g α-separation axioms

S. Balasubramanian ${ }^{11}$ and M. Lakshmi Sarada ${ }^{2}$
${ }^{1}$ Department of Mathematics, Government Arts College (A), Karur - 639005 Tamilnadu, India
${ }^{2}$ Department of Mathematics, A.M.G. Degree College, Chilakaluripet, Andhrapradesh, India
E-mail: mani55682@rediffmail.com ${ }^{1}$, lakhsa77492@yahoo.com ${ }^{2}$

(Received on: 08-12-11; Accepted on: 28-12-11)

Abstract

In this paper we discuss new separation axioms using g α-open sets. Mathematics Subject Classification Number: 54D10, 54D15.

Keywords- g α spaces

1. Introduction:

Norman Levine introduced generalized closed sets in 1970. After him various Authors studied different versions of generalized sets and related topological properties. Recently V.K. Sharma and the author of the present paper defined separation axioms for g-open; gs-open; sg-open; rg-open sets and studied their basic properties.

Definition 1.1: $\mathrm{A} \subseteq \mathrm{X}$ is called generalized closed[resp: regular generalized; generalized regular]\{briefly: g-closed; rgclosed; $g \alpha$-closed $\}$ if $\operatorname{cl}\{\mathrm{A}\} \subseteq U$ whenever $A \subseteq U$ and U is open[resp: regular open, open] and generalized[resp: regular generalized; generalized regular] open if its complement is generalized[resp: regular generalized; generalized regular] closed.

Note 1: The class of regular open sets, open sets, g-open sets, $g \alpha$-open sets are denoted by $\mathrm{RO}(\mathrm{X}), \tau(\mathrm{X}), \alpha \mathrm{O}(\mathrm{X})$, and $g \alpha \mathrm{O}(\mathrm{X})$ respectively. Clearly $\mathrm{RO}(\mathrm{X}) \subset \tau(\mathrm{X}) \subset \alpha \mathrm{O}(\mathrm{X}) \subset g \alpha \mathrm{O}(\mathrm{X})$.

Note 2: $\mathrm{A} \in \mathrm{g} \alpha \mathrm{O}(\mathrm{X}, \mathrm{x})$ means A is generalized α-open neighborhood of X containing x .
Definition 1.2: A $\subset \mathrm{X}$ is called clopen[resp: $g \alpha$-clopen] if it is both open[resp: $g \alpha$-open] and closed[resp: $g \alpha$-closed]
Definition 1.3: A function $f: \mathrm{X} \rightarrow \mathrm{Y}$ is said to be
(i) g-continuous [resp: $g \alpha$-continuous] if inverse image of closed set is g-closed [resp: g α-closed] and g-irresolute [resp: $g \alpha$-irresolute] if inverse image of g-closed [resp: $g \alpha$-closed] set is g-closed [resp: $g \alpha$-closed]
(iii) $g \alpha$-open if the image of open set $g \alpha$-open
(iv) $g \alpha$-homeomorphism [resp: $g \alpha \mathrm{c}$-homeomorphism] if f is bijective, $g \alpha$-continuous [resp: $g \alpha$-irresolute] and f^{-1} is $g \alpha$-continuous [resp: $g \alpha$-irresolute]

Definition 1.4: X is said to be
(i) compact [resp: nearly compact, semi-compact, g-compact, $g \alpha$-compact] if every open[resp: regular-open, semiopen, g-open, $g \alpha$-open] cover has a finite sub cover.
(ii) $\mathrm{T}_{0}\left[\right.$ resp: $\left.\mathrm{rT}_{0}, \mathrm{sT}_{0}, \mathrm{~g}_{0}\right]$ space if for each $\mathrm{x} \neq \mathrm{y} \in \mathrm{X} \exists \mathrm{U} \in \tau(\mathrm{X})[\mathrm{resp}: \mathrm{RO}(\mathrm{X}) ; \mathrm{SO}(\mathrm{X}) ; \mathrm{GO}(\mathrm{X})]$ containing either x or y .
(iii) $\mathrm{T}_{1}\left[\right.$ resp: $\left.\mathrm{rT}_{1}, \mathrm{~g}_{1},\right\}\left\{\mathrm{T}_{2}\left[\right.\right.$ resp: $\left.\left.\mathrm{rT}_{2}, \mathrm{~g}_{2},\right]\right\}$ space if for each $\mathrm{x} \neq \mathrm{y} \in \mathrm{X} \exists\{$ disjoint $\} \mathrm{U}, \mathrm{V} \in \tau(\mathrm{X})[\mathrm{resp}: \mathrm{RO}(\mathrm{X}) ; \mathrm{GO}(\mathrm{X})], \mathrm{G}$ and H containing x and y respectively.
(iv) $\mathrm{T}_{1 / 2}$ [resp: $\mathrm{rT}_{1 / 2}, \mathrm{sT}_{1 / 2}$] if every generalized [resp: regular generalized, semi-generalized] closed set is closed [resp: regular-closed, semi-closed]

2. g α-Continuity and product spaces:

Theorem 2.1: Let Y and $\left\{\mathrm{X}_{\alpha}: \alpha \in \mathrm{I}\right\}$ be Topological Spaces. Let $f: \mathrm{Y} \rightarrow \Pi \mathrm{X}_{\alpha}$ be a function. If f is $g \alpha$-continuous, then $\pi_{\alpha} \bullet f: \mathrm{Y} \rightarrow \mathrm{X}_{\alpha}$ is $\mathrm{g} \alpha$-continuous.

Converse of the above theorem is not true in general as shown by the following Example:
Example 2.1: Let $X=\{p, q, r, s\} ; \tau_{X}=\{\phi,\{p\},\{q\},\{s\},\{p, q\},\{p, s\},\{q, s\},\{p, q, r\},\{p, q, s\}, X\}, \quad Y_{1}=Y_{2}=\{a$, $\mathrm{b}\} ; \tau_{\mathrm{Y} 1}=\left\{\phi,\{\mathrm{a}\}, \mathrm{Y}_{1}\right\} ; \tau_{\mathrm{Y} 2}=\left\{\phi,\{\mathrm{a}\}, \mathrm{Y}_{2}\right\} ; \mathrm{Y}=\mathrm{Y}_{1} \times \mathrm{Y}_{2}=\{(\mathrm{a}, \mathrm{a}),(\mathrm{a}, \mathrm{b}),(\mathrm{b}, \mathrm{a}),(\mathrm{b}, \mathrm{b})\}$ and $\tau_{\mathrm{Y}}=\{\phi,\{(\mathrm{a}, \mathrm{a})\},\{(\mathrm{a}, \mathrm{a})$, (a, b) $\left.\},\{(\mathrm{a}, \mathrm{a}),(\mathrm{b}, \mathrm{a})\},\{(\mathrm{a}, \mathrm{a}),(\mathrm{a}, \mathrm{b}),(\mathrm{b}, \mathrm{a})\}, \mathrm{Y}_{1} \times \mathrm{Y}_{2}\right\}$.
Define $f: \mathrm{X} \rightarrow \mathrm{Y}$ by $f(\mathrm{p})=(\mathrm{a}, \mathrm{a}), f(\mathrm{q})=(\mathrm{b}, \mathrm{b}), f(\mathrm{r})=(\mathrm{a}, \mathrm{b}), f(\mathrm{~s})=(\mathrm{b}, \mathrm{a})$. It is easy to see that $\pi_{1} \bullet f$ and $\pi_{2} \bullet f$ are $g \alpha-$ continuous. However $\{(\mathrm{b}, \mathrm{b})\}$ is closed in Y but $f^{-1}(\{(\mathrm{~b}, \mathrm{~b})\})=\{\mathrm{q}\}$ is not $\mathrm{g} \alpha$-closed in X . Therefore f is not $\mathrm{g} \alpha$ continuous.

Theorem 2.2: If Y is $\mathrm{rT}_{1 / 2}$ and $\left\{\mathrm{X}_{\alpha}: \alpha \in \mathrm{I}\right\}$ be Topological Spaces. Let $f: \mathrm{Y} \rightarrow \Pi \mathrm{X}_{\alpha}$ be a function, then f is $\mathrm{g} \alpha$ continuous iff $\pi_{\alpha} \bullet f: \mathrm{Y} \rightarrow \mathrm{X}_{\alpha}$ is $\mathrm{g} \alpha$-continuous.

Corollary 2.3: (i) Let $f_{\alpha}: \mathrm{X}_{\alpha} \rightarrow \mathrm{Y}_{\alpha}$ be a function and let $f: \Pi \mathrm{X}_{\alpha} \rightarrow \Pi \mathrm{Y}_{\alpha}$ be defined by $f\left(\mathrm{x}_{\alpha}\right)_{\alpha \in \mathrm{I}}=\left(f_{\alpha}\left(\mathrm{x}_{\alpha}\right)\right)_{\alpha \in \mathrm{I}}$. If f is $\mathrm{g} \alpha-$ continuous then each f_{α} is $g \alpha$-continuous.
(ii) For each α, let X_{α} be $\mathrm{rT}_{1 / 2}$ and let $f_{\alpha}: \mathrm{X}_{\alpha} \rightarrow \mathrm{Y}_{\alpha}$ be a function and let $f: \Pi \mathrm{X}_{\alpha} \rightarrow \Pi \mathrm{Y}_{\alpha}$ be defined by $f\left(\mathrm{x}_{\alpha}\right)_{\alpha \in \mathrm{I}}=\left(f_{\alpha}\right.$ $\left.\left(\mathrm{x}_{\alpha}\right)\right)_{\alpha \in \mathrm{I}}$, then f is $\mathrm{g} \alpha$-continuous iff each f_{α} is $\mathrm{g} \alpha$-continuous.

