On ω^{μ} - CLOSED SETS AND CONTINUOUS FUNCTIONS IN SUPRA TOPOLOGICAL SPACE

N. Chandramathi¹ K. Bhuvaneswari² and S. Bharathi³

¹Department of Mathematics, Hindusthan College of Engineering and Technology, Coimbatore-32, Tamilnadu, India E-mail: mathi.chandra303@gmail.com

²Department of Mathematics, Mother Teresa Women's University, Kodaikanal, Tamilnadu, India E-mail: drkbmaths@gmail.com

³Department of Mathematics, Angel College of Engineering and Technology, Tirupur (Dt), Tamilnadu, India E-mail: bharathikamesh6@gmail.com

(Received on: 01-01-12; Accepted on: 20-01-12)

ABSTRACT

In this paper, we introduce and investigate a new class of sets called ω^{μ} -closed sets. Furthermore, we introduce ω^{μ} -continuous functions and investigate several properties of the new notions. Key words: ω^{μ} - closed set, ω^{μ} - continuous and supra topological spaces.

2010 Mathematics subject classification: 54A05, 54A10, 54A20, 54A08.

1. INTRODUCTION AND PRELIMINARIES

In 1983, Mashhour et al [5] introduced supra topological spaces and studied S-continuous maps and S^* - Continuous maps. In 2008, Devi et al [1] introduced the concept of supra α -open set, S α -continuous functions respectively. In 2010, Sayed et al [7] introduced and investigated several properties of supra b-open sets and supra b- continuity. Ravi et al [6] introduced and investigated a new type of sets called supra g-closed and a new class of maps called supra g-continuous maps.

In this paper, we introduce the concept of ω^{μ} - closed sets and study its basic properties. Also, we introduce the concept of ω^{μ} - continuous functions and investigated several properties for these classes of functions in supra topological spaces.

Definition 1.1: [5, 7] A subfamily of μ of X is said to be a supra topology on X if

- (i) $X, \varphi \in \mu$
- (ii) if $A_i \in \mu$ for all $i \in J$ then $\bigcup A_i \in \mu$

The pair (X, μ) is called supra topological space. The elements of μ are called supra open sets in (X, μ) and complement of a supra open set is called a supra closed set.

Definition 1.2: [7]

(i) The supra closure of a set A is denoted by $cl^{\mu}(A)$ and is defined as $cl^{\mu}(A) = \bigcap \{B : B \text{ is a supra closed and } A \subset B \}$.

Corresponding author: N. Chandramathi¹, *E-mail: mathi.chandra303@gmail.com International Journal of Mathematical Archive- 3 (2), Feb. – 2012

(ii) The supra interior of a set A is denoted by $\operatorname{int}^{\mu}(A)$, and defined $\operatorname{asint}^{\mu}(A) = \bigcup \{B : B \text{ is a supra} open set and A \supseteq B\}$

Definition 1.3: [5] Let (X, τ) be a topological space and μ be a supra topology on X. We call μ a supra topology associated with τ if $\tau \subset \mu$.

Definition 1.4: [6] Let (X, μ) be a supra topological space. A subset A of X is called

- (i) supra semi open set, if $A \subseteq cl^{\mu}(int^{\mu}(A))$;
- (ii) supra pre open set , if $A \subseteq int^{\mu}(cl^{\mu}(A))$; The complement of above mentioned open sets are called their respective closed sets.

Definition 1.5: Let (X, μ) be a supra topological space. A set A of X is called

- (i) Supra generalized closed set (simply g^{μ} closed) [6] if $cl^{\mu}(A) \subseteq U$ whenever $A \subseteq U$ and U is supra open. The complement of supra generalized closed set is supra generalized open set.
- (ii) Supra semi generalized closed set (simply sg^{μ} closed [2] if $Scl^{\mu}(A) \subseteq U$ and U is supra semi open . The complement of supra semi generalized closed set is supra semi generalized open set.
- (iii) Supra generalized semi closed set (simply gs^{μ} closed)[2] if $Scl^{\mu}(A) \subseteq U$ whenever $A \subseteq U$ and U is supra open. The complement of supra generalized semi closed set is supra generalized semi open set.

