COMMON FIXED POINT THEOREM FOR SIX WEAKLY-COMPATIBLE MAPPINGS IN INTUITIONISTIC FUZZY METRIC SPACE

Amardeep Singh

Department of Mathematics, Govt. M. V. M. P. G. College, Bhopal (M.P.), India

Surendra Singh Khichi*

Department of Mathematics, Acropolis Inst. Of Tech., Bhopal (M.P.), India

(Received on: 21-07-12; Accepted on: 17-10-12)

ABSTRACT

The Purpose of this paper is to obtain a common fixed point theorem for six weakly compatible mappings in intuitionistic fuzzy metric space. We extend some earlier results.

Keyword: Intuitionistic fuzzy metric space, R-commuting maps, weak-compatible maps, common fixed point.

2000 Mathematics Subject Classification: 47H10, 54H25.

INTRODUCTION

As a generalization of fuzzy sets introduced by Zadeh [11], Atanassav [2] introduced the concept of intuitionistic fuzzy sets. Recently, using the idea of intuitionistic fuzzy sets, Park [6] introduced the notion of intuitionistic fuzzy metric spaces with the help of continuous t-norms and continuous t-conorms as a generalization of fuzzy metric spaces due to George and Veeramani [3] and introduced the notion of Cauchy sequences in an intuitionistic fuzzy metric space. Turkoglu et al. [9], gave generalization of Jungck's common fixed point theorem [4] to intuitionistic fuzzy metric spaces. Recently, many authors have studied fixed point theory in intuitionistic fuzzy metric spaces (See [1], [5], [6], [9], [10]).

In this paper, we prove a common fixed point theorem for six self maps in intuitionistic fuzzy metric space under the assumption of weak compatibility of maps.

PRELIMINARIES

Definition 1[8]: A binary operation *: $[0, 1] \times [0, 1] \rightarrow [0, 1]$ is continuous t-norm if * is satisfying the following conditions:

- (i) * is commutative and associative;
- (ii) * is continuous;
- (iii) a * 1 = a for all $a \in [0, 1]$;
- (iv) $a * b \le c * d$ whenever $a \le c$ and $b \le d$ for all $a, b, c, d \in [0, 1]$.

Definition 2[8]: A binary operation \Diamond : $[0, 1] \times [0, 1] \rightarrow [0, 1]$ is continuous t-conorm if \Diamond is satisfying the following conditions:

- (i) ◊ is commutative and associative;
- (ii) ◊ is continuous;
- (iii) $a \lozenge 0 = a$ for all $a \in [0, 1]$;
- (iv) $a \diamond b \geq c \diamond d$ whenever $a \leq c$ and $b \leq d$ for all $a, b, c, d \in [0, 1]$.

Definition 3[1]: A 5-tuple $(X, M, N, *, \diamond)$ is said to be an intuitionistic fuzzy metric space if X is an arbitrary set, * is a continuous t-norm, \diamond is a continuous t-conorm and M, N are fuzzy sets on $X^2 \times (0, \infty)$ satisfying the following conditions:

- (i) $M(x, y, t) + N(x, y, t) \le 1$ for all $x, y \in X$ and t > 0;
- (ii) M(x, y, 0) = 0 for all $x, y \in X$;

Amardeep Singh & Surendra Singh Khichi*/ Common Fixed Point Theorem for Six Weakly-Compatible Mappings in Intuitionistic Fuzzy Metric Space / IJMA- 3(10), Oct.-2012.

- (iii) M(x, y, t) = 1 for all $x, y \in X$ and t > 0 if and only if x = y;
- (iv) M(x, y, t) = M(y, x, t) for all $x, y \in X$ and t > 0;
- (v) $M(x, y, t) * M(y, z, s) \le M(x, z, t + s)$ for all $x, y, z \in X$ and s, t > 0;
- (vi) For all $x, y \in X$, M(x, y, .): $[0, \infty) \rightarrow [0, 1]$ is continuous;
- (vii) $\lim_{t\to\infty} M(x, y, t) = 1$ for all $x, y \in X$ and t > 0;
- (viii) N(x, y, 0) = 1 for all $x, y \in X$;
- (ix) N(x, y, t) = 0 for all $x, y \in X$ and t > 0 if and only if x = y;
- (x) N(x, y, t) = N(y, x, t) for all $x, y \in X$ and t > 0;
- (xi) $N(x, y, t) \lozenge N(y, z, s) \ge N(x, z, t + s)$ for all $x, y, z \in X$ and s, t > 0;
- (xii) For all $x, y \in X$, $N(x, y, .) : [0, \infty) \rightarrow [0, 1]$ is continuous;
- (xiii) $\lim_{t\to\infty} N(x, y, t) = 0$ for all x, y in X;