3. $g \alpha_{i}$ spaces $i=0,1,2$:

Definition 3.1: X is said to be
(i) a $g \alpha_{0}$ space if for each pair of distinct points x, y of X, there exists a $g \alpha$-open set G containing either of the point x or y .
(ii)a $\mathrm{g} \alpha_{1}\left[\right.$ resp: $\left.\mathrm{g} \alpha_{2}\right]$ space if for each pair of distinct points x , y of X there exists [resp: disjoint] g α-open sets G and H containing x and y respectively.

Note 3:

(i) $\mathrm{rT}_{\mathrm{i}} \rightarrow \mathrm{T}_{\mathrm{i}} \rightarrow \alpha_{\mathrm{i}} \rightarrow \mathrm{g} \alpha_{\mathrm{i}}, \mathrm{i}=0,1,2$. but the converse is not true in general.
(ii) X is $g \alpha_{2} \rightarrow \mathrm{X}$ is $g \alpha_{1} \rightarrow \mathrm{X}$ is $\mathrm{g} \alpha_{0}$.

Example 3.1: Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ and $\tau=\{\phi, \mathrm{X}\}$, then X is $\mathrm{g} \alpha_{\mathrm{i}}$ but not rT_{0} and $\mathrm{T}_{0}, \mathrm{i}=0,1$, 2.for $\mathrm{i}=0,1,2$.
Example 3.2: Let $X=\{a, b, c, d\}$ and $\tau=\{\phi,\{b\},\{a, b\},\{b, c\},\{a, b, c\}, X\}$ then X is $\operatorname{not} g \alpha_{i}$ for $i=0,1,2$.
Remark 3.1: If X is $\mathrm{rT}_{1 / 2}$ then rT_{i} and $\mathrm{g} \alpha_{\mathrm{i}}$ are one and the same for $\mathrm{i}=0,1,2$.
Theorem 3.1: The following are true
(i) Every [resp: regular open] open subspace of $\mathrm{g} \alpha_{\mathrm{i}}$ space is $\mathrm{g} \alpha_{\mathrm{i}}$ for $\mathrm{i}=0,1,2$.
(ii)The product of $\mathrm{g} \alpha_{\mathrm{i}}$ spaces is again $\mathrm{g} \alpha_{\mathrm{i}}$ for $\mathrm{i}=0,1,2$.
(iii) $g \alpha$-continuous image of $T_{i}\left[\right.$ resp: $\left.r T_{i}\right]$ spaces is $g \alpha_{i}$ for $i=0,1,2$.
(iv) X is $\mathrm{g} \alpha_{0}$ iff $\forall \mathrm{x} \in \mathrm{X}, \exists \mathrm{U} \in \mathrm{g} \alpha \mathrm{O}(\mathrm{X})$ containing x such that the subspace U is $g \alpha_{0}$.
(v) X is $\mathrm{g} \alpha_{0}$ iff distinct points of X have disjoint $g \alpha$-closures.
(vi) If X is $\mathrm{g} \alpha_{1}$ then distinct points of X have disjoint $g \alpha$-closures.

Theorem 3.2: The following are equivalent:
(i) X is $\mathrm{g} \alpha_{1}$.
(ii) Each one point set is $g \alpha$-closed.
(iii)Each subset of X is the intersection of all $g \alpha$-open sets containing it.
(iv) For any $x \in X$, the intersection of all g α-open sets containing the point is the set $\{x\}$.

Theorem 3.3: Suppose x is a $\mathrm{g} \alpha$-limit point of a subset of A of a $\mathrm{g} \alpha_{1}$ space X . Then every neighborhood of x contains infinitely many distinct points of A.

Theorem 3.4: The following are true
(i) X is $\mathrm{g} \alpha_{2}$ iff the intersection of all $\mathrm{g} \alpha$-closed, $\mathrm{g} \alpha$-neighborhoods of each point of the space is reduced to that point.

S. Balasubramanian*1 and M. Lakshmi Sarada ${ }^{2}$ /g α-separation axioms/IJMA- 2(12), Dec.-2011, Page: 2702-2711

(ii) If to each point $\mathrm{x} \in \mathrm{X}$, there exist a $\mathrm{g} \alpha$-closed, $\mathrm{g} \alpha$-open subset of X containing x which is also a $\mathrm{g} \alpha_{2}$ subspace of X , then X is $\mathrm{g} \alpha_{2}$.
(iii) If X is $\mathrm{g} \alpha_{2}$ then the diagonal Δ in $\mathrm{X} \times \mathrm{X}$ is g α-closed.
(iv) In $g \alpha_{2}$-space, $g \alpha$-limits of sequences, if exists, are unique.
(v) In a $g \alpha_{2}$ space, a point and disjoint $g \alpha$-compact subspace can be separated by disjoint $g \alpha$-open sets.
(vi) Every g α-compact subspace of a $g \alpha_{2}$ space is $g \alpha$-closed.

Corollary 3.1: The following are true
(i) In a $\mathrm{T}_{1}\left[\right.$ resp: $\left.\mathrm{rT}_{1} ; \mathrm{g}_{1}\right]$ space, each singleton set is $\mathrm{g} \alpha$-closed.
(ii) If X is $\mathrm{T}_{1}\left[\mathrm{resp}: \mathrm{r}_{1} ; \mathrm{g}_{1}\right]$ then distinct points of X have disjoint $\mathrm{g} \alpha$-closures.
(iii)If X is T_{2} [resp: $\mathrm{rT}_{2} ; \mathrm{g}_{2}$] then the diagonal Δ in $\mathrm{X} \times \mathrm{X}$ is $\mathrm{g} \alpha$-closed.
(iv) Show that in a T_{2} [resp: $\mathrm{rT}_{2} ; \mathrm{g}_{2}$] space, a point and disjoint compact[resp: nearly-compact; g-compact] subspace can be separated by disjoint $g \alpha$-open sets
(v) Every compact [resp: nearly-compact; g-compact] subspace of a $\mathrm{T}_{2}\left[\right.$ resp: $\left.\mathrm{r} \mathrm{T}_{2} ; \mathrm{g}_{2}\right]$ space is $\mathrm{g} \alpha$-closed.

Theorem 3.5: The following are true
(i) If $f: \mathrm{X} \rightarrow \mathrm{Y}$ is injective, $\mathrm{g} \alpha$-irresolute and Y is $\mathrm{g} \alpha_{\mathrm{i}}$ then X is $\mathrm{g} \alpha_{\mathrm{i}}, \mathrm{i}=0,1,2$.
(ii) If $f: \mathrm{X} \rightarrow \mathrm{Y}$ is injective, $\mathrm{g} \alpha$-continuous and Y is T_{i} then X is $\mathrm{g} \alpha_{\mathrm{i}}, \mathrm{i}=0,1,2$.
(iii) If $f: \mathrm{X} \rightarrow \mathrm{Y}$ is injective, r -irresolute[r-continuous] and Y is $\mathrm{r} \mathrm{T}_{\mathrm{i}}$ then X is $g \alpha_{\mathrm{i}}, \mathrm{i}=0,1,2$.
(iv) The property of being a space is $g \alpha_{0}$ is a $g \alpha$-Topological property.
(v) Let $f: \mathrm{X} \rightarrow \mathrm{Y}$ is a g $\alpha \mathrm{c}$-homeomorphism, then X is $\mathrm{g} \alpha_{\mathrm{i}}$ if Y is $g \alpha_{\mathrm{i}}, \mathrm{i}=0,1,2$.
(vi) Let X be T_{1} and $f: \mathrm{X} \rightarrow \mathrm{Y}$ be $\mathrm{g} \alpha$-closed surjection. Then X is $\mathrm{g} \alpha_{1}$.
(vii) Every $g \alpha$-irresolute map from a $g \alpha$-compact space into a $\mathrm{g} \alpha_{2}$ space is $\mathrm{g} \alpha$-closed.
(viii) Any $\mathrm{g} \alpha$-irresolute bijection from a $\mathrm{g} \alpha$-compact space onto a $\mathrm{g} \alpha_{2}$ space is a g $\alpha \mathrm{c}$-homeomorphism.
(ix) Any g α-continuous bijection from a $g \alpha$-compact space onto a $\mathrm{g} \alpha_{2}$ space is a $\mathrm{g} \alpha$-homeomorphism.

Theorem 3.6: The following are equivalent:
(i) X is $\mathrm{g} \alpha_{2}$.
(ii) For each pair $x \neq y \in X \exists$ a g α-open, $g \alpha$-closed set V such that $x \in V$ and $y \notin V$, and
(iii)For each pair $\mathrm{x} \neq \mathrm{y} \in \mathrm{X} \exists f: \mathrm{X} \rightarrow[0,1]$ such that $f(\mathrm{x})=0$ and $f(\mathrm{y})=1$ and f is $\mathrm{g} \alpha$-continuous.