Definition 1.6: [6] Let A and B be subsets of X. Then the set A and B are said to be supra separated if

 $cl^{\mu}(A) \cap B = A \cap cl^{\mu}(B) = \varphi.$

2. ω^{μ} - CLOSED SETS

Definition 2.1: A subset A of a supra topological space (X, μ) is called ω^{μ} - closed if $cl^{\mu}(A) \subseteq U$ whenever $A \subseteq U$ and U is supra semi-open in (X, μ) .

The complement of supra ω^{μ} -closed set is called supra ω^{μ} - open if X – A is ω^{μ} – closed. We denote the family of all ω^{μ} – closed sets by $\omega^{\mu} C(X, \mu)$

Theorem 2.2: Every supra closed set is ω^{μ} - closed set in X.

Proof: let A be any supra closed set and U be any supra semi open set such that $A \subseteq U$. Then $cl^{\mu}(A) \subseteq U$, since $cl^{\mu}(A) = A$ and hence A is ω^{μ} - closed.

Converse of the above theorem need not be true as seen from the following example.

Example 2.3: Let $X = \{a, b, c, d\}$ and $\mu = \{X, \phi, \{b, d\}, \{b, d\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}\}$. Then the set $\{a, b, c\}$ is ω^{μ} - closed but not supra closed.

Theorem 2.4: Every ω^{μ} closed set is g^{μ} - closed set. © 2012, IJMA. All Rights Reserved

Proof: Let $A \subseteq U$, U is supra open and hence it is supra semi open. Since A is ω^{μ} closed we have $cl^{\mu}(A) \subseteq U$. Hence g^{μ} -closed. The converse is not true as seen from the following example.

Example 2.5: Let $X = \{a, b, c, d\}$ and $\mu = \{X, \phi, \{a\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}$. Then the set $\{c, d\}$ is g^{μ} - closed but not ω^{μ} - closed.

Theorem 2.6: Every ω^{μ} closed set is sg^{μ} - closed set.

Proof: Let A be any supra semi open set containing A. Then $scl^{\mu}(A) \subseteq cl^{\mu}(A) \subseteq U$. Hence sg^{μ} -closed. The converse is not true as seen from the following example.

Example 2.7: In example 2.5, the set $\{b, c\}$ is sg^{μ} - closed but not ω^{μ} -closed.

Theorem 2.8: Every ω^{μ} closed set is gs^{μ} - closed set.

Proof: Let $A \subseteq X$ be ω^{μ} closed set and let $A \subseteq U$, where U is supra open .Since A is ω^{μ} closed, then $scl^{\mu}(A) \subseteq cl^{\mu}(A) \subseteq U$. Hence gs^{μ} -closed. The converse is not true as seen from the following example.

Example 2.9: In example 2.5, the set $\{a, c, d\}$ is sg^{μ} - closed but not ω^{μ} -closed.

Remark 2.10: Union of two ω^{μ} -closed sets need not be a ω^{μ} -closed set as seen from the following example.

Example 2.11: Let $X = \{a, b, c, d\}$ and $\mu = \{X, \phi, \{a\}, \{a, b\}, \{b, c\}, \{a, b, c\}\}$. Then the sets $\{c, d\}$ and $\{a, d\}$ are ω^{μ} -closed sets but their union $\{a, c, d\}$ is not a ω^{μ} -closed set.

Remark 2.12: Intersection of two ω^{μ} -closed sets is generally not an ω^{μ} -closed set as seen from the following example.

Example 2.13: Let $X = \{a, b, c, d\}$ and $\mu = \{X, \varphi, \{a\}, \{a, b\}, \{b\}\}$ be a supra topology on X. Then, $\{a, b, c\}$ and $\{a, b, d\}$ are ω^{μ} closed sets but their intersection $\{a, b\}$ is not ω^{μ} closed set.