Then (M, N) is called an intuitionistic fuzzy metric on X. The functions M(x, y, t) and N(x, y, t) denote the degree of nearness and the degree of non-nearness between x and y with respect to t, respectively.

Remark 1: Every fuzzy metric space (X, M, *) is an intuitionistic fuzzy metric space of the form $(X, M, 1-M, *, \diamond)$ such that t-norm * and t-conorm \diamond are associated as $x \diamond y = 1 - ((1-x) * (1-y))$ for all $x, y \in X$.

Example 1[6]: Let (x, d) be a metric space, define t-norm $a * b = \min\{a, b\}$ and t-conorm $a \diamond b = \max\{a, b\}$ and for all $x, y \in X$ and t > 0,

$$M_{d}\left(x,\,y,\,t\right)=\,\frac{t}{t+d\left(x,\,\,y\right)}\,,\,N_{d}\left(x,\,y,\,t\right)=\,\frac{d\left(x,\,\,y\right)}{t+d\left(x,\,\,y\right)}$$

Then $(X, M, N, *, \diamond)$ is an intuitionistic fuzzy metric space. We call this intuitionistic fuzzy metric (M, N) induced by the metric d the standard intuitionistic fuzzy metric.

Definition 4[1]: Let $(X, M, N, *, \diamond)$ be an intuitionistic fuzzy metric space. Then

- (a) a sequence $\{x_n\}$ in X is said to be Cauchy sequence if, for all t > 0 and p > 0, $\lim_{n \to \infty} M(x_{n+p}, x_n, t) = 1$, $\lim_{n \to \infty} N(x_{n+p}, x_n, t) = 0$.
- (b) a sequence $\{x_n\}$ in X is said to be convergent to a point $x \in X$ if, for all t > 0, $\lim_{n \to \infty} M(x_n, x, t) = 1$, $\lim_{n \to \infty} N(x_n, x, t) = 0$.

Since * and \(\rightarrow are continuous, the limit is uniquely determined from (v) and (xi) of definition (3), respectively.

Definition 5[1]: An intuitionistic fuzzy metric space $(X, M, N, *, \diamond)$ is said to be Complete if and only if every Cauchy sequence in X is convergent.

Definition 6[7]: Let A and B be mappings from an intuitionistic fuzzy metric space $(X, M, N, *, \lozenge)$ into itself. The maps A and B are said to be compatible if, for all t > 0,

$$\lim_{n\to\infty} M$$
 (ABx_n, BAx_n, t) = 1 and $\lim_{n\to\infty} N$ (ABx_n, BAx_n, t) = 0

whenever $\{x_n\}$ is a sequence in X such that $\lim_{n\to\infty} Ax_n = \lim_{n\to\infty} Bx_n = x$ for some $x \in X$.

Definition 7[7]: Let A and B be mappings from an intuitionistic fuzzy metric space (X, M, N)*into itself. The maps A and B are said to be semi-compatible if and only if

 $\lim_{n\to\infty} M$ (ABx_n, Bx, t) = 1 and $\lim_{n\to\infty} N$ (ABx_n, Bx, t) = 0 for all t > 0,

whenever $\{x_n\} \in X$ such that $\lim_{n\to\infty} Ax_n = \lim_{n\to\infty} Bx_n = x$, for all $x \in X$.

Definition 8: Two self maps A and B in a intuitionistic fuzzy metric space $(X,M,N,*,\diamond)$ is said to be weak compatible if they commute at their coincidence points.

Lemma 1[1]: In intuitionistic fuzzy metric space X, M(x, y, .) is non-decreasing and N(x, y, .) is non-increasing for all $x, y \in X$.

