

(v) Letf: X — Y is a goc-homeomorphism, then X is go; if Y is go;, i =0, 1, 2.

(vi) Let X be T and f: X — Y be goi-closed surjection. Then X is goy,

(vii) Every go-irresolute map from a go-compact space into a got, space is goi-closed.

(viii) Any go-irresolute bijection from a gai-compact space onto a gol, space is a goic-homeomorphism.
(ix) Any go-continuous bijection from a goi-compact space onto a g0, space is a go-homeomorphism.

Theorem 3.6: The following are equivalent:

(i) X is goo.

(ii) For each pair x # ye X 3 a ga-open, go-closed set V such that xe V and ye¢ V, and

(iii)For each pair x # ye X 3 f: X— [0, 1] such that f{x) = 0 and f{y) = 1 and fis ga.-continuous.

Theorem 3.7: If > X— Y is ga-irresolute and Y is ga, then
(i) the set A = {(xy, X»): fix;) =f(x,)} is go-closed in XX X.
(i1)G(f), goaph of f, is gat-closed in XX Y.

Theorem 3.8: If f: X— Y is goi-open and A = {(xy, Xp): f(X;) =f(X»)} is closed in XXX. Then Y is gol,,

Theorem 3.9: Let Y and {X,:0e€ I} be Topological Spaces. If f: Y— IT X,, be a gai-continuous function and Y is 1T},
then IT X,, and each X, are ga;, i = 0,1,2.

Theorem 3.10: Let X be an arbitrary space, R an equivalence relation in X and p: X — X/R the identification map. If
Rc XX X is go-closed in XX X and p is goi-open map, then X/R is ga,,

Proof: Let p(X), p(y) be distinct members of X/R. Since x and y are not related, Rc Xx X is ga-closed in Xx X. There
are go-open sets U and V such that xe U, ye V and Ux Vc R, Thus {p(U), p(V)} are disjoint and also gai-open in
X/R since p is go-open.

Theorem 3.11: The following four properties are equivalent:

1) Xis g,

(ii) Let xe X. For each y # x, 3 Ue gaO(X) such that xe U and y¢ gocl(U)
(iii)For each xe X, N{ gocl(U)/Ue gaO(X) and xe U} = {x}.

(iv) The diagonal A = {(x, x)/xe X} is gai-closed in Xx X.

Proof: (i) = (ii) Let xe X and y # x. Then there are disjoint goi-open sets U and V such that xe U and ye V. Clearly V ¢
is ga-closed, gacl(U) < V¢, ye V© and therefore y¢ gocl(U).

(ii) = (iii) If y # x, then 3 Ue gaO(X) s.t. xe U and y¢ goacl(U). So ye n{ gacl(U)/Ue gaO(X) and xe U}.

(iii) = (iv) We prove A is go-open. Let (X, y) € A. Then y # x and N{ gocl(U)/Ue gaO(X) and xe U} = {x} there is
some Ue gaO(X) with xe U and yg gocl(U). Since UN( gocl(U))® = ¢, Ux( gocl(U)) is a go-open set such that (x,
y)e Ux( gacl(U))°’cA”.
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(iv) = (i) y # x, then (x, y)& A and thus there exist ga-open sets U and V such that (x, y)e UXV and (UxV)NA = ¢.
Clearly, for the gai-open sets U and V we have; xe U, ye V and UNV = ¢.

4. go-R; spaces; i = 0,1:.

Definition 4.1: Let xe X. Then
(i) ga-kernel of x is defined and denoted by Kery{x} = N{U:Ue gaO(X) and xe U}
(ii) KergoyF = N{U: Ue gaO(X) and Fc U}

Lemma 4.1: Let AC X, then Ker o) {A} = {xe X: gacl{x}N A #¢.}
Lemma 4.2: Let xe X. Then ye Ker(,q{x} iff xe gocl{y}.

Proof: Suppose that y¢ Ker(yq){x}. Then 3 Ve gaO(X) containing x such that yg V. Therefore we have x¢ gocl{y}.
The proof of converse part can be done similarly.

Lemma 4.3: For any points x # ye X, the following are equivalent:
(1) Ker{ga)(ga;{ X} * Ker{ga}{ y},
(i) gacl{x} # gocl{y}.