Remark 2.14: Intersection of ω^{μ} -closed set and supra open set is neither ω^{μ} -closed nor supra open as seen from the following example.

Example 2.15: Let $X = \{a, b, c, d\}$ and $\mu = \{X, \varphi, \{a\}, \{a, d\}, \{b, c, d\}\}$ be a supra topology on X. Then, $\omega^{\mu}C(X) = \{X, \varphi, \{b, c, d\}, \{b, c\}, \{a\}, \{a, b, c\}\}$ we have $A = \{a, d\}$ is supra open and $B = \{b, c, d\}$ is ω^{μ} closed sets but their intersection $\{d\}$ is neither ω^{μ} -closed nor supra open.

Corollary 2.16: Union of ω^{μ} -open set and supra closed set is neither ω^{μ} -open nor supra closed.

Remark 2.17: Intersection of ω^{μ} -closed set and supra semi open set is neither ω^{μ} -closed nor supra semi open as seen from the following example.

Example 2.18: In example 2.3, we have $A = \{a, c, d\}$ is supra semi open and $B = \{b, c\}$ is ω^{μ} closed sets but their intersection $\{c\}$ is neither ω^{μ} -closed nor supra open.

Corollary 2.19: Union of ω^{μ} -open set and supra semi closed set is neither ω^{μ} -open nor supra semi closed.

Theorem 2.20: A subset A of (X, μ) is ω^{μ} -closed then $cl^{\mu}(A) - A$ does not contain any non empty supra semi closed set.

Proof: Necessity Let A be ω^{μ} -closed set of (X, μ) . Suppose $F \neq \varphi$ is a supra semi closed set of $cl^{\mu}(A) - A$. Then $F \subseteq cl^{\mu}(A) - A$ implies $F \subseteq cl^{\mu}(A)$ and F^{c} . This implies $A \subseteq F^{c}$. Since A is ω^{μ} closed, $cl^{\mu}(A) \subseteq U^{c}$, Consequently, $F \subseteq \left[cl^{\mu}(A)\right]^{c}$. Hence $F \subseteq cl^{\mu}(A) \cap \left[cl^{\mu}(A)\right]^{c} = \varphi$. Therefore F is empty, a contradiction.

Sufficiency Suppose that $A \subseteq U$ and that U is supra semi open. If $cl^{\mu}(A) \not\subset U$, then $cl^{\mu}(A) \cap U^{c}$ is a non empty supra semi closed subset of $cl^{\mu}(A) - A$. Hence, $cl^{\mu}(A) \cap U^{c} = \varphi$ and $cl^{\mu}(A) \subseteq U$. Therefore, A is ω^{μ} -closed.

Corollary 2.21: An ω^{μ} -closed A of X is supra semi closed if and only if $scl^{\mu}(A) - A$ is supra semi-closed.

Proof: If A is ω^{μ} -closed and supra semi closed, then $scl^{\mu}(A) - A = \varphi$ by theorem 2.20. Therefore, $scl^{\mu}(A) - A$ is supra semi- closed.

Conversely, Suppose that $scl^{\mu}(A) - A$ is supra semi closed. Since $scl^{\mu}(A) \subseteq cl^{\mu}(A)$, $cl^{\mu}(A) - A$ contains the semi closed set $scl^{\mu}(A) - A$. Since, A is ω^{μ} -closed, by theorem 2.20, $scl^{\mu}(A) - A = \varphi$. Hence, $scl^{\mu}(A) = A$.

Therefore, A is supra semi closed.

Theorem 2.22: If A is supra semi-open and ω^{μ} -closed, then A is supra closed.

Proof: Since $A \subseteq A$ and A is supra semi-open and ω^{μ} -closed we have $cl^{\mu}(A) \subseteq A$ therefore we have $cl^{\mu}(A) = A$ and A is supra closed.

Theorem 2.23: If A is an ω^{μ} -closed set of (X, μ) such that $A \subseteq B \subseteq Cl^{\mu}(A)$, then B is ω^{μ} -closed set of (X, μ) .