Lemma 2[7]: Let $(X, M, N, *, \diamond)$ be an intuitionistic fuzzy metric space. If there exists $k \in (0, 1)$ such that

$$M(x, y, kt) \ge M(x, y, t)$$
 and $N(x, y, kt) \le N(x, y, t)$ for $x, y \in X$. then $x = y$.

Theorem: Let A, B, S, T, P and Q are self maps on a complete intuitionistic fuzzy metric space $(X, M, N, *, \diamond)$ with t-norm * and t-conorm \diamond defined by $a*b = \min\{a, b\}$ and $a\diamond b = \max\{a, b\}$ for all $a, b \in [0, 1]$. Satisfying:

- (i) $P(X) \subseteq ST(X), Q(X) \subseteq AB(X)$
- (ii) AB=BA, ST=TS, PB=BP, QT=TQ
- (iii) Either AB or P is continuous;
- (iv) (P, AB) is compatible and (Q, ST) is weakly compatible;
- (v) There exists $k \in (0, 1)$ such that

$$M(Px, Qy, kt) \ge Min\{M(ABx, Px, t), M(STy, Qy, t), M(STy, Px, \beta t), M(ABx, Qy, (2-\beta)t), M(ABx, STy, t)\}$$

and
$$N(Px, Qy, kt) \le Max \{N(ABx, Px, t), N(STy, Qy, t), N(STy, Px, \beta t), N(ABx, Qy, (2-\beta)t), N(ABx, STy, t)\}$$

For all $x, y \in X$, $\beta \in (0, 2)$ and x, y>0

Then A, B, S, T, P and O have a unique common fixed point in X.

Proof: Let $x_0 \in X$, from condition (1) there exists $x_1, x_2 \in X$ such that $Px_0 = STx_1 = y_0$ and $Qx_1 = ABx_2 = y_1$ Inductively we can construct sequences $\{x_n\}$ and $\{y_n\}$ in X such that

$$Px_{2n} = STx_{2n+1} = y_{2n}$$
 and $Qx_{2n+1} = ABx_{2n+2} = y_{2n+1}$ for all $n = 0, 1, 2 ...$

Step 1: Putting $x = x_{2n}$, $y = x_{2n+1}$ for all x, y> 0 and β =1- q with $q \in (0, 1)$ in (5) we get,

$$\begin{split} M(Px_{2n},Qx_{2n+1},kt) \geq Min\{M(ABx_{2n},Px_{2n},t), & M(STx_{2n+1},Qx_{2n+1},t), \\ M(ABx_{2n},Qx_{2n+1},(2-\beta)t), & M(ABx_{2n},STx_{2n+1},t)\} \end{split}$$

$$M(y_{2n},\,y_{2n+1},\,kt)\geq Min\{M(y_{2n-1},\,y_{2n},\,t),\,M(y_{2n},\,y_{2n+1},\,t),\,1,\,M(y_{2n-1},\,y_{2n+1},\,(1+q)t),\,M(y_{2n-1},\,y_{2n},\,t)\}$$

$$\geq Min \; \{M(y_{2n-1},\,y_{2n},\,t),\, M(y_{2n},\,y_{2n+1},\,t),\, M(y_{2n-1},\,y_{2n},\,t),\, M(y_{2n},\,y_{2n+1},\,t)\}$$

$$\geq$$
 Min {M(y_{2n-1}, y_{2n}, t), M(y_{2n-1}, y_{2n}, t), M(y_{2n}, y_{2n+1}, t), M(y_{2n}, y_{2n+1}, t)}

and
$$N(Px_{2n}, Qx_{2n+1}, kt) \le Max\{N(ABx_{2n}, Px_{2n}, t), N(STx_{2n+1}, Qx_{2n+1}, t), N(STx_{2n+1}, Px_{2n}, \beta t), N(ABx_{2n}, Qx_{2n+1}, (2-\beta)t), N(ABx_{2n}, STx_{2n+1}, t)\}$$

$$N(y_{2n},\,y_{2n+1},\,kt) \leq Max\{N(y_{2n-1},\,y_{2n},\,t),\,N(y_{2n},\,y_{2n+1},\,t),\,0,\,N(y_{2n-1},\,y_{2n+1},\,(1+q)t),\,N(y_{2n-1},\,y_{2n},t)\}$$