Theorem 3.7: If $f: X \rightarrow Y$ is $g \alpha$-irresolute and Y is $g \alpha_{2}$ then
(i) the set $\mathrm{A}=\left\{\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right): f\left(\mathrm{x}_{1}\right)=f\left(\mathrm{x}_{2}\right)\right\}$ is $\mathrm{g} \alpha$-closed in $\mathrm{X} \times \mathrm{X}$.
(ii) $\mathrm{G}(f)$, g α aph of f, is $\mathrm{g} \alpha$-closed in $\mathrm{X} \times \mathrm{Y}$.

Theorem 3.8: If $f: \mathrm{X} \rightarrow \mathrm{Y}$ is $\mathrm{g} \alpha$-open and $\mathrm{A}=\left\{\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right): f\left(\mathrm{x}_{1}\right)=f\left(\mathrm{x}_{2}\right)\right\}$ is closed in $\mathrm{X} \times \mathrm{X}$. Then Y is $\mathrm{g} \alpha_{2}$.
Theorem 3.9: Let Y and $\left\{\mathrm{X}_{\alpha}: \alpha \in \mathrm{I}\right\}$ be Topological Spaces. If $f: \mathrm{Y} \rightarrow \Pi \mathrm{X}_{\alpha}$ be a $\mathrm{g} \alpha$-continuous function and Y is $\mathrm{r}_{1 / 2}$, then ΠX_{α} and each X_{α} are $g \alpha_{i}, i=0,1,2$.

Theorem 3.10: Let X be an arbitrary space, R an equivalence relation in X and $p: \mathrm{X} \rightarrow \mathrm{X} / \mathrm{R}$ the identification map. If $\mathrm{R} \subset \mathrm{X} \times \mathrm{X}$ is $\mathrm{g} \alpha$-closed in $\mathrm{X} \times \mathrm{X}$ and p is $\mathrm{g} \alpha$-open map, then X / R is $\mathrm{g} \alpha_{2}$.

Proof: Let $p(\mathrm{X}), p(\mathrm{y})$ be distinct members of X / R. Since x and y are not related, $\mathrm{R} \subset \mathrm{X} \times \mathrm{X}$ is g α-closed in $\mathrm{X} \times \mathrm{X}$. There are $\mathrm{g} \alpha$-open sets U and V such that $\mathrm{x} \in \mathrm{U}, \mathrm{y} \in \mathrm{V}$ and $\mathrm{U} \times \mathrm{V} \subset \mathrm{R}^{\mathrm{c}}$. Thus $\{p(\mathrm{U}), p(\mathrm{~V})\}$ are disjoint and also $\mathrm{g} \alpha$-open in X / R since p is $\mathrm{g} \alpha$-open.

Theorem 3.11: The following four properties are equivalent:
(i) X is $\mathrm{g} \alpha_{2}$
(ii) Let $x \in X$. For each $y \neq x, \exists U \in g \alpha O(X)$ such that $x \in U$ and $y \notin g \alpha c l(U)$
(iii)For each $x \in X, \cap\{g \alpha c l(U) / U \in g \alpha O(X)$ and $x \in U\}=\{x\}$.
(iv) The diagonal $\Delta=\{(x, x) / x \in X\}$ is $g \alpha$-closed in $X \times X$.

Proof: (i) \Rightarrow (ii) Let $x \in X$ and $y \neq x$. Then there are disjoint $g \alpha$-open sets U and V such that $x \in U$ and $y \in V$. Clearly V^{c} is $\mathrm{g} \alpha$-closed, $\mathrm{g} \alpha \mathrm{cl}(\mathrm{U}) \subset \mathrm{V}^{\mathrm{c}}, \mathrm{y} \notin \mathrm{V}^{\mathrm{c}}$ and therefore $\mathrm{y} \notin \mathrm{g} \alpha \mathrm{cl}(\mathrm{U})$.
(ii) \Rightarrow (iii) If $y \neq x$, then $\exists \mathrm{U} \in \mathrm{g} \alpha \mathrm{O}(\mathrm{X})$ s.t. $\mathrm{x} \in \mathrm{U}$ and $\mathrm{y} \notin \mathrm{g} \alpha \mathrm{cl}(\mathrm{U})$. So $\mathrm{y} \notin \cap\{\mathrm{g} \alpha \mathrm{cl}(\mathrm{U}) / \mathrm{U} \in \mathrm{g} \alpha \mathrm{O}(\mathrm{X})$ and $\mathrm{x} \in \mathrm{U}\}$.
(iii) \Rightarrow (iv) We prove Δ^{c} is $\mathrm{g} \alpha$-open. Let $(\mathrm{x}, \mathrm{y}) \notin \Delta$. Then $\mathrm{y} \neq \mathrm{x}$ and $\cap\{\mathrm{g} \alpha \mathrm{cl}(\mathrm{U}) / \mathrm{U} \in \mathrm{g} \alpha \mathrm{O}(\mathrm{X})$ and $\mathrm{x} \in \mathrm{U}\}=\{\mathrm{x}\}$ there is some $U \in \operatorname{g\alpha O}(X)$ with $x \in U$ and $y \notin \operatorname{g\alpha cl}(U)$. Since $U \cap(g \alpha c l(U))^{c}=\phi, U x(\operatorname{g\alpha cl}(U))^{c}$ is a g α-open set such that $(x$, $\mathrm{y}) \in \mathrm{U} \times(\mathrm{g} \alpha \mathrm{cl}(\mathrm{U}))^{\mathrm{c}} \subset \Delta^{\mathrm{c}}$.
(iv) \Rightarrow (i) $y \neq x$, then $(x, y) \notin \Delta$ and thus there exist $g \alpha$-open sets U and V such that $(x, y) \in U \times V$ and $(U \times V) \cap \Delta=\phi$. Clearly, for the $g \alpha$-open sets U and V we have; $x \in U, y \in V$ and $U \cap V=\phi$.

4. $g \alpha-R_{i}$ spaces; $i=0,1$:.

Definition 4.1: Let $x \in X$. Then
(i) $\mathrm{g} \alpha$-kernel of x is defined and denoted by $\operatorname{Ker}_{\{g \alpha\}}\{\mathrm{x}\}=\cap\{\mathrm{U}: \mathrm{U} \in \mathrm{g} \alpha \mathrm{O}(\mathrm{X})$ and $\mathrm{x} \in \mathrm{U}\}$
(ii) $\operatorname{Ker}_{\{g \alpha\}} \mathrm{F}=\cap\{\mathrm{U}: \mathrm{U} \in \mathrm{g} \alpha \mathrm{O}(\mathrm{X})$ and $\mathrm{F} \subset \mathrm{U}\}$

Lemma 4.1: Let $A \subset X$, then $\operatorname{Ker}_{\{g \alpha\}}\{A\}=\{x \in X: \operatorname{gacl}\{x\} \cap A \neq \phi$.
Lemma 4.2: Let $x \in X$. Then $y \in \operatorname{Ker}_{\{g \alpha\}}\{x\}$ iff $x \in \operatorname{gocl}\{y\}$.
Proof: Suppose that $y \notin \operatorname{Ker}_{\{g \alpha\}}\{x\}$. Then $\exists V \in g \alpha O(X)$ containing x such that $y \notin V$. Therefore we have $x \notin \operatorname{g\alpha cl}\{y\}$. The proof of converse part can be done similarly.

Lemma 4.3: For any points $x \neq y \in X$, the following are equivalent:
(i) $\operatorname{Ker}_{\{g \alpha\}\{g \alpha\}}\{x\} \neq \operatorname{Ker}_{\{g \alpha\}}\{y\}$;
(ii) $\operatorname{gacl}\{x\} \neq \operatorname{gacl}\{y\}$.

Proof: (i) \Rightarrow (ii): Let $\operatorname{Ker}_{\{g \alpha\}}\{x\} \neq \operatorname{Ker}_{\{g \alpha\}}\{y\}$, then $\exists z \in X$ such that $z \in \operatorname{Ker}_{\{g \alpha\}}\{x\}$ and $z \notin \operatorname{Ker}_{\{g \alpha\}}\{y\}$. From $z \in \operatorname{Ker}_{\{g \alpha\}}\{x\}$ it follows that $\{x\} \cap \operatorname{gacl}\{z\} \neq \phi \Rightarrow x \in \operatorname{gacl}\{z\}$. By $z \notin \operatorname{Ker}_{\{g \alpha\}}\{y\}$, we have $\{y\} \cap \operatorname{g\alpha cl}\{z\}=\phi$. Since $x \in$ $\operatorname{g\alpha cl}\{z\}, \operatorname{g\alpha cl}\{x\} \subset \operatorname{g\alpha cl}\{z\}$ and $\{y\} \cap \operatorname{g\alpha cl}\{x\}=\phi$. Therefore $\operatorname{g\alpha cl}\{x\} \neq \operatorname{g\alpha cl}\{y\}$. Now $\operatorname{Ker}_{\{g \alpha\}}\{x\} \neq \operatorname{Ker}_{\{g \alpha\}}\{y\} \Rightarrow$ $\operatorname{g\alpha cl}\{x\} \neq \operatorname{gacl}\{y\}$.
(ii) \Rightarrow (i): If $\operatorname{g\alpha cl}\{x\} \neq \operatorname{g\alpha cl}\{y\}$. Then $\exists z \in X$ such that $z \in \operatorname{g~} \alpha c l\{x\}$ and $z \notin \operatorname{g\alpha cl}\{y\}$. Then \exists a g α-open set containing z and therefore containing x but not y, namely, $y \notin \operatorname{Ker}_{\{g \alpha\}}\{x\}$. Hence $\operatorname{Ker}_{\{g \alpha\}}\{x\} \neq \operatorname{Ker}_{\{g \alpha\}}\{y\}$.