Proof: (i) = (ii): Let Keryq){x} # Ker(g{y}, then 3 zeX such that zeKer(y{x} and z&Ker(zo{y}. From
ze Ker(yq;{x} it follows that {x}n gacl{z} # ¢ = xe gacl{z}. By z& Ker(,q{y}, we have {y}n gacl{z} = ¢. Since xe
gocl{z}, gacl{x}c gacl{z} and {y}n gocl{x} = ¢. Therefore goacl{x} # gocl{y}. Now Ker(o{x} # Kergq{y} =
gocl{x} # gocl{y}.

(i) = (i): If gocl{x} # gacl{y}. Then 3 ze X such that ze gocl{x} and z¢ gocl{y}. Then 3 a goi-open set containing z
and therefore containing x but not y, namely, yg Ker,q){x}. Hence Ker(yo){x} # Ker(g{y}.

Definition 4.2: X is said to be

(i) go-Ryiff gacl{x}c G whenever xe Ge gaO(X).

(ii) weakly go-R, iff N goel{x} = ¢.

(iii) go-R, iff for x,ye X such that gocl{x} =# goacl{y} 3 disjoint U; Ve gaO(X) such that gocl{x}cU and
gacl{y}cV.

Example 4.1: Let X = {a, b, ¢, d} and T = {0, {b}, {a, b}, {b, c}, {a, b, c}, X}, then X is not weakly ga. Ry and not
goR;,i=0, 1.

Remark 4.1:

(i) r-Ri= R, = oR; = goR;,i=0, 1.

(ii) Every weakly-R, space is weakly gat Ry.
Lemma 4.1: Every gaR, space is weakly gaR,.

Converse of the above Theorem is not true in general by the following Examples.

Example 4.2: Let X = {a, b, c, d} and T = {0, {a}, {b}, {d}, {a, b}, {a, d}, {b, d}, {a, b, c}, {a, b, d}, X}. Clearly, X is
weakly gaRy, since N gocl{x} = ¢. But it is not gaR, for {a}cX is ga-open and gocl{a} = {a,b}z{a}.

Theorem 4.1: Every go-regular space X is go, and ga-R,,.

Proof: Let X be go-regular and let x # ye X. By Lemma 4.1, {x} is either ga-open or go-closed. If {x} is goi-open,
{x} is go-open and hence ga-clopen. Thus {x} and X - {x} are separating ga-open sets. Similarly for {x} is ga-
closed, {x} and X - {x} are separating ga-closed sets. Thus X is gat, and ga-Ro.

Theorem 4.2: X is go-Ry iff given x # ye X; gocl{x} # gocl{y}.

Proof: Let X be go-Ry and let let x, # ye X. Suppose U is a go-open set containing x but not y, then ye gocl{y}c X-
U and so x¢ gocl{y}. Hence gacl{x} # gocl{y}.
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Conversely, let x, # ye X such that gocl{x} # gocl{y}= gocl{x}c X- gacl{y} = U(say) a ga-open set in X. This is
true for every gocl{x}. Thus n gocl{x}c U where xe gocl{x}c Ue gaO(X), which in turn implies N gocl{x}c U
where xe Ue goO(X). Hence X is gotRy.

Theorem 4.3: X is weakly goR, iff Keryq){x} # X for any xe X.
Proof: Let xoe X such that ker,q){Xo} = X. This means that x, is not contained in any proper go.-open subset of X.

Thus x, belongs to the go-closure of every singleton set. Hence xoe M gocl{x}, a contradiction.

Conversely assume Kery{x} # X for any xe X. If there is an xoe X such that xoe N{ gocl{x}}, then every gai-open
set containing X, must contain every point of X. Therefore, the unique go-open set containing X, is X. Hence
Keroq){X0} = X, which is a contradiction. Thus X is weakly ga-Ry.

Theorem 4.4: The following are equivalent:

(1) Xis ga-Ry space.

(ii) For each xe X, gocl{x}c Kerjoq{x}

(iii)For any goi-closed set F and a point x¢ F, 3 Ue galO(X) such that x¢ U and FcU.
(iv) Each go-closed set F can be expressed as F = n{G: G is ga-open and FcG}.