$$\leq Max\{N(y_{2n\text{-}1},\,y_{2n},\,t),\,N(y_{2n},\,y_{2n+1},\,t),\,N(y_{2n\text{-}1},\,y_{2n},\,t),\,N(y_{2n},\,y_{2n+1},\,t)\}$$

$$\leq Max\{N(y_{2n-1},\,y_{2n},\,t),\,N(y_{2n-1},\,y_{2n},\,t),\,N(y_{2n},\,y_{2n+1},\,t),\,N(y_{2n},\,y_{2n+1},\,t)\}$$

As t-norm and t-conorm are continuous, letting $q \rightarrow 1$, we get,

$$M(y_{2n}, y_{2n+1}, kt) \ge Min\{M(y_{2n-1}, y_{2n}, t), M(y_{2n}, y_{2n+1}, t), M(y_{2n}, y_{2n+1}, t)\}$$

$$\geq Min\{M(y_{2n-1}, y_{2n}, t), M(y_{2n}, y_{2n+1}, t)\}$$

and
$$N(y_{2n}, y_{2n+1}, kt) \le Max\{N(y_{2n-1}, y_{2n}, t), N(y_{2n}, y_{2n+1}, t), N(y_{2n}, y_{2n+1}, t)\}$$

$$\leq$$
 Man{N(y_{2n-1}, y_{2n}, t), N(y_{2n}, y_{2n+1}, t)}

Hence, $M(y_{2n}, y_{2n+1}, kt) \ge Min\{M(y_{2n-1}, y_{2n}, t), M(y_{2n}, y_{2n+1}, t)\}$

and
$$N(y_{2n}, y_{2n+1}, kt) \le Max\{N(y_{2n-1}, y_{2n}, t), N(y_{2n}, y_{2n+1}, t)\}$$

Similarly, $M(y_{2n+1}, y_{2n+2}, kt) \ge Min\{M(y_{2n}, y_{2n+1}, t), M(y_{2n}, y_{2n+1}, t)\}$

and
$$N(y_{2n+1}, y_{2n+2}, kt) \le Max\{N(y_{2n}, y_{2n+1}, t), N(y_{2n}, y_{2n+1}, t)\}$$

Therefore, for all n even or odd we have,

$$M(y_n,y_{n+1},kt) \geq Min\{M(y_{n-1},y_n,t),M(y_n,y_{n+1},t)\} \ and \ N(y_n,y_{n+1},kt) \leq Max\{N(y_{n-1},y_n,t),N(y_n,y_{n+1},t)\}$$

Amardeep Singh & Surendra Singh Khichi*/ Common Fixed Point Theorem for Six Weakly-Compatible Mappings in Intuitionistic Fuzzy Metric Space / IJMA- 3(10), Oct.-2012.

Consequently, $M(y_n, y_{n+1}, t) \ge Min\{M(y_{n-1}, y_n, k^{-1}t), M(y_n, y_{n+1}, k^{-1}t)\}$

and
$$N(y_n, y_{n+1}, t) \le Max\{N(y_{n-1}, y_n, k^{-1}t), N(y_n, y_{n+1}, k^{-1}t)\}$$

by repeated application of inequality, we get,

$$M(y_n, y_{n+1}, t) \ge Min\{M(y_{n-1}, y_n, k^{-1}t), M(y_n, y_{n+1}, k^{-m}t)\}$$

and
$$N(y_n, y_{n+1}, t) \le Max\{N(y_{n-1}, y_n, k^{-1}t), N(y_n, y_{n+1}, k^{-m}t)\}$$

Since $M(y_n, y_{n+1}, k^{-m}t) \rightarrow 1$ and $N(y_n, y_{n+1}, k^{-m}t) \rightarrow 0$ as $m \rightarrow \infty$, it follows that

 $M(y_n, y_{n+1}, kt) \ge M(y_{n-1}, y_n, t)$ and $N(y_n, y_{n+1}, kt) \le N(y_{n-1}, y_n, t)$ for all $n \in N$ and $x, y \in X$.