Definition 4.2: X is said to be
(i) $\mathrm{g} \alpha-\mathrm{R}_{0}$ iff $\mathrm{g} \alpha \mathrm{cl}\{\mathrm{x}\} \subseteq \mathrm{G}$ whenever $\mathrm{x} \in \mathrm{G} \in \mathrm{g} \alpha \mathrm{O}(\mathrm{X})$.
(ii) weakly $g \alpha-R_{0}$ iff $\cap \operatorname{g\alpha cl}\{x\}=\phi$.
(iii) $g \alpha-R_{1}$ iff for $\mathrm{x}, \mathrm{y} \in \mathrm{X}$ such that $\operatorname{g\alpha cl}\{\mathrm{x}\} \neq \operatorname{g\alpha cl}\{\mathrm{y}\} \exists$ disjoint U ; $\mathrm{V} \in \mathrm{g} \alpha \mathrm{O}(\mathrm{X})$ such that $\operatorname{g\alpha cl}\{\mathrm{x}\} \subseteq \mathrm{U}$ and $\operatorname{g\alpha cl}\{y\} \subseteq V$.

Example 4.1: Let $X=\{a, b, c, d\}$ and $\tau=\{\phi,\{b\},\{a, b\},\{b, c\},\{a, b, c\}, X\}$, then X is not weakly $g \alpha R_{0}$ and not $\mathrm{g} \alpha \mathrm{R}_{\mathrm{i}}, \mathrm{i}=0,1$.

Remark 4.1:

(i) $r-R_{i} \Rightarrow R_{i} \Rightarrow \alpha R_{i} \Rightarrow g \alpha R_{i}, i=0,1$.
(ii) Every weakly- R_{0} space is weakly $g \alpha \mathrm{R}_{0}$.

Lemma 4.1: Every $g \alpha \mathrm{R}_{0}$ space is weakly $\mathrm{g} \alpha \mathrm{R}_{0}$.
Converse of the above Theorem is not true in general by the following Examples.
Example 4.2: Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$ and $\tau=\{\phi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{d}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{d}\},\{\mathrm{b}, \mathrm{d}\},\{\mathrm{a}, \mathrm{b}, \mathrm{c}\},\{\mathrm{a}, \mathrm{b}, \mathrm{d}\}, \mathrm{X}\}$. Clearly, X is weakly $g \alpha R_{0}$, since $\cap \operatorname{g\alpha cl}\{x\}=\phi$. But it is not $g \alpha R_{0}$, for $\{a\} \subset X$ is $g \alpha$-open and $g \alpha c l\{a\}=\{a, b\} \not \subset\{a\}$.

Theorem 4.1: Every $g \alpha$-regular space X is $g \alpha_{2}$ and $g \alpha-R_{0}$.
Proof: Let X be $g \alpha$-regular and let $x \neq y \in X$. By Lemma 4.1, $\{x\}$ is either $g \alpha$-open or $g \alpha$-closed. If $\{x\}$ is $g \alpha$-open, $\{x\}$ is $g \alpha$-open and hence $g \alpha$-clopen. Thus $\{x\}$ and $X-\{x\}$ are separating $g \alpha$-open sets. Similarly for $\{x\}$ is $g \alpha$ closed, $\{x\}$ and $X-\{x\}$ are separating $g \alpha$-closed sets. Thus X is $g \alpha_{2}$ and $g \alpha-R_{0}$.

Theorem 4.2: X is $\mathrm{g} \alpha-\mathrm{R}_{0}$ iff given $\mathrm{x} \neq \mathrm{y} \in \mathrm{X} ; \operatorname{g} \alpha \mathrm{cl}\{\mathrm{x}\} \neq \operatorname{g\alpha cl}\{\mathrm{y}\}$.
Proof: Let X be $g \alpha-R_{0}$ and let let $x, \neq y \in X$. Suppose U is a $g \alpha$-open set containing x but not y, then $y \in g \alpha c l\{y\} \subset X$ U and so $\mathrm{x} \notin \operatorname{g\alpha cl}\{\mathrm{y}\}$. Hence $\operatorname{g\alpha cl}\{\mathrm{x}\} \neq \operatorname{g\alpha cl}\{\mathrm{y}\}$.

Conversely, let $x, \neq y \in X$ such that $\operatorname{g\alpha cl}\{x\} \neq \operatorname{g\alpha cl}\{y\} \Rightarrow \operatorname{g\alpha cl}\{x\} \subset X-\operatorname{g\alpha cl}\{y\}=U($ say $)$ a $g \alpha$-open set in X. This is true for every $\operatorname{g} \alpha c l\{x\}$. Thus $\cap \operatorname{g\alpha cl}\{x\} \subseteq U$ where $x \in \operatorname{g\alpha cl}\{x\} \subseteq U \in \operatorname{g\alpha O}(X)$, which in turn implies $\cap \operatorname{g\alpha cl}\{x\} \subseteq U$ where $x \in U \in g \alpha O(X)$. Hence X is $g \alpha R_{0}$.

Theorem 4.3: X is weakly $g \alpha R_{0}$ iff $\operatorname{Ker}_{\{g \alpha\}}\{x\} \neq X$ for any $x \in X$.
Proof: Let $\mathrm{x}_{0} \in \mathrm{X}$ such that $\operatorname{ker}_{\{g \alpha\}}\left\{\mathrm{x}_{0}\right\}=\mathrm{X}$. This means that x_{0} is not contained in any proper $\mathrm{g} \alpha$-open subset of X .
Thus x_{0} belongs to the $g \alpha$-closure of every singleton set. Hence $x_{0} \in \cap \operatorname{g\alpha cl}\{x\}$, a contradiction.
Conversely assume $\operatorname{Ker}_{\{g \alpha\}}\{x\} \neq X$ for any $x \in X$. If there is an $x_{0} \in X$ such that $x_{0} \in \cap\{\operatorname{g\alpha cl}\{x\}\}$, then every g α-open set containing x_{0} must contain every point of X. Therefore, the unique $g \alpha$-open set containing x_{0} is X. Hence $\operatorname{Ker}_{\{g \alpha\}}\left\{\mathrm{x}_{0}\right\}=\mathrm{X}$, which is a contradiction. Thus X is weakly $g \alpha-\mathrm{R}_{0}$.

Theorem 4.4: The following are equivalent:
(i) X is $\mathrm{g} \alpha-\mathrm{R}_{0}$ space.
(ii) For each $x \in X, g \alpha c l\{x\} \subset \operatorname{Ker}_{\{g \alpha\}}\{x\}$
(iii) For any $g \alpha$-closed set F and a point $x \notin F, \exists U \in g \alpha O(X)$ such that $x \notin U$ and $F \subset U$.
(iv) Each $g \alpha$-closed set F can be expressed as $F=\cap\{G$: G is $g \alpha$-open and $F \subset G\}$.
(v) Each $g \alpha$-open set G can be expressed as $G=\cup\{A$: A is $g \alpha$-closed and $A \subset G\}$.
(vi) For each $\mathrm{g} \alpha$-closed set $\mathrm{F}, \mathrm{x} \notin \mathrm{F}$ implies $\mathrm{g} \alpha$-cl $\{\mathrm{x}\} \cap \mathrm{F}=\phi$.

Proof: (i) \Rightarrow (ii) For any $x \in X$, we have $\operatorname{Ker}_{\{g \alpha\}}\{x\}=\cap\{U: U \in g \alpha O(X)$ and $x \in U\}$. Since X is $g \alpha-R_{0}$, each g α-open set containing x contains $\operatorname{g\alpha cl}\{x\}$. Hence $\operatorname{g\alpha cl}\{x\} \subset \operatorname{Ker}_{\{g \alpha\}}\{x\}$.
(ii) \Rightarrow (iii) Let $x \notin \mathrm{~F} \in \mathrm{~g} \alpha \mathrm{C}(\mathrm{X})$. Then for any $\mathrm{y} \in \mathrm{F}$; $\operatorname{g\alpha cl}\{\mathrm{y}\} \subset \mathrm{F}$ and so $\mathrm{x} \notin \mathrm{g} \alpha \mathrm{cl}\{\mathrm{y}\} \Rightarrow \mathrm{y} \notin \mathrm{g} \alpha \mathrm{cl}\{\mathrm{x}\}$ that is $\exists \mathrm{U}_{\mathrm{y}} \in \mathrm{g} \alpha \mathrm{O}(\mathrm{X})$ such that $\mathrm{y} \in \mathrm{U}_{\mathrm{y}}$ and $\mathrm{x} \notin \mathrm{U}_{\mathrm{y}} \forall \mathrm{y} \in \mathrm{F}$. Let $\mathrm{U}=\cup\left\{\mathrm{U}_{\mathrm{y}}\right.$: U_{y} is $g \alpha$-open, $\mathrm{y} \in \mathrm{U}_{\mathrm{y}}$ and $\left.\mathrm{x} \notin \mathrm{U}_{\mathrm{y}}\right\}$. Then U is $g \alpha$-open such that $\mathrm{x} \notin \mathrm{U}$ and $\mathrm{F} \subset \mathrm{U}$.
(iii) \Rightarrow (iv) Let F be any $g \alpha$-closed set and $N=\cap\{G$: G is $g \alpha$-open and $F \subset G\}$. Then $F \subset N \rightarrow(1)$.