(v) Each ga-open set G can be expressed as G = U{A: A is ga-closed and AcG}.
(vi) For each ga-closed set F, x¢ F implies ga-cl{x}N F = 0.

Proof: (i) = (ii) For any xe X, we have Ker,){x} = n{U: Ue gaO(X) and xe U}. Since X is ga-R,, each go-open
set containing x contains gocl{x}. Hence gocl{x}c Keryq {x}.

(ii) = (iii) Let x¢ Fe goC(X). Then for any ye F; gocl{y}cF and so x¢ gocl{y}= ye¢ gocl{x} that is 3 Uye gaO(X)
such that ye Uy and x¢ Uy V yeF. Let U = U{U,: Uyis ga-open, ye Uy and x¢ U, }. Then U is ga-open such that x¢ U
and FcU.

(iii) = (iv) Let F be any ga-closed set and N = n{G: G is ga-open and Fc G}. Then FcN — (1).

Let x¢ F, then by (iii) 3 Ge gaO(X) such that x¢ G and FcG.

Hence x¢ N which implies xe N = xe F. Hence NcF — (2).

Therefore from (1) and (2), each ga-closed set F = N{G: G is go-open and FcG}

(iv) = (v) obvious.

(v) = (vi) Let x¢ Fe gaC(X). Then X-F = G is a go-open set containing x. Then by (v), G can be expressed as the
union of go-closed sets A contained in G, and so there is an Me gaC(X) such that xe McG; and hence gacl{x}cG

which implies gocl{x}N F = ¢.

(vi) = (i) Let xe Ge gaO(X). Then x¢ (X-G), which is a ga-closed set. Therefore by (vi) gocl{x}N(X-G) = ¢, which
implies that gocl{x}c G. Thus X is gaRy space.

Theorem 4.5: Let /: X — Y be a ga-closed one-one function. If X is weakly ga-Ry, then sois Y.

Theorem 4.6: If X is weakly go-R, then for every space Y, XX Y is weakly go-R,.

Proof: N gacl{(x,y)} cn{ gacl{x}x gacl{y}} =N [gacl{x}]x [gacl{y}] € ¢x Y = ¢. Hence XX Y is gaR,.
Corollary 4.1:

(i) If X and Y are weakly goR, then XX Y is weakly goR.

(i) If X and Y are (weakly-)Ry, then XX Y is weakly gotR,.

(iii)If Xand Y are gaR,, then XX Y is weakly gaR,.

@iv) If X is gotRp and Y are weakly Ry, then XX Y is weakly gaRo.

Theorem 4.7: X is gaR, iff for any x, ye X, gocl{x} # goacl{y}= gacl{x}n gacl{y} = ¢.
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Proof: Let X is gaRy and x, ye X such that gacl{x} # gacl{y} .Then 3 ze gocl{x} such that z¢ gacl{y} (or
zegocl{y}) such that z¢ gocl{x}. There exists Ve gaO(X) such that y¢V and zeV; hence xeV. Therefore,
x¢ gocl{y}.

Thus xe [gocl{y}]°e gaO(X), which implies gocl{x}c[gacl{y}]° and gocl{x}ngocl{y} = 0. The proof for otherwise
is similar.

Sufficiency: Let xe Ve gaO(X). We show that gocl{x}cV. Let y V, i.e., ye V°. Then x # y and x¢ gocl{y}. Hence
gocl{x} # gocl{y}. But gocl{x}n gocl{y} = ¢. Hence y¢ gocl{x}. Therefore gacl{x}cV.

Theorem 4.8: X is gaR iff for any points x, ye X, Ker(oq){ X} # Ker (o) {y} = Ker(go) {x}NKer(go{y} = ¢.

Proof: Suppose X is goR,. Thus by Lemma 4.3 for any x, ye X if Kerjzq){X} # Keryyq{y} then gocl{x} # gocl{y}.
Assume that ze Ker(yq){x}MKergq;{y}. By zeKer(y;{x} and Lemma 4.2, it follows that xe gocl{z}. Since xe
gocl{z}, gacl{x} = gacl{z}. Similarly, we have gocl{y} = gacl{z} = gacl{x}. This is a contradiction. Therefore, we
have Ker(oq){x} M Kerea; {y} = ¢.