Therefore by lemma (2), $\{y_n\}$ is a Cauchy sequence in X. which is complete. Hence $\{y_n\} \rightarrow z \in X$. Also its subsequences converge as follows.

$$\{Qx_{2n+1}\} \to z \text{ and } \{STx_{2n+1}\} \to z \tag{3.1}$$

$${Px_{2n}} \rightarrow z \text{ and } {ABx_{2n+1}} \rightarrow z$$
 (3.2)

Case I: AB is continuous. As AB is continuous, $(AB)^2x_{2n} \to ABz$ and $(AB)Px_{2n} \to ABz$. As (P, AB) is \to ABz. compatible, we have $P(AB)x_{2n}$

Step 2: Putting $x = ABx_{2n}$, $y = x_{2n+1}$ with $\beta = 1$ in condition (5), we get

$$\begin{split} M(PABx_{2n},\,Qx_{2n+1},\,kt) &\geq Min\{M(ABAx_{2n},\,PABx_{2n},\,t),\,M(STx_{2n+1},\,Qx_{2n+1},\,t),\\ &\quad M(STx_{2n+1},\,PABx_{2n},\,t),\,M(ABABx_{2n},\,Qx_{2n+1},\,t),\,M(ABABx_{2n},\,STx_{2n+1},\,t)\} \end{split}$$

$$\text{and } N(PABx_{2n},\,Qx_{2n+1},\,kt) \leq Max\{N(ABAx_{2n},\,PABx_{2n},\,t),\,N(STx_{2n+1},\,Qx_{2n+1},\,t),\,N(STx_{2n+1},\,PABx_{2n},\,t),\\ N(ABABx_{2n},\,Qx_{2n+1},\,t),\,N(ABABx_{2n},\,STx_{2n+1},\,t)\}$$

Letting $n \to \infty$, we get,

$$M(ABz, z, kt) \ge Min\{M(ABz, ABz, t), M(z, z, t), M(z, ABz, t), M(ABz, z, t), M(ABz, z, t)\}$$

and
$$N(ABz, z, kt) \le Max\{N(ABz, ABz, t), N(z, z, t), N(z, ABz, t), N(ABz, z, t), N(ABz, z, t)\}$$

i.e. $M(ABz, z, kt) \ge M(ABz, z, t)$ and $N(ABz, z, kt) \le N(ABz, z, t)$

Therefore by lemma (2), we get
$$ABz = z$$
. (3.3)

Step 3: Putting x = z, $y = x_{2n+1}$ with $\beta = 1$ in condition (5), we get,

$$\begin{split} M(Pz,\,Qx_{2n+1},\,kt) \geq Min\{M(ABz,\,Pz,\,t),\,M(STx_{2n+1},\,Qx_{2n+1},\,t),\,M(STx_{2n+1},\,Pz,\,t),\,M(ABz,\,Qx_{2n+1},\,t),\\ M(ABz,\,STx_{2n+1},\,t)\} \end{split}$$

$$\text{and} \quad N(Pz,\,Qx_{2n+1},\,kt) \leq Max\{N(ABz,\,Pz,\,t),\,N(STx_{2n+1},\,Qx_{2n+1},\,t),\,N(STx_{2n+1},\,Pz,\,t),\,N(ABz,\,Qx_{2n+1},\,t),\\ \qquad \qquad N(ABz,\,STx_{2n+1},\,t)\}$$

Letting $n \rightarrow \infty$, we get

$$M(Pz, z, kt) \ge Min\{M(z, Pz, t), M(z, z, t), M(z, Pz, t), M(Pz, z, t), M(Pz, z, t)\}$$

and
$$N(Pz, z, kt) \le Max\{N(z, Pz, t), N(z, z, t), N(z, Pz, t), N(Pz, z, t), N(Pz, z, t)\}$$

i.e. $M(Pz, z, kt) \ge M(Pz, z, t)$ and $N(Pz, z, kt) \le N(Pz, z, t)$

Which gives Pz = z. Therefore ABz = Pz = z.

