COMMON FIXED POINT THEOREM FOR SIX WEAKLY-COMPATIBLE MAPPINGS IN INTUITIONISTIC FUZZY METRIC SPACE

Amardeep Singh
Department of Mathematics, Govt. M. V. M. P. G. College, Bhopal (M.P.), India
Surendra Singh Khichi*
Department of Mathematics, Acropolis Inst. Of Tech., Bhopal (M.P.), India

(Received on: 21-07-12; Accepted on: 17-10-12)

Abstract

The Purpose of this paper is to obtain a common fixed point theorem for six weakly compatible mappings in intuitionistic fuzzy metric space. We extend some earlier results.

Keyword: Intuitionistic fuzzy metric space, R-commuting maps, weak-compatible maps, common fixed point.
2000 Mathematics Subject Classification: 47H10, 54H25.

INTRODUCTION

As a generalization of fuzzy sets introduced by Zadeh [11], Atanassav [2] introduced the concept of intuitionistic fuzzy sets. Recently, using the idea of intuitionistic fuzzy sets, Park [6] introduced the notion of intuitionistic fuzzy metric spaces with the help of continuous t-norms and continuous t-conorms as a generalization of fuzzy metric spaces due to George and Veeramani [3] and introduced the notionof Cauchy sequences in an intuitionistic fuzzy metric space. Turkoglu et al. [9], gave generalization of Jungck's common fixed point theorem [4] to intuitionistic fuzzy metric spaces. Recently, many authors have studied fixed point theory in intuitionistic fuzzy metric spaces (See [1], [5], [6], [9], [10]).

In this paper, we prove a common fixed point theorem for six self maps in intuitionistic fuzzy metric space under the assumption of weak compatibility of maps.

PRELIMINARIES

Definition 1[8]: A binary operation $*:[0,1] \times[0,1] \rightarrow[0,1]$ is continuous t-norm if $*$ is satisfying the following conditions:
(i) * is commutative and associative;
(ii) * is continuous;
(iii) a * $1=\mathrm{a}$ for all $\mathrm{a} \in[0,1]$;
(iv) $\mathrm{a} * \mathrm{~b} \leq \mathrm{c} * \mathrm{~d}$ whenever $\mathrm{a} \leq \mathrm{c}$ and $\mathrm{b} \leq \mathrm{d}$ for all $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d} \in[0,1]$.

Definition 2[8]: A binary operation $\diamond:[0,1] \times[0,1] \rightarrow[0,1]$ is continuous t-conorm if \diamond is satisfying the following conditions:
(i) \diamond is commutative and associative;
(ii) \diamond is continuous;
(iii) $\mathrm{a} \diamond 0=\mathrm{a}$ for all $\mathrm{a} \in[0,1]$;
(iv) $\mathrm{a} \diamond \mathrm{b} \geq \mathrm{c} \diamond \mathrm{d}$ whenever $\mathrm{a} \leq \mathrm{c}$ and $\mathrm{b} \leq \mathrm{d}$ for all $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d} \in[0,1]$.

Definition 3[1]: A 5-tuple ($\mathrm{X}, \mathrm{M}, \mathrm{N},{ }^{*}, \diamond$) is said to be an intuitionistic fuzzy metric space if X is an arbitrary set, * is a continuous t-norm, \diamond is a continuous t-conorm and M, N are fuzzy sets on $X^{2} \times(0, \infty)$ satisfying the following conditions:
(i) $\mathrm{M}(\mathrm{x}, \mathrm{y}, \mathrm{t})+\mathrm{N}(\mathrm{x}, \mathrm{y}, \mathrm{t}) \leq 1$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$ and $\mathrm{t}>0$;
(ii) $\mathrm{M}(\mathrm{x}, \mathrm{y}, 0)=0$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$;
(iii) $M(x, y, t)=1$ for all $x, y \in X$ and $t>0$ if and only if $x=y$;
(iv) $M(x, y, t)=M(y, x, t)$ for all $x, y \in X$ and $t>0$;
(v) $M(x, y, t) * M(y, z, s) \leq M(x, z, t+s)$ for all $x, y, z \in X$ and $s, t>0$;
(vi) For all $x, y \in X, M(x, y,):.[0, \infty) \rightarrow[0,1]$ is continuous;
(vii) $\lim _{t \rightarrow \infty} M(\mathrm{x}, \mathrm{y}, \mathrm{t})=1$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$ and $\mathrm{t}>0$;
(viii) $\mathrm{N}(\mathrm{x}, \mathrm{y}, 0)=1$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$;
(ix) $N(x, y, t)=0$ for all $x, y \in X$ and $t>0$ if and only if $x=y$;
(x) $N(x, y, t)=N(y, x, t)$ for all $x, y \in X$ and $t>0$;
(xi) $N(x, y, t) \diamond N(y, z, s) \geq N(x, z, t+s)$ for all $x, y, z \in X$ and $s, t>0$;
(xii) For all $x, y \in X, N(x, y,):.[0, \infty) \rightarrow[0,1]$ is continuous;
(xiii) $\lim _{t \rightarrow \infty} N(\mathrm{x}, \mathrm{y}, \mathrm{t})=0$ for all x, y in X ;