Conversely, let x, ye X, s.t. gacl{x} # gocl{y}, then by Lemma 4.3, Ker(yq;{x} # Kersq;{y}. Hence by hypothesis
Kergo) {x}NKer(yoy{y} = ¢ which implies gacl{x}n gocl{y} = ¢ Because ze gocl{x} implies that xe Ker(4q;{z} and
therefore Kergoy {x}MKer(qy{z} # ¢ Therefore by Theorem 4.7 X is a goR, space.

Theorem 4.9: The following are equivalent:
(i) X is a go-Ry space.
(ii) For any A # ¢ and Ge goO(X) such that ANG # ¢ 3 Fe gaC(X)such that ANF # ¢ and FcG.

Proof: (i) = (ii): Let A # ¢ and Ge goO(X) such that ANG # ¢. There exists xe ANG. Since xe Ge gaO(X),
gocl{x}cG. Set F = gocl{x}, then Fe gaC(X), FcG and AnF # ¢

(i) = (i): Let Ge gaO(X) and xe G. By (2), gocl{x}c G. Hence X is ga-Ry.

Theorem 4.10: The following are equivalent:
(1) X is a go-Ry space;
(ii) xe gacl{y} iff ye gacl{x}, for any points x and y in X.

Proof: (i) = (ii): Assume X is goRy. Let xe gocl{y} and D be any go-open set such that ye D. Now by hypothesis,
xeD. Therefore, every goi-open set which contain y contains x. Hence ye gocl{x}.

(ii) = (i): Let U be a ga-open set and xe U. If y¢ U, then x¢ gocl{y} and hence y¢ gocl{x}. This implies that
gocl{x}cU. Hence X is goR,.

Theorem 4.11: The following are equivalent:

(i) X is a goR space;

(ii) If F is gai-closed, then F = Ker 44 (F);

(iii) If F is ga-closed and xe F, then Ker oo {x}CF;
(iv) If xe X, then Ker(yq) {x}C gocl{x}.

Proof: (i) = (ii): Let x¢Fe gaC(X) = (X-F)e gaO(X) and contains x. For X is gaRy, gacl({x})c(X-F). Thus
gacl({x})N F = ¢ and x¢ Ker,q (F). Hence Keryq, (F) = F.

(i) = (iii): ACB = Ker(yq (A)cKer o) (B). Therefore, by (2) Ker(yq) { X} < Ker(oq) (F) =F.
(iii) = (iv): Since xe gocl{x} and gacl{x} is ga-closed, by (3) Keryq){x} = gocl{x}.

(iv) = (i): Let xe gocl{y}. Then by Lemma 4.2 ye Ker,,{x}. Since xe gocl{x} and gocl{x} is ga-closed, by (iv) we
obtain ye Ker(qq; {x}< gocl{x}. Therefore xe gocl{y} implies ye gocl{x}. The converse is obvious and X is goR,.

Corollary 4.2: The following are equivalent:
(1) Xis gaRy.
(ii) gocl{x} = Kerzq; {x}V xe X.
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Proof: Follows from Theorems 4.4 and 4.11.

Recall that a filterbase F is called goi-convergent to a point x in X, if for any go-open set U of X containing x, there
exists Be F such that Bc U.

Lemma 4.4: Let x and y be any two points in X such that every net in X go-converging to y ga-converges to X. Then
xe gocl{y}.

Theorem 4.12: The following are equivalent:
(1) X is a goRy space;
(i) If x, ye X, then ye gocl{x} iff every net in X ga-converging to y goi-converges to X.

Proof:

(i) = (ii): Let x, ye X such that ye gacl{x}. Suppose that {Xq}qc1 is @ net in X such that {x4}ee; go-converges to y.
Since ye gocl{x}, by Thm. 4.7 we have gocl{x} = gocl{y}. Therefore xe gocl{y}. This means that {Xy}qec1 g0
converges to X.

Conversely, let x, ye X such that every net in X go-converging to y go-converges to x. Then xe ga-cl{y}[by 4.4]. By
Thm. 4.7, we have gocl{x} = gocl{y}. Therefore ye gocl{x}.