Step 4: Putting x = Bz, $y = x_{2n+1}$ with $\beta = 1$ in condition (5), we get,

$$M(PBz, Qx_{2n+1}, kt) \geq Min\{M(ABBz, PBz, t), M(STx_{2n+1}, Qx_{2n+1}, t), M(STx_{2n+1}, PBz, t), M(ABBz, Qx_{2n+1}, t)\}$$

and
$$N(PBz, Qx_{2n+1}, kt) \le Max\{N(ABBz, PBz, t), N(STx_{2n+1}, Qx_{2n+1}, t), N(STx_{2n+1}, PBz, t), N(ABBz, Qx_{2n+1}, t)\}$$

As BP = PB, AB = BA so we have P(Bz) = B(Pz) = Bz and AB(Bz) = B(ABz) = Bz.

Letting $n \rightarrow \infty$, we get, $M(Bz, z, kt) \ge Min\{M(Bz, z, t), M(z, z, t), M(z, Bz, t), M(Bz, z, t), M(Bz, z, t)\}$

and $N(Bz, z, kt) \le Max\{N(Bz, z, t), N(z, z, t), N(z, Bz, t), N(Bz, z, t), N(Bz, z, t)\}$

i.e. $M(Bz, z, kt) \ge M(Bz, z, t)$ and $N(Bz, z, kt) \le N(Bz, z, t)$

which gives Bz = z and ABz = z implies Az = z. Therefore Az = Bz = Pz = z. (3.4)

Step 5: $P(X) \subseteq ST(X)$, there exists $v \in X$ such that z=Pz=STv. Putting $x=x_{2n}$, y=v with $\beta=1$ in condition (5), we get,

 $M(Px_{2n}, Qv, kt) \ge Min\{M(ABx_{2n}, Px_{2n}, t), M(STv, Qv, t), M(STv, Px_{2n}, t), M(ABx_{2n}, Qv, t), M(ABx_{2n}, STv, t)\}$

 $\text{and } N(Px_{2n},\,Qv,\,kt) \leq Max\{N(ABx_{2n},\,Px_{2n},\,t),\,N(STv,\,Qv,\,t),\,N(STv,\,Px_{2n},\,t),\,N(ABx_{2n},\,Qv,\,t),\,N(ABx_{2n},\,STv,\,t)\}$

Letting $n \rightarrow \infty$ and using eqⁿ. (3.2), we get,

 $M(z, Qz, kt) \ge Min\{M(z, z, t), M(z, Qv, t), M(z, z, t), M(z, Qz, t), M(z, z, t)\}$

and $N(z, Qz, kt) \le Max\{N(z, z, t), N(z, Qv, t), N(z, z, t), N(z, Qz, t), N(z, z, t)\}$

i.e. $M(z, Qz, kt) \ge M(z, Qz, t)$ and $N(z, Qz, kt) \le N(z, Qz, t)$.

Therefore by lemma (2), Qv = z. Hence STv = Qv.

As (Q, ST) is weakly compatible, we have STQv = QSTv. Thus STz = Qz.

Step 6: Putting $x = x_{2n}$, y = z with $\beta=1$ in condition (5), we get,

 $M(Px_{2n}, Qz, kt) \ge Min\{M(ABx_{2n}, Px_{2n}, t), M(STz, Qz, t), M(STz, Px_{2n}, t), M(ABx_{2n}, Qz, t), M(ABx_{2n}, STz, t)\}$

 $\text{and} \quad N(Px_{2n},Qz,kt) \leq Max\{N(ABx_{2n},Px_{2n},t), N(STz,Qz,t), N(STz,Px_{2n},t), N(ABx_{2n},Qz,t), N(ABx_{2n},STz,t)\}$

Letting $n \rightarrow \infty$ and using eqⁿ. (3.1) and Step (5), we get,

 $M(z, Qz, kt) \ge Min\{M(z, z, t), M(Qz, Qz, t), M(Qz, z, t), M(z, Qz, t), M(z, Qz, t)\}$

and $N(z, Qz, kt) \le Max\{N(z, z, t), N(Qz, Qz, t), N(Qz, z, t), N(z, Qz, t), N(z, Qz, t)\}.$

i.e. $M(z, Qz, kt) \ge M(z, Qz, t)$ and $N(z, Qz, kt) \le N(z, Qz, t)$

Hence z = Qz.