Then (M, N) is called an intuitionistic fuzzy metric on X. The functions $M(x, y, t)$ and $N(x, y, t)$ denote the degree of nearness and the degree of non-nearness between x and y with respect to t, respectively.

Remark 1: Every fuzzy metric space ($\mathrm{X}, \mathrm{M},{ }^{*}$) is an intuitionistic fuzzy metric space of the form ($\mathrm{X}, \mathrm{M}, 1-\mathrm{M},{ }^{*}, \diamond$) such that t-norm * and t-conorm \diamond are associated as $\mathrm{x} \diamond \mathrm{y}=1-((1-\mathrm{x}) *(1-\mathrm{y}))$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$.

Example 1[6]: Let (x, d) be a metric space, define t-norm $a * b=\min \{a, b\}$ and t-conorm $a \diamond b=\max \{a, b\}$ and for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$ and $\mathrm{t}>0$,

$$
\mathrm{M}_{\mathrm{d}}(\mathrm{x}, \mathrm{y}, \mathrm{t})=\frac{t}{t+d(x, y)}, \mathrm{N}_{\mathrm{d}}(\mathrm{x}, \mathrm{y}, \mathrm{t})=\frac{d(x, y)}{t+d(x, y)}
$$

Then (X, M, N, *, \langle) is an intuitionistic fuzzy metric space. We call this intuitionistic fuzzy metric (M, N) induced by the metric d the standard intuitionistic fuzzy metric.

Definition 4[1]: Let (X, M, N, *, \diamond) be an intuitionistic fuzzy metric space. Then
(a) a sequence $\left\{x_{n}\right\}$ in X is said to be Cauchy sequence if, for all $t>0$ and $p>0$, $\lim _{n \rightarrow \infty} M\left(\mathrm{x}_{\mathrm{n}+\mathrm{p}}, \mathrm{x}_{\mathrm{n}}, \mathrm{t}\right)=1, \lim _{n \rightarrow \infty} N\left(\mathrm{x}_{\mathrm{n}+\mathrm{p}}, \mathrm{x}_{\mathrm{n}}, \mathrm{t}\right)=0$.
(b) a sequence $\left\{x_{n}\right\}$ in X is said to be convergent to a point $x \in X$ if, for all $t>0$,

$$
\lim _{n \rightarrow \infty} M\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}, \mathrm{t}\right)=1, \lim _{n \rightarrow \infty} N\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}, \mathrm{t}\right)=0
$$

Since * and \diamond are continuous, the limit is uniquely determined from (v) and (xi) of definition (3), respectively.
Definition 5[1]: An intuitionistic fuzzy metric space (X, M, N, *, $)$) is said to be Complete if and only if every Cauchy sequence in X is convergent.