Let $x \notin F$, then by (iii) $\exists \mathrm{G} \in \mathrm{g} \alpha \mathrm{O}(\mathrm{X})$ such that $\mathrm{x} \notin \mathrm{G}$ and $\mathrm{F} \subset \mathrm{G}$.
Hence $x \notin N$ which implies $x \in N \Rightarrow x \in F$. Hence $N \subset F \rightarrow(2)$.
Therefore from (1) and (2), each g α-closed set $\mathrm{F}=\cap\{\mathrm{G}$: G is $\mathrm{g} \alpha$-open and $\mathrm{F} \subset \mathrm{G}\}$
(iv) $\Rightarrow(\mathbf{v})$ obvious.
$(\mathbf{v}) \Rightarrow(\mathbf{v i})$ Let $\mathrm{x} \notin \mathrm{F} \in \mathrm{g} \alpha \mathrm{C}(\mathrm{X})$. Then $\mathrm{X}-\mathrm{F}=\mathrm{G}$ is a $\mathrm{g} \alpha$-open set containing x . Then by (v), G can be expressed as the union of $g \alpha$-closed sets A contained in G, and so there is an $M \in g \alpha C(X)$ such that $x \in M \subset G$; and hence $g \alpha c l\{x\} \subset G$ which implies $\operatorname{g\alpha cl}\{x\} \cap F=\phi$.
$(\mathbf{v i}) \Rightarrow$ (i) Let $\mathrm{x} \in \mathrm{G} \in \mathrm{g} \alpha \mathrm{O}(\mathrm{X})$. Then $\mathrm{x} \notin(\mathrm{X}-\mathrm{G})$, which is a $\mathrm{g} \alpha$-closed set. Therefore by (vi) $\mathrm{g} \alpha \mathrm{cl}\{\mathrm{x}\} \cap(\mathrm{X}-\mathrm{G})=\phi$, which implies that $\operatorname{g\alpha cl}\{\mathrm{x}\} \subseteq \mathrm{G}$. Thus X is $\mathrm{g} \alpha \mathrm{R}_{0}$ space.

Theorem 4.5: Let $f: \mathrm{X} \rightarrow \mathrm{Y}$ be a g α-closed one-one function. If X is weakly $g \alpha-\mathrm{R}_{0}$, then so is Y .
Theorem 4.6: If X is weakly $g \alpha-R_{0}$, then for every space $Y, X \times Y$ is weakly $g \alpha-R_{0}$.
Proof: $\cap \operatorname{g\alpha cl}\{(\mathrm{x}, \mathrm{y})\} \subseteq \cap\{\operatorname{g\alpha cl}\{\mathrm{x}\} \times \operatorname{g} \alpha c l\{y\}\}=\cap[\operatorname{g\alpha cl}\{\mathrm{x}\}] \times[\operatorname{g} \alpha c l\{y\}] \subseteq \phi \times \mathrm{Y}=\phi$. Hence $\mathrm{X} \times \mathrm{Y}$ is $\mathrm{g} \alpha \mathrm{R}_{0}$.

Corollary 4.1:

(i) If X and Y are weakly $g \alpha R_{0}$, then $X \times Y$ is weakly $g \alpha R_{0}$.
(ii) If X and Y are (weakly-) R_{0}, then $X \times Y$ is weakly $g \alpha R_{0}$.
(iii)If Xand Y are $g \alpha R_{0}$, then $X \times Y$ is weakly $g \alpha R_{0}$.
(iv) If X is $g \alpha R_{0}$ and Y are weakly R_{0}, then $X \times Y$ is weakly $g \alpha R_{0}$.

Theorem 4.7: X is $g \alpha R_{0}$ iff for any $x, y \in X, \operatorname{gacl}\{x\} \neq \operatorname{gacl}\{y\} \Rightarrow \operatorname{g\alpha cl}\{x\} \cap \operatorname{gacl}\{y\}=\phi$.

Proof: Let X is $g \alpha R_{0}$ and $x, y \in X$ such that $\operatorname{g\alpha cl}\{x\} \neq \operatorname{g\alpha cl}\{y\}$.Then $\exists \mathrm{z} \in \operatorname{g\alpha cl}\{x\}$ such that $z \notin \operatorname{g\alpha cl}\{y\}$ (or $z \in \operatorname{g\alpha cl}\{y\}$) such that $z \notin \operatorname{g} \alpha c l\{x\}$. There exists $V \in g \alpha O(X)$ such that $y \notin V$ and $z \in V$; hence $x \in V$. Therefore, $\mathrm{x} \notin \mathrm{g} \alpha \mathrm{cl}\{\mathrm{y}\}$.

Thus $x \in[\operatorname{gacl}\{y\}]^{c} \in \operatorname{g\alpha O}(X)$, which implies $\operatorname{g\alpha cl}\{x\} \subset[\operatorname{g\alpha cl}\{y\}]^{c}$ and $\operatorname{gacl}\{x\} \cap \operatorname{gacl}\{y\}=\phi$. The proof for otherwise is similar.

Sufficiency: Let $x \in V \in \operatorname{g\alpha O}(X)$. We show that $g \alpha c l\{x\} \subset V$. Let $y \notin V$, i.e., $y \in V^{c}$. Then $x \neq y$ and $x \notin \operatorname{g\alpha cl}\{y\}$. Hence $\operatorname{g} \alpha c l\{x\} \neq \operatorname{g} \alpha c l\{y\}$. But $\operatorname{g} \alpha \operatorname{cl}\{x\} \cap \operatorname{g\alpha cl}\{y\}=\phi$. Hence $y \notin \operatorname{g} \alpha c l\{x\}$. Therefore $g \alpha c l\{x\} \subset V$.

Theorem 4.8: X is $g \alpha R_{0}$ iff for any points $x, y \in X, \operatorname{Ker}_{\{g \alpha\}}\{x\} \neq \operatorname{Ker}_{\{g \alpha\}}\{y\} \Rightarrow \operatorname{Ker}_{\{g \alpha\}}\{x\} \cap \operatorname{Ker}_{\{g \alpha\}}\{y\}=\phi$.
Proof: Suppose X is $g \alpha R_{0}$. Thus by Lemma 4.3 for any $x, y \in X$ if $\operatorname{Ker}_{\{g \alpha\}}\{x\} \neq \operatorname{Ker}_{\{g \alpha\}}\{y\}$ then $\operatorname{gacl}\{x\} \neq \operatorname{g\alpha cl}\{y\}$. Assume that $z \in \operatorname{Ker}_{\{g \alpha\}}\{x\} \cap \operatorname{Ker}_{\{g \alpha\}}\{y\}$. By $z \in \operatorname{Ker}_{\{g \alpha\}}\{x\}$ and Lemma 4.2, it follows that $x \in \operatorname{gacl}\{z\}$. Since $x \in$ $\operatorname{g\alpha cl}\{z\}, \operatorname{g\alpha cl}\{x\}=\operatorname{g\alpha cl}\{z\}$. Similarly, we have $\operatorname{g\alpha cl}\{y\}=\operatorname{g\alpha cl}\{z\}=\operatorname{g\alpha cl}\{x\}$. This is a contradiction. Therefore, we have $\operatorname{Ker}_{\{g \alpha\}}\{x\} \cap \operatorname{Ker}_{\{g \alpha\}}\{y\}=\phi$.

Conversely, let $\mathrm{x}, \mathrm{y} \in \mathrm{X}$, s.t. $\operatorname{g\alpha cl}\{\mathrm{x}\} \neq \operatorname{g\alpha cl}\{\mathrm{y}\}$, then by Lemma 4.3, $\operatorname{Ker}_{\{g \alpha\}}\{\mathrm{x}\} \neq \operatorname{Ker}_{\{g \alpha\}}\{\mathrm{y}\}$. Hence by hypothesis $\operatorname{Ker}_{\{g \alpha\}}\{x\} \cap \operatorname{Ker}_{\{g \alpha\}}\{y\}=\phi$ which implies $\operatorname{g\alpha cl}\{x\} \cap \operatorname{g\alpha cl}\{y\}=\phi$ Because $z \in \operatorname{gacl}\{x\}$ implies that $x \in \operatorname{Ker}_{\{g \alpha\}}\{z\}$ and therefore $\operatorname{Ker}_{\{g \alpha\}}\{x\} \cap \operatorname{Ker}_{\{g \alpha\}}\{z\} \neq \phi$ Therefore by Theorem 4.7 X is a $g \alpha \mathrm{R}_{0}$ space.