Step 7: Putting $x = x_{2n}$, y = z with $\beta = 1$ in condition (5), we get,

 $M(Px_{2n},QTz,kt) \geq Min\{M(ABx_{2n},Px_{2n},t),M(STTz,QTz,t),M(STTz,Px_{2n},t),M(ABx_{2n},QTz,t),M(ABx_{2n},STTz,t)\}$

 $and\ N(Px_{2n},\ QTz,\ kt) \leq Max\{N(ABx_{2n},\ Px_{2n},\ t),\ N(STTz,\ QTz,\ t),\ N(STTz,Px_{2n},\ t),\ N(ABx_{2n},\ QTz,\ t),N(ABx_{2n},\ STTz,\ t)\}$

As QT = TQ and ST = TS we have QTz = TQz = Tz and ST(Tz) = T(STz) = Tz.

Letting $n \rightarrow \infty$, we get,

$$M(z, Tz, kt) \ge Min\{M(z, z, t), M(Tz, Tz, t), M(Tz, z, t), M(z, Tz, t), M(z, Tz, t)\}$$

and $N(z, Tz, kt) \le Max\{N(z, z, t), N(Tz, Tz, t), N(Tz, z, t), N(z, Tz, t), N(z, Tz, t)\}$

i.e. $M(z, Tz, kt) \ge M(z, Tz, t)$ and $N(z, Tz, kt) \le N(z, Tz, t)$. Therefore by lemma (2), Tz = z.

Now STz = Tz = z implies Sz = z. Hence Sz = Tz = Qz = z. (3.5)

Combining (3.4) and (3.5), we get, Az = Bz = Pz = Qz = Tz = Sz = z.

Hence, the six self maps have a common fixed point in this case also.

Case II: P is continuous. As P is continuous, $P^2x_{2n} \rightarrow Pz$ and $P(ABx_{2n}) \rightarrow Pz$. As (P, AB) is compatible, we have

$$(AB)Px_{2n} \rightarrow Pz$$
.

Step 8: Putting $x=Px_{2n}$, $y=x_{2n+1}$ with $\beta=1$ in condition (5), we get,

 $M(PPx_{2n}, Qx_{2n+1}, kt) \ge Min\{M(ABPx_{2n}, PPx_{2n}, t), M(STx_{2n+1}, Qx_{2n+1}, t), M(STx_{2n+1}, PPx_{2n}, t), \\ M(ABPx_{2n}, Qx_{2n+1}, t), M(ABPx_{2n}, STx_{2n+1}, t)\}$

 $\text{and } N(PPx_{2n},Qx_{2n+1},kt) \leq Max\{N(ABPx_{2n},PPx_{2n},t), N(STx_{2n+1},Qx_{2n+1},t), N(STx_{2n+1},PPx_{2n},t), \\ N(ABPx_{2n},Qx_{2n+1},t), N(ABPx_{2n},STx_{2n+1},t)\}.$

Letting $n \rightarrow \infty$, we get,

$$M(Pz, z, kt) \ge Min\{M(Pz, z, t), M(z, z, t), M(z, Pz, t), M(Pz, z, t), M(Pz, z, t)\}$$

and
$$N(Pz, z, kt) \le Max\{N(Pz, z, t), N(z, z, t), N(z, Pz, t), N(Pz, z, t), N(Pz, z, t)\}$$

i.e. $M(Pz, z, kt) \ge M(Pz, z, t)$ and $N(Pz, z, kt) \le N(Pz, z, t)$.

which gives Pz = z. now using Step (5) and (7) gives us Qz = STz = Sz = Tz = z.