Proof: Let U be a supra semi open of (X, μ) such that $B \subseteq U$. Then $A \subseteq U$ isince A is ω^{μ} closed, we have $cl^{\mu}(A) \subseteq U$. Now $B \subseteq Cl^{\mu}(A)$, then $cl^{\mu}(B) \subseteq cl^{\mu}(cl^{\mu}(A)) =$

 $cl^{\mu}(A) \subseteq U$. Therefore, B is also an ω^{μ} closed. The converse of the above theorem need not be true from the following example.

Example 2.24: Let $X = \{a, b, c, d\}$ and $\mu = \{X, \phi, \{a\}, \{a, b\}, \{b, c\}, \{a, b, c\}\}$. Then the set $A = \{d\}$ and $B = \{c, d\}$ are ω^{μ} - closed. But $A \subseteq B \not\subset cl^{\mu}(A)$.

© 2012, IJMA. All Rights Reserved

Theorem 2.25: Let $A \subseteq Y \subseteq X$ and suppose that A is ω^{μ} -closed set in X. Then A is ω^{μ} -closed relative to Y.

Proof: Let $A \subseteq Y \cap U$ and suppose that U is supra semi open in X. Then $A \subseteq U$ and hence $cl^{\mu}(A) \subseteq U$. It follows that $Y \cap cl^{\mu}(A) \subseteq Y \cap U$.

Definition 2.26: A subset A of X is called ω^{μ} -open if A^c is ω^{μ} - closed. The collection of all ω^{μ} - open sets in X is denoted by $\omega^{\mu} O(X)$.

Theorem 2.27: In a supra topological space (X, μ) , $SO(X, \mu) = \{F \subseteq X : F^c \subseteq \mu\}$ if and only if every subset of X is ω^{μ} - closed.

Proof: Suppose that $SO(X, \mu) = \{F \subseteq X : F^c \subseteq \mu\}$. Let A be a subset of (X, μ) such that $A \subseteq U$, where $U \in SO(X, \mu)$. Then $cl^{\mu}(U) = U$. Also, $cl^{\mu}(A) \subseteq cl^{\mu}(U) = U$. Hence, A is ω^{μ} - closed.

Conversely, suppose that every subset of (X, μ) is ω^{μ} - closed. Let $U \in SO(X, \mu)$. Since $U \subseteq U$, and U is ω^{μ} - closed, we have $cl^{\mu}(U) \subseteq U$. Thus, $cl^{\mu}(U) = U$ and $U \in \{F \subseteq X : F^{c} \subseteq \mu\}$. Therefore, $SO(X, \mu) \subseteq \{F \subseteq X : F^{c} \subseteq \mu\}$. If $F \in \{F \subseteq X : F^{c} \subseteq \mu\}$, then F^{c} is supra semi –open. Therefore, $F^{c} \in SO(X, \mu) \subseteq \{F \subseteq X : F^{c} \subseteq \mu\}$. Hence f is supra open in (X, μ) and so F is supra semi-open in (X, μ) . i.e., $F \in SO(X, \mu)$. Thus, $SO(X, \mu) = \{F \subseteq X : F^{c} \subseteq \mu\}$.

Theorem 2.28: A subset A of X is ω^{μ} open iff $F \subseteq int^{\mu}(A)$ whenever F is supra semi closed and $F \subseteq A$.

Proof: Suppose that $F \subseteq \operatorname{int}^{\mu}(A)$, where F is supra semi closed and $F \subseteq A$.Let $A^{c} \subseteq U$, where U is supra semi open. Then $U^{c} \subseteq A$ and U^{c} is supra semi closed. Therefore, $U^{c} \subseteq \operatorname{int}^{\mu}(A)$. Since $U^{c} \subseteq \operatorname{int}^{\mu}(A)$, we have $(\operatorname{int}^{\mu}(A))^{c} \subseteq U$, i.e., $cl^{\mu}(A^{c}) \subseteq U$, since $cl^{\mu}(A^{c}) = (\operatorname{int}^{\mu}(A))^{c}$. Thus A^{c} is ω^{μ} -closed, i.e. A is ω^{μ} -open.