Theorem 4.9: The following are equivalent:
(i) X is a $g \alpha-\mathrm{R}_{0}$ space.
(ii) For any $\mathrm{A} \neq \phi$ and $\mathrm{G} \in \mathrm{g} \alpha \mathrm{O}(\mathrm{X})$ such that $\mathrm{A} \cap \mathrm{G} \neq \phi \exists \mathrm{F} \in \mathrm{g} \alpha \mathrm{C}(\mathrm{X})$ such that $\mathrm{A} \cap \mathrm{F} \neq \phi$ and $\mathrm{F} \subset \mathrm{G}$.

Proof: (i) \Rightarrow (ii): Let $A \neq \phi$ and $G \in g \alpha O(X)$ such that $A \cap G \neq \phi$. There exists $x \in A \cap G$. Since $x \in G \in g \alpha O(X)$, $\operatorname{g\alpha cl}\{x\} \subset G$. Set $F=\operatorname{g\alpha cl}\{x\}$, then $F \in g \alpha C(X), F \subset G$ and $A \cap F \neq \phi$
(ii) \Rightarrow (i): Let $\mathrm{G} \in \mathrm{g} \alpha \mathrm{O}(\mathrm{X})$ and $\mathrm{x} \in \mathrm{G}$. $\mathrm{By}(2), \mathrm{g} \alpha \mathrm{cl}\{\mathrm{x}\} \subset \mathrm{G}$. Hence X is $\mathrm{g} \alpha-\mathrm{R}_{0}$.

Theorem 4.10: The following are equivalent:
(i) X is a $g \alpha-\mathrm{R}_{0}$ space;
(ii) $\mathrm{x} \in \operatorname{g\alpha cl}\{\mathrm{y}\}$ iff $\mathrm{y} \in \operatorname{g} \alpha c l\{\mathrm{x}\}$, for any points x and y in X .

Proof: (i) \Rightarrow (ii): Assume X is $g \alpha R_{0}$. Let $x \in \operatorname{g\alpha cl}\{y\}$ and D be any $g \alpha$-open set such that $y \in D$. Now by hypothesis, $\mathrm{x} \in \mathrm{D}$. Therefore, every $\mathrm{g} \alpha$-open set which contain y contains x . Hence $\mathrm{y} \in \operatorname{g\alpha cl}\{\mathrm{x}\}$.
(ii) \Rightarrow (i): Let U be a $g \alpha$-open set and $x \in U$. If $y \notin U$, then $x \notin \operatorname{g\alpha cl}\{y\}$ and hence $y \notin \operatorname{g\alpha cl}\{x\}$. This implies that $\mathrm{g} \alpha \mathrm{cl}\{\mathrm{x}\} \subset \mathrm{U}$. Hence X is $\mathrm{g} \alpha \mathrm{R}_{0}$.

Theorem 4.11: The following are equivalent:
(i) X is a $g \alpha \mathrm{R}_{0}$ space;
(ii) If F is $\mathrm{g} \alpha$-closed, then $\mathrm{F}=\operatorname{Ker}_{\{g \alpha\}}(\mathrm{F})$;
(iii) If F is $g \alpha$-closed and $x \in F$, then $\operatorname{Ker}_{\{g \alpha\}}\{x\} \subseteq F$;
(iv) If $x \in X$, then $\operatorname{Ker}_{\{g \alpha\}}\{x\} \subset \operatorname{g\alpha cl}\{x\}$.

Proof: (i) \Rightarrow (ii): Let $x \notin F \in g \alpha C(X) \Rightarrow(X-F) \in \operatorname{g\alpha O}(X)$ and contains x. For X is $g \alpha R_{0}, g \alpha c l(\{x\}) \subset(X-F)$. Thus $\operatorname{g\alpha cl}(\{x\}) \cap \mathrm{F}=\phi$ and $\mathrm{x} \notin \operatorname{Ker}_{\{g \alpha\}}(\mathrm{F})$. Hence $\operatorname{Ker}_{\{g \alpha\}}(\mathrm{F})=\mathrm{F}$.
(ii) \Rightarrow (iii): $\mathrm{A} \subset \mathrm{B} \Rightarrow \operatorname{Ker}_{\{\mathrm{g} \alpha\}}(\mathrm{A}) \subset \operatorname{Ker}_{\{g \alpha\}}(\mathrm{B})$. Therefore, by (2) $\operatorname{Ker}_{\{g \alpha\}}\{\mathrm{x}\} \subset \operatorname{Ker}_{\{g \alpha\}}(\mathrm{F})=\mathrm{F}$.
(iii) \Rightarrow (iv): Since $x \in \operatorname{g\alpha cl}\{x\}$ and $g \alpha c l\{x\}$ is $g \alpha$-closed, by (3) $\operatorname{Ker}_{\{g \alpha\}}\{x\} \subset \operatorname{g\alpha cl}\{x\}$.
(iv) \Rightarrow (i): Let $x \in \operatorname{g\alpha cl}\{y\}$. Then by Lemma $4.2 \mathrm{y} \in \operatorname{Ker}_{\{g \alpha\}}\{\mathrm{x}\}$. Since $\mathrm{x} \in \mathrm{g} \alpha \mathrm{cl}\{\mathrm{x}\}$ and $\mathrm{g} \alpha \mathrm{cl}\{\mathrm{x}\}$ is $\mathrm{g} \alpha$-closed, by (iv) we obtain $\mathrm{y} \in \operatorname{Ker}_{\{g \alpha\}}\{\mathrm{x}\} \subseteq \operatorname{g\alpha cl}\{\mathrm{x}\}$. Therefore $\mathrm{x} \in \operatorname{g\alpha cl}\{\mathrm{y}\}$ implies $\mathrm{y} \in \operatorname{gacl}\{\mathrm{x}\}$. The converse is obvious and X is $\mathrm{g} \alpha \mathrm{R}_{0}$.

Corollary 4.2: The following are equivalent:
(i) X is $g \alpha R_{0}$.
(ii) $\operatorname{g\alpha cl}\{x\}=\operatorname{Ker}_{\{g \alpha\}}\{x\} \forall x \in X$.

Proof: Follows from Theorems 4.4 and 4.11.
Recall that a filterbase F is called $g \alpha$-convergent to a point x in X, if for any $g \alpha$-open set U of X containing x, there exists $B \in F$ such that $B \subset U$.

Lemma 4.4: Let x and y be any two points in X such that every net in $X g \alpha$-converging to $y g \alpha$-converges to x. Then $x \in \operatorname{gacl}\{y\}$.

Theorem 4.12: The following are equivalent:
(i) X is a $g \alpha R_{0}$ space;
(ii) If $\mathrm{x}, \mathrm{y} \in \mathrm{X}$, then $\mathrm{y} \in \operatorname{g} \alpha \operatorname{cl}\{\mathrm{x}\}$ iff every net in $\mathrm{X} g \alpha$-converging to $\mathrm{y} g \alpha$-converges to x .

Proof:

(i) \Rightarrow (ii): Let $\mathrm{x}, \mathrm{y} \in \mathrm{X}$ such that $\mathrm{y} \in \mathrm{g} \alpha \mathrm{cl}\{\mathrm{x}\}$. Suppose that $\left\{\mathrm{x}_{\alpha}\right\}_{\alpha \in I}$ is a net in X such that $\left\{\mathrm{x}_{\alpha}\right\}_{\alpha \in \mathrm{I}} \mathrm{g} \alpha$-converges to y . Since $y \in \operatorname{g\alpha cl}\{x\}$, by Thm. 4.7 we have $\operatorname{g\alpha cl}\{x\}=\operatorname{g\alpha cl}\{y\}$. Therefore $x \in \operatorname{g\alpha cl}\{y\}$. This means that $\left\{x_{\alpha}\right\}_{\alpha \in I} g \alpha-$ converges to x .

Conversely, let $x, y \in X$ such that every net in $X g \alpha$-converging to $y g \alpha$-converges to x. Then $x \in g \alpha$-cl\{y\}[by 4.4]. By Thm. 4.7, we have $\operatorname{g\alpha cl}\{x\}=\operatorname{g\alpha cl}\{y\}$. Therefore $y \in \operatorname{g\alpha c}\{x\}$.
(ii) \Rightarrow (i): Let $\mathrm{x}, \mathrm{y} \in \mathrm{X}$ such that $\operatorname{g\alpha cl}\{\mathrm{x}\} \cap \operatorname{g\alpha cl}\{\mathrm{y}\} \neq \phi$. Let $\mathrm{z} \in \operatorname{g\alpha cl}\{\mathrm{x}\} \cap \operatorname{g\alpha cl}\{\mathrm{y}\}$. So \exists a net $\left\{\mathrm{x}_{\alpha}\right\}_{\alpha \in \mathrm{I}}$ in $\operatorname{g\alpha cl}\{\mathrm{x}\}$ such
that $\left\{\mathrm{x}_{\alpha}\right\}_{\alpha \in \mathrm{I}} \mathrm{g} \alpha$-converges to z . Since $\mathrm{z} \in \mathrm{g} \alpha \operatorname{cl}\{\mathrm{y}\}$, then $\left\{\mathrm{x}_{\alpha}\right\}_{\alpha \in \mathrm{I}} \mathrm{g} \alpha$-converges to y . It follows that $\mathrm{y} \in \mathrm{g} \alpha \mathrm{cl}\{\mathrm{x}\}$. Similarly we obtain $x \in \operatorname{g\alpha cl}\{y\}$. Therefore $g \alpha c l\{x\}=\operatorname{g\alpha cl}\{y\}$. Hence X is $g \alpha R_{0}$.