Step 9: As $Q(X)\subseteq AB(X)$ there exists $w\in X$ suh that z=Qz=ABw. Putting x=w, $y=x_{2n+1}$ with $\beta=1$ in condition (5), we get,

 $M(Pw,Qx_{2n+1},kt) \geq Min\{M(ABw,Pw,t), M(STx_{2n+1},Qx_{2n+1},t), M(STx_{2n+1},Pw,t), M(ABw,Qx_{2n+1},t), M(ABw,STx_{2n+1},t)\}$

 $and\ N(Pw,\,Qx_{2n+1},\,kt) \leq Max\{N(ABw,\,Pw,\,t),\,N(STx_{2n+1},\,Qx_{2n+1},\,t),\,N(STx_{2n+1},\,Pw,\,t),\,N(ABw,\,Qx_{2n+1},\,t),\\ N(ABw,\,STx_{2n+1},\,t)\}$

Letting $n \rightarrow \infty$, we get,

$$M(Pw, z, kt) \ge Min\{M(z, Pw, t), M(z, z, t), M(z, Pw, t), M(z, z, t), M(z, z, t)\}$$

and $N(Pw, z, kt) \le Max\{N(z, Pw, t), N(z, z, t), N(z, Pw, t), N(z, z, t), N(z, z, t)\}$

i.e. $M(Pw, z, kt) \ge M(Pw, z, t)$ and $N(Pw, z, kt) \le N(Pw, z, t)$

which gives Pw= z= ABw. As (P, AB) is weakly compatible.

We have Pz=ABz. Also Bz=z follows from Step 4.

Thus, Az=Bz=Pz=z and we obtain that z is the common fixed point of the six self maps in this case also.

Step 10: (Uniqueness) let u be another common fixed point of A, B, P, Q, S and T.

Then Au=Bu=Pu=Tu=Qu=Su=u. Putting x=z, y=u with β =1 in condition (5), we get,

$$M(Pz, Qu, kt) \ge Min\{M(ABz, Pz, t), M(STu, Pu, t), M(STu, Au, t), M(ABz, Qu, t), M(ABz, STu, t)\}$$

and $N(Pz, Qu, kt) \le Max\{N(ABz, Pz, t), N(STu, Pu, t), N(STu, Au, t), N(ABz, Qu, t), N(ABz, STu, t)\}$

i.e. $M(z, u, kt) \ge M(z, u, t)$ and $N(z, u, kt) \le N(z, u, t)$

which gives z=w. Therefore z is a unique common fixed point of A, B, P, Q, S and T.

REFERENCES

[1]. C. Alaka, D. Turkoglu and C. Yildiz: Fixed points in intuitionistic fuzzy metric spaces, Smallerit Choas, Solitons & Fractals, 29(5)(2006), 1073-1078.

Amardeep Singh & Surendra Singh Khichi*/ Common Fixed Point Theorem for Six Weakly-Compatible Mappings in Intuitionistic Fuzzy Metric Space / IJMA- 3(10), Oct.-2012.

- [2]. K. Atanassav, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20(1986), 87-96.
- [3]. A.George and P. Veeramani,: on some results in fuzzy metric spaces, Fuzzy Sets and Systems 64 (1994), 395-399.
- [4]. G. Jungck and B. E. Rhoades,: Fixed point for set valued functions without continuity, Ind. J. Pure & Appl. Math. 29(1998), no. 3, 227-238.
- [5]. S. Kutukcu,: A common fixed point theorem for a sequence of self maps in intuitionistic fuzzy metric spaces, Common. Korean Math. Soc. 21 (2006), no. 4, 679-687.
- [6]. J. H. Park,: Intuitionistic fuzzy metric spaces, chaos, Solitions & Fractals 22 (2004), 1039-1046.
- [7]. J. S. Park and S. Y. Kim, Common fixed point and example in intuitionistic fuzzy metric space, J. K. I. I. S. 18 (2008), NO. 4, 524 529.
- [8]. B. Schweizer and A. Sklar,: Statistical metric spaces, Pacific J. Math. 10 (1960), 314 334.
- [9]. D. Turkoglu, C. Alaca, Y. J. cho., and C. Yildiz,: Common fixed points theorems in intuitionistic Fuzzy metric spaces, J. Appl. Math. & computing 22 (2006), 411-424.
- [10]. D. Turkoglu, C. Alaca and C. Yildiz: Compatible maps and compatible maps of type (α) and (β) in intuitionistic fuzzy metric spaces, Demonstratio Math. 39 (2006), no. 3, 71-684.
- [11]. L. A. Zadeh, Fuzzy Sets, Inform. And control 89 (1965), 338-358.

Source of support: Nil, Conflict of interest: None Declared