(ii) = (i): Let x, ye X such that gocl{x}n gacl{y} # ¢. Let ze gocl{x}n gocl{y}. So I a net {Xy}qcr in gocl{x} such

that {xq}ee1 goi-converges to z. Since ze gocl{y}, then {xq}qe1 ga-converges to y. It follows that ye gocl{x}.
Similarly we obtain xe gocl{y}. Therefore gacl{x} = gacl{y}. Hence X is gaR,.

Theorem 4.13:

(i) Every subspace of goR, space is again goR;,

(ii) Product of any two galR; spaces is again goR;,

(iii) X is gaR iff given x # ye X, gocl{x} # gocl{y}.
(iv) Every ga, space is goRy.

The converse of 4.13(iv) is not true. However, we have the following result.
Theorem 4.14: Every go,; and goR, space is goi,,

Proof: Let x # ye X. Since X is gay; {x} and {y} are ga-closed sets such that gacl{x} # gacl{y}. Since X is gaR;,
there exists disjoint go-open sets U and V such that xe U; ye V. Hence X is got,

Corollary 4.3: X is go, iff it is goR; and gay,

Theorem 4.15: The following are equivalent

(1) Xis go-Ry,

(i) N gacl{x} = {x}.

(iii)For any xe X, intersection of all ga-neighborhoods of x is {x}.

Proof:
(i) = (ii) Let y # xe X such that ye gacl{x}. Since X is gaR|, 3 Ue gaO(X) such that ye U, x¢ U or xe U, ye U. In
either case y¢ gocl{x}. Hence N gocl{x} = {x}.

(ii) = (iii) If y # xe X, then x& N gocl{y}, so there is a gai-open set containing x but not y. Therefore y does not belong
to the intersection of all ga-neighborhoods of x. Hence intersection of all gai-neighborhoods of x is {x}.

(iii) = (i) Let x # ye X. by hypothesis, y does not belong to the intersection of all ga-neighborhoods of x and x does
not belong to the intersection of all gai-neighborhoods of y, which implies gocl{x} # gacl{y}. Hence X is goi-R;,

Theorem 4.16: The following are equivalent:

(i) Xisga-Ry,

(ii) For each pair x, ye X with gocl{x} # gocl{y}, 3 a ga-open, ga-closed set V s.t. xe V and y¢ V, and

(iii)For each pair x, ye X with gocl{x} # gacl{y}, 3 f: X—[0, 1] s.t. fix) =0 and f(y) = 1 and fis go-continuous.
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Theorem 4.17:

(i) If Xis ga-Ry, then X is go-Ry.

(i) X is go-R; iff for x, ye X, Kergq{x} # Kerge{y}, 3 disjoint U; Ve gaO(X) such that gocl{x}cU and
gocl{y}cV.

5. ga-C; and go-D; spaces, i = 0,1,2:

Definition 5.1: X is said to be a

(1) go-C, space if for each pair of distinct points x, y of X there exists a go-open set G whose closure contains either of
the point x or y.

(ii) go-C, [resp: go-C,] space if for each pair of distinct points x, y of X there exists disjoint gai-open sets G and H such
that closure of G containing x but not y and closure of H containing y but not x.

Note 4: ga-C, = ga-C; = ga-Cy. Converse need not be true in general:

Example 5.1:
(i) Let X = {a, b, c} and T = {¢, X}, then X is gaC; fori=0, 1, 2.
(ii) Let X = {a, b, c,d} and T = {¢, {b}, {a, b}, {b, c}, {a, b, ¢}, X} then X is not gaC; fori =0, 1, 2.

Theorem 5.1:

(i) Every subspace of ga-C; space is ga-C;.

(i) Every goy spaces is go-C;.

(iii) Product of goi-C; spaces are ga-C;.

(iv) Let X be any go-C; space and AcX then A is go-C; iff (A, T/4) is go-C;.
(v) If Xis ga-C, then each singleton set is go-closed.

(vi) In an goi-C; space disjoint points of X has disjoint goi- closures.

Definition 5.2: AcX is called a ga-Difference(Shortly goD-set) set if there are two U, Ve gaO(X) such that U # X
and A =U-V.

Clearly every go-open set U different from X is a gaD-set if A =U and V = ¢.

Definition 5.3: X is said to be a

(i) go-Dy if for any pair of distinct points x and y of X there exist a gotD-set in X containing X but not y or a gouD-set in
X containing y but not x.