Theorem 4.13:

(i) Every subspace of $g \alpha R_{1}$ space is again $g \alpha R_{1}$.
(ii) Product of any two $g \alpha R_{1}$ spaces is again $g \alpha R_{1}$.
(iii) X is $g \alpha R_{1}$ iff given $x \neq y \in X, \operatorname{g\alpha cl}\{x\} \neq \operatorname{g\alpha cl}\{y\}$.
(iv) Every $g \alpha_{2}$ space is $g \alpha R_{1}$.

The converse of 4.13(iv) is not true. However, we have the following result.
Theorem 4.14: Every $g \alpha_{1}$ and $g \alpha R_{1}$ space is $g \alpha_{2}$.
Proof: Let $x \neq y \in X$. Since X is $g \alpha_{1} ;\{x\}$ and $\{y\}$ are $g \alpha$-closed sets such that $\operatorname{g\alpha cl}\{x\} \neq \operatorname{g\alpha cl}\{y\}$. Since X is $g \alpha R_{1}$, there exists disjoint $g \alpha$-open sets U and V such that $x \in U ; y \in V$. Hence X is $g \alpha_{2}$.

Corollary 4.3: X is $\mathrm{g} \alpha_{2}$ iff it is $\mathrm{g} \alpha \mathrm{R}_{1}$ and $\mathrm{g} \alpha_{1}$.
Theorem 4.15: The following are equivalent
(i) X is $\mathrm{g} \alpha-\mathrm{R}_{1}$.
(ii) $\cap \operatorname{gacl}\{x\}=\{x\}$.
(iii)For any $x \in X$, intersection of all $g \alpha$-neighborhoods of x is $\{x\}$.

Proof:

(i) \Rightarrow (ii) Let $y \neq x \in X$ such that $y \in g \alpha c l\{x\}$. Since X is $g \alpha R_{1}, \exists U \in g \alpha O(X)$ such that $y \in U, x \notin U$ or $x \in U, y \notin U$. In either case $y \notin \operatorname{g} \alpha c l\{x\}$. Hence $\cap \operatorname{g} \alpha \operatorname{cl}\{x\}=\{x\}$.
(ii) \Rightarrow (iii) If $y \neq x \in X$, then $x \notin \cap \operatorname{gacl}\{y\}$, so there is a $g \alpha$-open set containing x but not y. Therefore y does not belong to the intersection of all $g \alpha$-neighborhoods of x. Hence intersection of all $g \alpha$-neighborhoods of x is $\{x\}$.
(iii) \Rightarrow (i) Let $\mathrm{x} \neq \mathrm{y} \in \mathrm{X}$. by hypothesis, y does not belong to the intersection of all $g \alpha$-neighborhoods of x and x does not belong to the intersection of all $g \alpha$-neighborhoods of y, which implies $\operatorname{g\alpha cl}\{x\} \neq \operatorname{g\alpha cl}\{y\}$. Hence X is $g \alpha-R_{1}$.

Theorem 4.16: The following are equivalent:
(i) X is $g \alpha-\mathrm{R}_{1}$.
(ii) For each pair $\mathrm{x}, \mathrm{y} \in \mathrm{X}$ with $\operatorname{g\alpha cl}\{\mathrm{x}\} \neq \operatorname{g\alpha cl}\{\mathrm{y}\}, \exists \mathrm{a} g \alpha$-open, $\mathrm{g} \alpha$-closed set V s.t. $\mathrm{x} \in \mathrm{V}$ and $\mathrm{y} \notin \mathrm{V}$, and
(iii)For each pair $\mathrm{x}, \mathrm{y} \in \mathrm{X}$ with $\operatorname{g\alpha cl}\{\mathrm{x}\} \neq \operatorname{g\alpha cl}\{\mathrm{y}\}, \exists f: \mathrm{X} \rightarrow[0,1]$ s.t. $f(\mathrm{x})=0$ and $f(\mathrm{y})=1$ and f is $\mathrm{g} \alpha$-continuous.

Theorem 4.17:

(i) If X is $g \alpha-\mathrm{R}_{1}$, then X is $g \alpha-\mathrm{R}_{0}$.
(ii) X is $g \alpha-R_{1}$ iff for $x, y \in X, \operatorname{Ker}_{\{g \alpha\}}\{x\} \neq \operatorname{Ker}_{\{g \alpha\}}\{y\}, \exists$ disjoint $U ; V \in g \alpha O(X)$ such that $g \alpha c l\{x\} \subset U$ and $\operatorname{gacl}\{y\} \subset V$.

5. $g \alpha-C_{i}$ and $g \alpha-D_{i}$ spaces, $i=0,1,2$:

Definition 5.1: X is said to be a
(i) $g \alpha-C_{0}$ space if for each pair of distinct points x, y of X there exists a $g \alpha$-open set G whose closure contains either of the point x or y .
(ii) $g \alpha$ - $C_{1}\left[\right.$ resp: $\left.g \alpha-C_{2}\right]$ space if for each pair of distinct points x, y of X there exists disjoint $g \alpha$-open sets G and H such that closure of G containing x but not y and closure of H containing y but not x .

Note 4: $\mathrm{g} \alpha-\mathrm{C}_{2} \Rightarrow \mathrm{~g} \alpha-\mathrm{C}_{1} \Rightarrow \mathrm{~g} \alpha-\mathrm{C}_{0}$. Converse need not be true in general:

Example 5.1:

(i) Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ and $\tau=\{\phi, \mathrm{X}\}$, then X is $\mathrm{g}_{\mathrm{C}} \mathrm{C}_{\mathrm{i}}$ for $\mathrm{i}=0,1,2$.
(ii) Let $X=\{a, b, c, d\}$ and $\tau=\{\phi,\{b\},\{a, b\},\{b, c\},\{a, b, c\}, X\}$ then X is not $g \alpha C_{i}$ for $i=0,1,2$.

Theorem 5.1:

(i) Every subspace of $g \alpha-\mathrm{C}_{\mathrm{i}}$ space is $g \alpha-\mathrm{C}_{\mathrm{i}}$.
(ii) Every $g \alpha_{i}$ spaces is $g \alpha-\mathrm{C}_{\mathrm{i}}$.
(iii) Product of $g \alpha-\mathrm{C}_{\mathrm{i}}$ spaces are $g \alpha-\mathrm{C}_{\mathrm{i}}$.
(iv) Let X be any $g \alpha-C_{i}$ space and $A \subset X$ then A is $g \alpha-C_{i}$ iff $(A, \tau / A)$ is $g \alpha-C_{i}$.
(v) If X is $\mathrm{g} \alpha-\mathrm{C}_{1}$ then each singleton set is $\mathrm{g} \alpha$-closed.
(vi) In an $g \alpha$ - C_{1} space disjoint points of X has disjoint $\mathrm{g} \alpha$ - closures.

Definition 5.2: $A \subset X$ is called a g α-Difference(Shortly $g \alpha D$-set) set if there are two $U, V \in g \alpha O(X)$ such that $U \neq X$ and $A=U-V$.

Clearly every $g \alpha$-open set U different from X is a $\mathrm{g} \alpha \mathrm{D}$-set if $\mathrm{A}=\mathrm{U}$ and $\mathrm{V}=\phi$.
Definition 5.3: X is said to be a
(i) $\mathrm{g} \alpha-\mathrm{D}_{0}$ if for any pair of distinct points x and y of X there exist a g $\alpha \mathrm{D}$-set in X containing x but not y or a g $\alpha \mathrm{D}$-set in X containing y but not x.
(ii) $g \alpha-D_{1}$ [resp: $g \alpha-D_{2}$]if for any pair of distinct points x and y in X there exists disjoint $g \alpha D$-sets G and H in X containing x and y respectively.

Remark 5.2: (i) If X is $r T_{i}$, then it is $g \alpha_{i}$, $i=0,1,2$ and converse is false.
(ii) If X is $g \alpha_{i}$, then it is $g \alpha_{\{i-1\}}, i=1,2$.
(iii) If X is $\mathrm{g} \alpha_{\mathrm{i}}$, then it is $\mathrm{g} \alpha-\mathrm{D}_{\mathrm{i}}, \mathrm{i}=0,1,2$.
(iv) If X is $\mathrm{g} \alpha-\mathrm{D}_{\mathrm{i}}$, then it is $\mathrm{g} \alpha-\mathrm{D}_{\{\mathrm{i}-1\}}, \mathrm{i}=1,2$.

Theorem 5.2: The following statements are true:
(i) X is $g \alpha-\mathrm{D}_{0}$ iff it is $g \alpha_{0}$.
(ii) X is $g \alpha-D_{1}$ iff it is $g \alpha-D_{2}$.

Corollary 5.1: If X is $g \alpha-D_{1}$, then it is $g \alpha_{0}$.
Proof: Remark 5.1(iv) and Theorem 5.1(vi)
Definition 5.4: A point $x \in X$ which has X as the unique $g \alpha$-neighborhood is called g α.c.c point.
Theorem 5.3: For an $g \alpha_{0}$ space X the following are equivalent:
(i) X is $\mathrm{g} \alpha-\mathrm{D}_{1}$;
(ii) X has no ga.c.c point.