Conversely, suppose that A is ω^{μ} open. Let $F \subseteq A$ and F be supra semi closed in X. Then F^{c} is supra semi open and $A^{c} \subseteq F^{c}$. Therefore, we obtain $cl^{\mu}(A^{c}) \subseteq F^{c}$. But $cl^{\mu}(A^{c}) = (int^{\mu}(A))^{c}$. Hence, $F \subseteq int^{\mu}(A)$.

3. ω^{μ} closure and ω^{μ} interior

Definition 3.1: Let (X, μ) be a supra topological space and A a subset of X. Then

- (i) the ω^{μ} -closure of A, denoted by $cl^{\mu}_{\omega}(A)$ is defined as $cl^{\mu}_{\omega}(A) = \bigcap \{F : A \subseteq F \text{ and } F \text{ is } \omega^{\mu} closed \}$.
- (ii) the ω^{μ} -interior of A, denoted by $\operatorname{int}_{\omega}^{\mu}(A)$ is defined as $\operatorname{int}_{\omega}^{\mu}(A) = \bigcup \{G : G \subseteq A \text{ and } G \text{ is } \omega^{\mu} \operatorname{open} \}$.

Theorem 3.2: For the subsets A, B of a supra topological space (X, μ) , the following statements hold.

(i)
$$A \subseteq cl^{\mu}_{\omega}(A) \subseteq cl^{\mu}(A)$$

(ii) If A is
$$\omega^{\mu}$$
 -closed, then $A = c l_{\omega}^{\mu}(A)$.

(iii) $x \in cl^{\mu}_{\omega}(A)$ if and only if ω^{μ} -open set U containing x, $A \cap U \neq \varphi$.

(iv) If
$$A \subseteq B$$
, $cl^{\mu}_{\omega}(A) \subseteq cl^{\mu}_{\omega}(B)$.

(v)
$$cl^{\mu}_{\omega}(A)$$
 is ω^{μ} -closed.

Proof:

- (i) It follows from the fact that every supra semi closed set is ω^{μ} -closed.
- (ii) Obvious. But if $A = cl_{\omega}^{\mu}(A)$, then A need not be a ω^{μ} -closed. Let (X, μ) be a supra topological space where
- (iii) Necessity Suppose that x ∈ cl^μ_ω(A). Let U be a ω^μ-open set containing x such that A ∩ U = φ. And so, A ⊆ X \U. But X\U is ω^μ-closed and hence cl^μ_ω(A) ⊆ X \U. Since x ∉ X \U, we obtain x ∉ cl^μ_ω(A) which is contrary to the hypothesis.
 Sufficiency If x ∉ cl^μ_ω(A), then there exists a ω^μ-closed set F of X such that A ⊆ F x ∉ A.

Therefore, $x \in X \setminus F \in \omega^{\mu}O(X)$. Hence X\F is a ω^{μ} -open set of X containing x such that $(X \setminus F) \cap A = \varphi$. This is contrary to the hypothesis.

- (iv) Obvious.
- (v) Obvious.

Lemma 3.3: For the subsets A, B of a supra topological space (X, μ) , the following statements hold

(i) $int^{\mu}_{\omega}(A)$ is the largest ω^{μ} -open set contained in A.

(ii)
$$\operatorname{int}_{\omega}^{\mu}(\operatorname{int}_{\omega}^{\mu}(A)) = \operatorname{int}_{\omega}^{\mu}(A).$$

(iii)
$$X \setminus \operatorname{int}_{\omega}^{\mu}(A) = c l_{\omega}^{\mu}(A^{c}).$$

(iv)
$$X \setminus cl^{\mu}_{\omega}(A) = \operatorname{int}^{\mu}_{\omega}(A^{c}).$$

(v) If
$$A \subseteq B$$
, then $\operatorname{int}_{\omega}^{\mu}(A) \subseteq \operatorname{int}_{\omega}^{\mu}(B)$.