(ii) ga-Dy [resp: ga-D,Jif for any pair of distinct points x and y in X there exists disjoint goD-sets G and H in X
containing x and y respectively.

Remark 5.2: (i) If X is 1T}, then it is goy, i = 0, 1, 2 and converse is false.
(ii) If X is go, then it is goyiqy, i=1, 2.

(iii) If X is goy;, then it is go-D; ,i=0, 1, 2.

(iv) If X is ga-D;, then it is go-Dyiqy, i =1, 2.

Theorem 5.2: The following statements are true:

(1) X is go-Dy iff it is got.

(i) X is ga-D; iff it is gai-D;,

Corollary 5.1: If X is go-D;, then it is got.

Proof: Remark 5.1(iv) and Theorem 5.1(vi)

Definition 5.4: A point xe X which has X as the unique ga-neighborhood is called go.c.c point.

Theorem 5.3: For an goy, space X the following are equivalent:

(i) X is go-Dy;

(i1) X has no got.c.c point.

Proof: (i) = (ii) Since X is ga-Dy, then each point x of X is contained in a gaD-set O = U - V and thus in U. By

Definition U # X. This implies that x is not a go..c.c point.
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(i) = (i) If X is gy, then for each x # ye X, at least one of them, x (say) has a ga-neighborhood U containing x and
not y. Thus U which is different from X is a gaD-set. If X has no ga..c.c point, then y is not a ga..c.c point. This means
that there exists a goi-neighborhood V of y such that V # X. Thus ye V-U but not x and V-U is a gaD-set. Hence X is
go-Dy,

Definition 5.5: X is goi-symmetric if for x and y in X, x € gacl{y} implies y € gocl{x}.
Theorem 5.4: X is go-symmetric iff {x} is ga-closed for each xe X.

Proof: Assume that xe gocl{y} but y¢ gocl{x}. This means that [gocl{x}]° contains y. This implies that gocl{y}c
[gacl{x}]°. Now [gocl{x}]° contains x which is a contradiction.

Conversely, suppose that {x}CEe gaO(X) but gocl{x}zE. This means that gocl{x} and E° are not disjoint. Let y
belongs to their intersection. Now we have xe gocl{y}cE° and x¢ E. But this is a contradiction.

Corollary 5.2: If X is a gy, then it is goi-symmetric.
Proof: Follows from Theorem 2.2(ii) and Theorem 5.4.
Corollary 5.3: The following are equivalent:

(1) X is go-symmetric and go

(i) X is gay,

Proof: By Corollary 5.2 and Remark 5.1 it suffices to prove only (i) = (ii). Let x # y and by g, we may assume that
xe G;c{y}° for some G;e gaO(X).Then x¢ gocl{y} and hence y gocl{x}. There exists a G,e gaO(X) such that ye G,
c{x}and X is a go; space.

Theorem 5.5: For a go-symmetric space X the following are equivalent:
(1) X is goy; (i) X is ga-Dy; (i) X is goyy,

Proof: (i) = (iii) Corollary 5.3 and (iii) = (ii) = (i) Remark 5.1.

Theorem 5.6: If f- X— Y is a go-irresolute surjective function and E is a gatD-set in Y, then the inverse image of E is
a gaD-set in X.

Proof: Let E be a gauD-set in Y. Then there are go-open sets Uy and U, in Y such that E = Uy - U, and U; # Y. By the
go-irresoluteness of £, £7'(Uy) and f '(U,) are go-open in X. Since U; # Y, we have ) #X.

Hence f'(E) =f ' (U)-f"(U,) is a go-D-set.

Theorem 5.7: (i) If Y is ga-D; and f: X — Y is go-irresolute and bijective, then X is go-Dy,

(i1) X is go-D; iff for each pair of x # y in X there exist a go-irresolute surjective function f> X— Y, where Y is a go-
D, space such that f{x) and f(y) are distinct.

Corollary 5.4: Let {X,/ae I} be any family of spaces. If X, is go-D; for each ael, then IT X, is ga-Dy,

Proof: Let (xq) # (yo) in ITX,. Then there exists an index Bel s. t. xg # yp. The natural projection Pg: ITX,—Xj is
almost continuous and almost open and Pg ((Xo)) = Pp((yo)). Since Xp is ga-Dy, ITX is go-Dy.
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