Definition 6[7]: Let A and B be mappings from an intuitionistic fuzzy metric space ($\mathrm{X}, \mathrm{M}, \mathrm{N},{ }^{*}, \diamond$) into itself. The maps A and B are said to be compatible if, for all $\mathrm{t}>0$,

$$
\lim _{n \rightarrow \infty} M\left(\mathrm{ABx}_{\mathrm{n}}, \mathrm{BAx}, \mathrm{t}\right)=1 \text { and } \lim _{n \rightarrow \infty} N\left(\mathrm{ABx}_{\mathrm{n}}, \mathrm{BAx}, \mathrm{t}\right)=0
$$

whenever $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ is a sequence in X such that $\lim _{n \rightarrow \infty} A \mathrm{x}_{\mathrm{n}}=\lim _{n \rightarrow \infty} B \mathrm{x}_{\mathrm{n}}=\mathrm{x}$ for some $\mathrm{x} \in \mathrm{X}$.
Definition 7[7]: Let A and B be mappings from an intuitionistic fuzzy metric space ($\mathrm{X}, \mathrm{M}, \mathrm{N} \mathrm{B}$)*into itself. The maps A and B are said to be semi-compatible if and only if
$\lim _{n \rightarrow \infty} M\left(\mathrm{ABx}_{\mathrm{n}}, \mathrm{Bx}, \mathrm{t}\right)=1$ and $\lim _{n \rightarrow \infty} N\left(\mathrm{ABx}_{\mathrm{n}}, \mathrm{Bx}, \mathrm{t}\right)=0$ for all $\mathrm{t}>0$,
whenever $\left\{\mathrm{x}_{\mathrm{n}}\right\} \in \mathrm{X}$ such that $\lim _{n \rightarrow \infty} A \mathrm{x}_{\mathrm{n}}=\lim _{n \rightarrow \infty} B \mathrm{x}_{\mathrm{n}}=\mathrm{x}, \quad$ for all $\mathrm{x} \in \mathrm{X}$.
Definition 8: Two self maps A and B in a intuitionistic fuzzy metric space ($X, M, N,{ }^{*}, \diamond$) is said to be weak compatible if they commute at their coincidence points.

Lemma 1[1]: In intuitionistic fuzzy metric space $X, M(x, y,$.$) is non-decreasing and N(x, y,$.$) is non-increasing for all$ $x, y \in X$.

Lemma 2[7]: Let $(X, M, N, *, \diamond)$ be an intuitionistic fuzzy metric space. If there exists $k \in(0,1)$ such that

$$
M(x, y, k t) \geq M(x, y, t) \text { and } N(x, y, k t) \leq N(x, y, t) \text { for } x, y \in X \text {. then } x=y .
$$

Theorem: Let A, B, S, T, P and Q are self maps on a complete intuitionistic fuzzy metric space ($\mathrm{X}, \mathrm{M}, \mathrm{N}, *, \diamond$) with tnorm $*$ and t-conorm \diamond defined $b y a^{*} b=\min \{a, b\}$ and $a \diamond b=\max \{a, b\}$ for all $a, b \in[0,1]$. Satisfying:
(i) $\mathrm{P}(\mathrm{X}) \subseteq \mathrm{ST}(\mathrm{X}), \mathrm{Q}(\mathrm{X}) \subseteq \mathrm{AB}(\mathrm{X})$
(ii) $\mathrm{AB}=\mathrm{BA}, \mathrm{ST}=\mathrm{TS}, \mathrm{PB}=\mathrm{BP}, \mathrm{QT}=\mathrm{TQ}$
(iii) Either AB or P is continuous;
(iv) $(P, A B)$ is compatible and (Q, ST) is weakly compatible;
(v) There exists $\mathrm{k} \in(0,1)$ such that
$M(P x, Q y, k t) \geq \operatorname{Min}\{M(A B x, P x, t), M(S T y, Q y, t), M(S T y, P x, \beta t), M(A B x, Q y,(2-\beta) t), M(A B x, S T y, t)\}$
and $N(P x, Q y, k t) \leq \operatorname{Max}\{N(A B x, P x, t), N(S T y, Q y, t), N(S T y, P x, \beta t), N(A B x, Q y,(2-\beta) t), N(A B x, S T y, t)\}$
For all $\mathrm{x}, \mathrm{y} \in \mathrm{X}, \beta \in(0,2)$ and $\mathrm{x}, \mathrm{y}>0$
Then A, B, S, T, P and Q have a unique common fixed point in X .
Proof: Let $x_{0} \in X$, from condition (1) there exists $x_{1}, x_{2} \in X$ such that $\mathrm{Px}_{0}=\mathrm{STx}_{1}=\mathrm{y}_{0}$ and $\mathrm{Qx}_{1}=A B x_{2}=y_{1}$ Inductively we can construct sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ in X such that