(vi)
$$\operatorname{int}_{\omega}^{\mu}(A) \cup \operatorname{int}_{\omega}^{\mu}(B) \subseteq \operatorname{int}_{\omega}^{\mu}(A \cup B).$$

(vii)
$$\operatorname{int}_{\omega}^{\mu}(A) \cap \operatorname{int}_{\omega}^{\mu}(B) \supseteq \operatorname{int}_{\omega}^{\mu}(A \cap B).$$

Remark 3.4: The equality does not hold in lemma 7.3.3(vi) as per the following example.

Example 3.5: Let $X = \{a, b, c, d\}$ and $\mu = \{X, \phi, \{a, b\}, \{a, b, d\}, \{b, c, d\}\}$. Consider the sets $A = \{a\}$ and $B = \{b, d\}$. Then $A \cup B = \{a, b, d\}$. Now, $\operatorname{int}_{\varpi}^{\mu}(A) = \varphi$ and $\operatorname{int}_{\varpi}^{\mu}(B) = \{b\}$. Also, $\operatorname{int}_{\varpi}^{\mu}(A \cup B) = \{a, b, d\}$ and $\operatorname{int}_{\varpi}^{\mu}(A) \cup \operatorname{int}_{\varpi}^{\mu}(B) = \{b\}$.

Remark 3.6: The equality does not hold in lemma 3.3 (vii) as per the following example.

Example 3.7: Let $X = \{a, b, c, d\}$ and $\mu = \{X, \phi, \{b, d\}, \{a, b, d\}, \{b, c, d\}, \{a, c, d\}\}$. Consider the sets $A = \{a, b\}$ and $B = \{b, c\}$. Then $A \cap B = \{b\}$. Now, $\operatorname{int}_{\omega}^{\mu}(A) = \{a\}$ and $\operatorname{int}_{\omega}^{\mu}(B) = \{b, c\}$. Also, $\operatorname{int}_{\omega}^{\mu}(A \cap B) = \varphi$. and $\operatorname{int}_{\omega}^{\mu}(A) \cup \operatorname{int}_{\omega}^{\mu}(B) = \{a, b, c\}$.

4. ω^{μ} -continuous functions

Definition 4.1: Let (X, τ) and (Y, σ) be two topological spaces and μ be an associated supra topology with τ . A function $f:(X, \tau) \to (Y, \sigma)$ is called ω^{μ} -continuous if $f^{-1}(V)$ is ω^{μ} closed in (X, μ) for every closed set V of (Y, σ) .

Definition 4.2: Let (X,τ) and (Y,σ) be two topological spaces and μ be an associated supra topology with τ . A function $f:(X,\tau) \to (Y,\sigma)$ is called ω^{μ} -irresolute if $f^{-1}(V)$ is ω^{μ} closed in (X,μ) for every ω^{μ} -closed set V of (Y,σ) .

Theorem 4.3: Every continuous function is ω^{μ} -continuous.

Proof: Let $f:(X,\tau) \to (Y,\sigma)$ be a continuous function and A is closed in Y. Then $f^{-1}(A)$ is a closed set in X. Since μ is associated with τ , then $\tau \subseteq \mu$. Therefore, $f^{-1}(A)$ is supra closed in X and it is ω^{μ} closed in (X,μ) . Hence f is ω^{μ} -continuous.

Remark 4.4: The converse of the above theorem need not be true as seen from the following example.

Example 4.5: Let $X = \{a, b, c, d\}$, with topology $\tau = \{X, \phi, \{a, c\}, \{b, d\}\}$ and the supra topology is defined as follows: $\mu = \{X, \phi, \{a, c\}, \{b, d\}, \{a, c, d\}\}$. Let $f : (X, \tau) \to (X, \tau)$ be a function defined by f(a) = a, f(b) = c, f(c) = b, f(d) = d. The inverse image of the closed set $\{b\}$ is $\{c\}$ which is ω^{μ} -closed but not closed.

