• AN INTRODUCTION TO STEINER POLYNOMIALS OF GRAPHS

A. VIJAYAN*, G. D. SURESH

Abstract


In this paper, we introduce a new concept of Steiner polynomial of a connected graph G. The Steiner polynomial of G is the polynomial S (G, x) = s (G, i) xi , where s(G, i) is the number of Steiner sets of G of size i and s (G) is the Steiner number of G. We obtain some properties of S (G, x) and its coefficients. Also, we compute the polynomials for paths.

Keywords


Steiner set, Steiner polynomial, Steiner number.

Full Text:

PDF


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
© 2010-2022 International Journal of Mathematical Archive (IJMA)
Copyright Agreement & Authorship Responsibility
Web Counter
https://nrais.dgda.gov.bd/public/jepang/https://learning.modernland.co.id/api/toto/http://himatikauny.org/wp-includes/mahjong-ways-3/https://www.jst.hvu.edu.vn/akun-pro-kamboja/https://section.iaesonline.com/akun-pro-kamboja/https://journals.uol.edu.pk/sugar-rush/http://mysimpeg.gowakab.go.id/mysimpeg/aset/https://jurnal.jsa.ikippgriptk.ac.id/plugins/https://ppid.cimahikota.go.id/assets/demo/https://journals.zetech.ac.ke/scatter-hitam/https://silasa.sarolangunkab.go.id/swal/https://sipirus.sukabumikab.go.id/storage/uploads/-/sthai/https://sipirus.sukabumikab.go.id/storage/uploads/-/stoto/https://alwasilahlilhasanah.ac.id/starlight-princess-1000/https://www.remap.ugto.mx/pages/slot-luar-negeri-winrate-tertinggi/https://waper.serdangbedagaikab.go.id/storage/sgacor/https://waper.serdangbedagaikab.go.id/public/images/qrcode/slot-dana/https://siipbang.katingankab.go.id/storage_old/maxwin/https://waper.serdangbedagaikab.go.id/public/img/cover/10k/