$$
\operatorname{Px}_{2 n}=\operatorname{STx}_{2 n+1}=\mathrm{y}_{2 \mathrm{n}} \text { and } \mathrm{Qx}_{2 \mathrm{n}+1}=\mathrm{ABx}_{2 \mathrm{n}+2}=\mathrm{y}_{2 \mathrm{n}+1} \text { for all } \mathrm{n}=0,1,2 \ldots
$$

Step 1: Putting $x=x_{2 n}, y=x_{2 n+1}$ for all $x, y>0$ and $\beta=1-q$ with $q \in(0,1)$ in (5) we get,

$$
\begin{aligned}
& M\left(P_{2 n}, Q x_{2 n+1}, k t\right) \geq \operatorname{Min}\left\{M\left(A B x_{2 n}, P x_{2 n}, t\right), M\left(S T x_{2 n+1},\right.\right. \\
&\left.M x_{2 n+1}, t\right), M\left(S T x_{2 n+1}, P x_{2 n}, \beta t\right), \\
&\left.M\left(A B x_{2 n}, Q x_{2 n+1},(2-\beta) t\right), M\left(A B x_{2 n}, S T x_{2 n+1}, t\right)\right\} \\
& M\left(y_{2 n}, y_{2 n+1}, k t\right) \geq \operatorname{Min}\left\{M\left(y_{2 n-1}, y_{2 n}, t\right), M\left(y_{2 n}, y_{2 n+1}, t\right), 1, M\left(y_{2 n-1}, y_{2 n+1},(1+q) t\right), M\left(y_{2 n-1}, y_{2 n}, t\right)\right\} \\
& \geq \operatorname{Min}\left\{M\left(y_{2 n-1}, y_{2 n}, t\right), M\left(y_{2 n}, y_{2 n+1}, t\right), M\left(y_{2 n-1}, y_{2 n}, t\right), M\left(y_{2 n}, y_{2 n+1}, t\right)\right\} \\
& \geq \operatorname{Min}\left\{M\left(y_{2 n-1}, y_{2 n}, t\right), M\left(y_{2 n-1}, y_{2 n}, t\right), M\left(y_{2 n}, y_{2 n+1}, t\right), M\left(y_{2 n}, y_{2 n+1}, t\right)\right\}
\end{aligned}
$$

and $N\left(\mathrm{Px}_{2 n}, \mathrm{Qx}_{2 n+1}, \mathrm{kt}\right) \leq \operatorname{Max}\left\{\mathrm{N}\left(\mathrm{ABx}_{2 \mathrm{n}}, \mathrm{Px}_{2 \mathrm{n}}, \mathrm{t}\right), \mathrm{N}\left(\mathrm{STx}_{2 \mathrm{n}+1}, \mathrm{Qx}_{2 \mathrm{n}+1}, \mathrm{t}\right), \mathrm{N}\left(\mathrm{STx}_{2 \mathrm{n}+1}, \mathrm{Px}_{2 \mathrm{n}}, \beta \mathrm{t}\right)\right.$, $N\left(A B x_{2 n}, \mathrm{Qx}_{2 \mathrm{n}+1},(2-\beta) \mathrm{t}\right), \mathrm{N}\left(\mathrm{ABx}_{2 \mathrm{n}}\right.$, STx $\left.\left._{2 \mathrm{n}+1}, \mathrm{t}\right)\right\}$