Then f is ω^{μ} -continuous but not continuous.

Theorem 4.6: Every supra continuous function is ω^{μ} -continuous.

Proof: Obvious.

Remark 4.7 The converse of the above theorems are not true as seen from the following example.

Example 4.8: In example 4.5, the inverse image of the closed set $\{b, d\}$ is $\{c, d\}$ which is ω^{μ} -closed but not supra closed. Then f is ω^{μ} -continuous but not supra continuous.

Theorem 4.9:

- (i) Every ω^{μ} -continuous function is g^{μ} -continuous.
- (ii) Every ω^{μ} -continuous function is sg^{μ} -continuous.
- (iii) Every ω^{μ} -continuous function is gs^{μ} -continuous.
- (iv) Every ω^{μ} -irresolute function is ω^{μ} -continuous.

Proof: obvious.

Remark 4.10: The converse of the above theorem need not be true as seen from the following example.

Example 4.11: Let $X = \{a, b, c, d\}$ with topology $\tau = \{X, \phi, \{a\}\}$ and $\mu = \{X, \phi, \{a\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}$ be the supra topology on X.

Let $f:(X,\tau) \to (X,\tau)$ be a function defined by f(a) = a, f(b) = d, f(c) = b, f(d) = c.

- (i) The inverse image of the g^{μ} closed set $\{a, c, d\}$ is $\{a, b, c\}$ which is not ω^{μ} -closed. Then f is g^{μ} continuous but not ω^{μ} -continuous.
- (ii) The inverse image of the sg^{μ} closed set $\{a, b, d\}$ is $\{a, b, c\}$ which is not ω^{μ} -closed. Then f is sg^{μ} -continuous but not ω^{μ} -continuous.
- (iii) The inverse image of the gs^{μ} closed set $\{a, d\}$ is $\{a, b\}$ which is not ω^{μ} -closed. Then f is gs^{μ} continuous but not ω^{μ} -continuous.
- (iv) The inverse image of the ω^{μ} -closed set $\{d\}$ is $\{b\}$ which is not ω^{μ} -closed. Then the function on X is ω^{μ} -continuous but not ω^{μ} -irresolute.

Theorem 4.14: Let (X, τ) and (Y, σ) be two topological spaces and μ be an associated supra topology with τ . If $f:(X, \mu) \to (Y, \sigma)$ is continuous ω^{μ} -closed and A is an ω^{μ} - closed subset of X, then f(A) is an ω^{μ} - closed set in Y.

Proof: Let U be a semi open set in (Y, σ) such that $f(A) \subseteq U$. Since f is continuous, $f^{-1}(U)$ is a semi open set containing A. Hence $cl(A) \subseteq f^{-1}(U)$ as A is ω^{μ} -closed in (X, μ) . Since f is ω^{μ} - closed, f(cl(A)) is an ω^{μ} -closed set contained in the semi open set U, which implies that $cl(f(cl(A))) \subseteq U$ and hence $cl(f(A)) \subseteq U$. Therefore, f(A) is an ω^{μ} -closed set.

5. APPLICATIONS

Definition 5.1: A supra topological space (X, μ) is called T^{μ}_{ω} - space if every ω^{μ} -closed in it is supra closed

Theorem 5.2: Let (X, μ) be a supra topological space then

(i) $O^{\mu}(\tau) \subset \omega^{\mu} O(\tau)$

(ii) A space
$$(X, \mu)$$
 is T^{μ}_{ω} iff $O^{\mu}(\tau) = \omega^{\mu} O(\tau)$

Proof: Obvious.

Theorem 5.3: For a space (X, μ) , the following are equivalent:

- (i) (X, μ) is a T^{μ}_{ω} -space.
- (ii) Every singleton of (X, μ) is either supra semi-closed or supra open.