Proof: (i) \Rightarrow (ii) Since X is $g \alpha-D_{1}$, then each point x of X is contained in a $g \alpha D$-set $O=U-V$ and thus in U. By Definition $\mathrm{U} \neq \mathrm{X}$. This implies that x is not a g α.c.c point.

S. Balasubramanian* ${ }^{1}$ and M. Lakshmi Sarada² $/ \mathrm{g} \alpha$-separation axioms/IJMA- 2(12), Dec.-2011, Page: 2702-2711

(ii) \Rightarrow (i) If X is $g \alpha_{0}$, then for each $x \neq y \in X$, at least one of them, x (say) has a $g \alpha$-neighborhood U containing x and not y. Thus U which is different from X is a $g \alpha D$-set. If X has no $g \alpha . c . c$ point, then y is not a g α.c.c point. This means that there exists a $g \alpha$-neighborhood V of y such that $V \neq X$. Thus $y \in V-U$ but not x and $V-U$ is a g αD-set. Hence X is $\mathrm{g} \alpha-\mathrm{D}_{1}$.

Definition 5.5: X is $\mathrm{g} \alpha$-symmetric if for x and y in $\mathrm{X}, \mathrm{x} \in \operatorname{g\alpha cl}\{\mathrm{y}\}$ implies $\mathrm{y} \in \operatorname{gacl}\{\mathrm{x}\}$.
Theorem 5.4: X is $\mathrm{g} \alpha$-symmetric $\operatorname{iff}\{\mathrm{x}\}$ is $\mathrm{g} \alpha$-closed for each $\mathrm{x} \in \mathrm{X}$.
Proof: Assume that $\mathrm{x} \in \operatorname{g\alpha cl}\{\mathrm{y}\}$ but $\mathrm{y} \notin \operatorname{g} \alpha c l\{x\}$. This means that $[\operatorname{gacl}\{\mathrm{x}\}]^{c}$ contains y . This implies that $\mathrm{g} \alpha c \mathrm{cl}\{\mathrm{y}\} \subset$ $[\operatorname{g} \alpha c l\{x\}]^{c}$. Now $[\operatorname{g\alpha cl}\{x\}]^{c}$ contains x which is a contradiction.
Conversely, suppose that $\{x\} \subset E \in \operatorname{g~} \alpha \mathrm{O}(\mathrm{X})$ but $\operatorname{g\alpha cl}\{\mathrm{x}\} \not \subset \mathrm{E}$. This means that $\mathrm{g} \alpha \mathrm{cl}\{\mathrm{x}\}$ and E^{c} are not disjoint. Let y belongs to their intersection. Now we have $x \in \operatorname{g\alpha cl}\{y\} \subset E^{c}$ and $x \notin E$. But this is a contradiction.

Corollary 5.2: If X is a $\mathrm{g} \alpha_{1}$, then it is $\mathrm{g} \alpha$-symmetric.
Proof: Follows from Theorem 2.2(ii) and Theorem 5.4.
Corollary 5.3: The following are equivalent:
(i) X is $g \alpha$-symmetric and $g \alpha_{0}$
(ii) X is $\mathrm{g} \alpha_{1}$.

Proof: By Corollary 5.2 and Remark 5.1 it suffices to prove only (i) \Rightarrow (ii). Let $\mathrm{x} \neq \mathrm{y}$ and by $\mathrm{g} \alpha_{0}$, we may assume that $\mathrm{x} \in \mathrm{G}_{1} \subset\{\mathrm{y}\}^{\mathrm{c}}$ for some $\mathrm{G}_{1} \in \mathrm{~g} \alpha \mathrm{O}(\mathrm{X})$. Then $\mathrm{x} \notin \mathrm{g} \alpha \mathrm{cl}\{\mathrm{y}\}$ and hence $\mathrm{y} \notin \mathrm{g} \alpha \mathrm{cl}\{\mathrm{x}\}$. There exists a $\mathrm{G}_{2} \in \mathrm{~g} \alpha \mathrm{O}(\mathrm{X})$ such that $\mathrm{y} \in \mathrm{G}_{2}$ $\subset\{\mathrm{x}\}^{\mathrm{c}}$ and X is a $\mathrm{g} \alpha_{1}$ space.

Theorem 5.5: For a $g \alpha$-symmetric space X the following are equivalent:
(i) X is $g \alpha_{0}$;
(ii) X is $\mathrm{g} \alpha-\mathrm{D}_{1}$;
(iii) X is $g \alpha_{1}$.

Proof: (i) \Rightarrow (iii) Corollary 5.3 and (iii) \Rightarrow (ii) \Rightarrow (i) Remark 5.1.
Theorem 5.6: If $f: \mathrm{X} \rightarrow \mathrm{Y}$ is a $g \alpha$-irresolute surjective function and E is a $\mathrm{g} \alpha \mathrm{D}$-set in Y , then the inverse image of E is a $\mathrm{g} \alpha \mathrm{D}$-set in X .

Proof: Let E be a $g \alpha D$-set in Y. Then there are $g \alpha$-open sets U_{1} and U_{2} in Y such that $E=U_{1}-U_{2}$ and $U_{1} \neq Y$. By the $\mathrm{g} \alpha$-irresoluteness of $f, f^{-1}\left(\mathrm{U}_{1}\right)$ and $f^{-1}\left(\mathrm{U}_{2}\right)$ are $g \alpha$-open in X. Since $\mathrm{U}_{1} \neq \mathrm{Y}$, we have $f^{-1}\left(\mathrm{U}_{1}\right) \neq \mathrm{X}$.

Hence $f^{-1}(\mathrm{E})=f^{-1}\left(\mathrm{U}_{1}\right)-f^{-1}\left(\mathrm{U}_{2}\right)$ is a $g \alpha$-D-set.
Theorem 5.7: (i) If Y is $\mathrm{g} \alpha-\mathrm{D}_{1}$ and $f: \mathrm{X} \rightarrow \mathrm{Y}$ is $\mathrm{g} \alpha$-irresolute and bijective, then X is $\mathrm{g} \alpha-\mathrm{D}_{\mathbf{1}}$.
(ii) X is $\mathrm{g} \alpha-\mathrm{D}_{1}$ iff for each pair of $\mathrm{x} \neq \mathrm{y}$ in X there exist a $g \alpha$-irresolute surjective function $f: \mathrm{X} \rightarrow \mathrm{Y}$, where Y is a $g \alpha-$ D_{1} space such that $f(\mathrm{x})$ and $f(\mathrm{y})$ are distinct.

Corollary 5.4: Let $\left\{X_{\alpha} / \alpha \in I\right\}$ be any family of spaces. If X_{α} is $g \alpha-D_{1}$ for each $\alpha \in I$, then ΠX_{α} is $g \alpha-D_{1}$.
Proof: Let $\left(x_{\alpha}\right) \neq\left(y_{\alpha}\right)$ in ΠX_{α}. Then there exists an index $\beta \in \mathrm{I}$ s. t. $x_{\beta} \neq y_{\beta}$. The natural projection P_{β} : $\Pi X_{\alpha} \rightarrow X_{\beta}$ is almost continuous and almost open and $P_{\beta}\left(\left(x_{\alpha}\right)\right)=P_{\beta}\left(\left(y_{\alpha}\right)\right)$. Since X_{β} is $g \alpha-D_{1}, \Pi X_{\alpha}$ is $g \alpha-D_{1}$.

References:

[1] S.P. Arya and T.Nour, Characterizations of s-normal spaces, I.J.P.A.M., 21(8)(1990),717-719.
[2] S. Balasubramanian, g-separation axioms, Scientia Magna, 6(4)(2010)1-14.
[3] S. Balasubramanian and M. Lakshmi Sarada, gpr-separation axioms, Bull. Kerla Math. Asso. 8 (1) (2011)157-173.
[4] K. Balachandran, P. Sundaram and H. Maki, On generalized continuous maps in Topological Spaces, Mem. Fac. Sci. Kochi. Univ(Math)12(1991)05-13.
[5] Chawalit Boonpok-Generalized continuous functions from any topological space into product, Naresuan University journal (2003) 11(2)93-98.

[6] Chawalit Boonpok, Preservation Theorems concering g-Hausdorf and rg-Hausdorff spaces, KKU. Sci.J. 31 (3) (2003)138-140.
[7] R. Devi, K. Balachandran and H. Maki, semi-Generalized Homeomorphisms and Generalized semiHomeomorphismin Topological Spaces, IJPAM, 26(3) (1995)271-284.
[8] W.Dunham, $\mathrm{T}_{1 / 2}$ Spaces, Kyungpook Math. J. 17 (1977), 161-169.
[9] Jiling Cao, M. Ganster and Ivan Reily, on sg-closed sets and g α-closed sets.
[10] Norman Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo, 19 (2) (1970), 89-96.
[11] T. Noiri and V.Popa, On G-regular spaces and some functions, Mem. Fac. Sci. Kochi. Univ (Math) 20(1999) 67-74.
[12] N. Palaniappan and K. Chandrasekhara rao, Regular Generalized closed sets, Kyungpook M.J. Vol. 33 (2) (1993) 211-219.