$$
\begin{aligned}
N\left(y_{2 n}, y_{2 n+1}, k t\right) & \leq \operatorname{Max}\left\{N\left(y_{2 n-1}, y_{2 n}, t\right), N\left(y_{2 n}, y_{2 n+1}, t\right), 0, N\left(y_{2 n-1}, y_{2 n+1},(1+q) t\right), N\left(y_{2 n-1}, y_{2 n}, t\right)\right\} \\
& \leq \operatorname{Max}\left\{N\left(y_{2 n-1}, y_{2 n}, t\right), N\left(y_{2 n}, y_{2 n+1}, t\right), N\left(y_{2 n-1}, y_{2 n}, t\right), N\left(y_{2 n}, y_{2 n+1}, t\right)\right\} \\
& \leq \operatorname{Max}\left\{N\left(y_{2 n-1}, y_{2 n}, t\right), N\left(y_{2 n-1}, y_{2 n}, t\right), N\left(y_{2 n}, y_{2 n+1}, t\right), N\left(y_{2 n}, y_{2 n+1}, t\right)\right\}
\end{aligned}
$$

As t-norm and t -conorm are continuous, letting $\mathrm{q} \rightarrow 1$, we get,

$$
\begin{aligned}
M\left(y_{2 n}, y_{2 n+1}, k t\right) & \geq \operatorname{Min}\left\{M\left(y_{2 n-1}, y_{2 n}, t\right), M\left(y_{2 n}, y_{2 n+1}, t\right), M\left(y_{2 n}, y_{2 n+1}, t\right)\right\} \\
& \geq \operatorname{Min}\left\{M\left(y_{2 n-1}, y_{2 n}, t\right), M\left(y_{2 n}, y_{2 n+1}, t\right)\right\}
\end{aligned}
$$

and $N\left(\mathrm{y}_{2 \mathrm{n}}, \mathrm{y}_{2 \mathrm{n}+1}, \mathrm{kt}\right) \leq \operatorname{Max}\left\{\mathrm{N}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}}, \mathrm{t}\right), \mathrm{N}\left(\mathrm{y}_{2 \mathrm{n}}, \mathrm{y}_{2 \mathrm{n}+1}, \mathrm{t}\right), \mathrm{N}\left(\mathrm{y}_{2 \mathrm{n}}, \mathrm{y}_{2 \mathrm{n}+1}, \mathrm{t}\right)\right\}$

$$
\leq \operatorname{Man}\left\{\mathrm{N}\left(\mathrm{y}_{2 \mathrm{n}-1}, \mathrm{y}_{2 \mathrm{n}}, \mathrm{t}\right), \mathrm{N}\left(\mathrm{y}_{2 \mathrm{n}}, \mathrm{y}_{2 \mathrm{n}+1}, \mathrm{t}\right)\right\}
$$

Hence, $M\left(y_{2 n}, y_{2 n+1}, k t\right) \geq \operatorname{Min}\left\{M\left(y_{2 n-1}, y_{2 n}, t\right), M\left(y_{2 n}, y_{2 n+1}, t\right)\right\}$
and $\quad N\left(y_{2 n}, y_{2 n+1}, k t\right) \leq \operatorname{Max}\left\{N\left(y_{2 n-1}, y_{2 n}, t\right), N\left(y_{2 n}, y_{2 n+1}, t\right)\right\}$
Similarly, $M\left(y_{2 n+1}, y_{2 n+2}, k t\right) \geq \operatorname{Min}\left\{M\left(y_{2 n}, y_{2 n+1}, t\right), M\left(y_{2 n}, y_{2 n+1}, t\right)\right\}$

$$
\text { and } N\left(y_{2 n+1}, y_{2 n+2}, k t\right) \leq \operatorname{Max}\left\{N\left(y_{2 n}, y_{2 n+1}, t\right), N\left(y_{2 n}, y_{2 n+1}, t\right)\right\}
$$

Therefore, for all n even or odd we have,
$M\left(y_{n}, y_{n+1}, k t\right) \geq \operatorname{Min}\left\{M\left(y_{n-1}, y_{n}, t\right), M\left(y_{n}, y_{n+1}, t\right)\right\}$ and $N\left(y_{n}, y_{n+1}, k t\right) \leq \operatorname{Max}\left\{N\left(y_{n-1}, y_{n}, t\right), N\left(y_{n}, y_{n+1}, t\right)\right\}$