Proof: $(i) \to (ii)$: Assume that for some $x \in X$, the set $\{x\}$ is not a supra semi closed set of (X, μ) . Then the only supra semi open set containing $\{x\}^c$ is X and so $\{x\}^c$ is ω^{μ} -closed in (X, μ) . By assumption $\{x\}^c$ is supra closed or equivalently $\{x\}$ is supra open in (X, μ) .

 $(ii) \rightarrow (i)$: Let A be a ω^{μ} -closed subset of (X, μ) and let $x \in cl^{\mu}(A)$. By assumption, $\{x\}$ is either supra semi-closed or supra open.

Case 1: Suppose $\{x\}$ is supra semi-closed. If $x \notin A$ then $cl^{\mu}(A) - A$ contains a non-empty supra semi-closed set, which is a contradiction to Theorem 7.2.22. Therefore $x \in A$.

Case 2: Suppose $\{x\}$ is supra open. Since $x \in cl^{\mu}(A)$, $\{x\} \cap A \neq \varphi$ and so $x \in A$. Thus in both cases, and $x \in A$ therefore $cl^{\mu}(A) \subseteq A$ or equivalently A is a supra closed set of (X, μ)

Definition 5.4: A supra topological space (X, μ) is called ${}_{g}T^{\mu}_{\omega}$ - space if every g^{μ} -closed set of (X, μ) is an ω^{μ} closed.

Theorem 5.5: Let (X, μ) be a supra topological space then

(i) $g^{\mu}O(\tau) \subset \omega^{\mu}O(\tau)$ (ii) A space (X, μ) is ${}_{g}T^{\mu}_{\omega}$ iff $g^{\mu}O(\tau) = \omega^{\mu}O(\tau)$

Proof: Obvious.

Theorem 5.6: If (X,μ) is a ${}_{g}T^{\mu}_{\omega}$ space then every singleton subset of (X,μ) is either g^{μ} -closed set or ω^{μ} -open.

Proof: Suppose that for some $x \in X$, the set $\{x\}$ is not g^{μ} -closed. Then $\{x\}$ is not a supra semi closed set, since every supra semi closed is a g^{μ} -closed set. So $\{x\}$ is not supra open and the only supra open set containing $\{x\}^{c}$ is X itself. Therefore, $\{x\}^{c}$ is trivially a g^{μ} -closed set and by assumption, $\{x\}^{c}$ is an ω^{μ} -closed set or equivalently $\{x\}$ is ω^{μ} -open.

REFERENCES

- [1] R. Devi, S. Sampathkumar and M. Caldas, On supra α -open sets and S α -continuous maps, General Mathematics, 16(2)(2008), 77-84.
- [2] M. Kamaraj, G. Ramkumar and O. Ravi, Supra sg-closed sets and supre gs-closed sets, International journal of mathematical Archive-2(11), 2011, Page:2413-2419.
- [3] N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo, 19(1970), 89-96.
- [4] S. R.Malghan, Generalized closed maps, J. Karnatak Univ. Sci., 27919820, 82-88.
- [5] A.S. Mashhour, A. A. Allam, F.S. Mahmoud and F. H. Khedr, On supra topological spaces, Indian J. Pure and Appl. Math., 14 (4) (1983), 502-510.

- [6] O. Ravi, G. Ramkumar and M. Kamaraj, On Supra g-closed sets, International journal of Advances in Pure and Applied Mathematics, Volume 1, Issue2(2011), Pages 52-66.
- [7] O. R. Sayed and Takashi Noiri, on supra b-open sets and supra b- continuity on topological spaces. European Journal of pure and applied Mathematics. 3(2) (2010), 295 302.
- [8] M. Sheik John, A study on generalizations of closed sets and continuous maps in topological and bitopological spaces, ph.D. Thesis, Bharathiar University, Coimbatore, India, (2002).
- [9] M. Trinita Pricilla and I. Arockiarani , On supra T-Closed sets, International Journal of Mathematical Archive-2(8),2011, Page:1376-1380, ISSN 2229-5046.