Consequently, $\mathrm{M}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}+1}, \mathrm{t}\right) \geq \operatorname{Min}\left\{\mathrm{M}\left(\mathrm{y}_{\mathrm{n}-1}, \mathrm{y}_{\mathrm{n}}, \mathrm{k}^{-1} \mathrm{t}\right), \mathrm{M}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}+1}, \mathrm{~K}^{-1} \mathrm{t}\right)\right\}$
and $N\left(y_{n}, y_{n+1}, t\right) \leq \operatorname{Max}\left\{N\left(y_{n-1}, y_{n}, k^{-1} t\right), N\left(y_{n}, y_{n+1}, k^{-1} t\right)\right\}$
by repeated application of inequality, we get,

$$
M\left(y_{n}, y_{n+1}, t\right) \geq \operatorname{Min}\left\{M\left(y_{n-1}, y_{n}, k^{-1} t\right), M\left(y_{n}, y_{n+1}, k^{-m} t\right)\right\}
$$

and $N\left(y_{n}, y_{n+1}, t\right) \leq \operatorname{Max}\left\{N\left(y_{n-1}, y_{n}, k^{-1} t\right), N\left(y_{n}, y_{n+1}, k^{-m} t\right)\right\}$
Since $\mathrm{M}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}+1}, \mathrm{k}^{-\mathrm{m}} \mathrm{t}\right) \rightarrow 1$ and $\mathrm{N}\left(\mathrm{y}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}+1}, \mathrm{k}^{-\mathrm{m}} \mathrm{t}\right) \rightarrow 0$ as $\mathrm{m} \rightarrow \infty$, it follows that
$M\left(y_{n}, y_{n+1}, k t\right) \geq M\left(y_{n-1}, y_{n}, t\right)$ and $N\left(y_{n}, y_{n+1}, k t\right) \leq N\left(y_{n-1}, y_{n}, t\right)$ for all $n \in N$ and $x, y \in X$.
Therefore by lemma (2), $\left\{y_{n}\right\}$ is a Cauchy sequence in X. which is complete. Hence $\left\{y_{n}\right\} \rightarrow z \in X$. Also its subsequences converge as follows.
$\left\{\mathrm{Qx}_{2 \mathrm{n}+1}\right\} \rightarrow \mathrm{z}$ and $\left\{\mathrm{STx}_{2 \mathrm{n}+1}\right\} \rightarrow \mathrm{z}$
$\left\{\mathrm{Px}_{2 \mathrm{n}}\right\} \rightarrow \mathrm{z}$ and $\left\{\mathrm{ABx}_{2 \mathrm{n}+1}\right\} \rightarrow \mathrm{z}$
Case I: AB is continuous. $\mathrm{As} A B$ is continuous, $(\mathrm{AB})^{2} \mathrm{x}_{2 n} \rightarrow \mathrm{ABz}$ and $(\mathrm{AB}) \mathrm{Px}_{2 n} \rightarrow \mathrm{ABz}$. $\mathrm{As}(\mathrm{P}, \mathrm{AB})$ is $\rightarrow \mathrm{ABz}$. compatible, we have $\mathrm{P}(\mathrm{AB}) \mathrm{x}_{2 \mathrm{n}}$

Step 2: Putting $x=A B x_{2 n}, y=x_{2 n+1}$ with $\beta=1$ in condition (5), we get

$$
\begin{aligned}
& M\left(\operatorname{PABx}_{2 n}, \mathrm{Qx}_{2 n+1}, k t\right) \geq \operatorname{Min}\left\{\mathrm{M}_{\left(\mathrm{ABAx}_{2 n},\right.}, \operatorname{PABx}_{2 n}, \mathrm{t}\right), \mathrm{M}\left(\mathrm{STx}_{2 n+1}, \mathrm{Qx}_{2 n+1}, \mathrm{t}\right) \text {, } \\
& \left.\mathrm{M}\left(\mathrm{STx}_{2 n+1}, \text { PABx }_{2 n}, \mathrm{t}\right), \mathrm{M}\left(\mathrm{ABABx}_{2 \mathrm{n}}, \mathrm{Qx}_{2 n+1}, \mathrm{t}\right), \mathrm{M}\left(\mathrm{ABABx}_{2 n}, \text { STx }_{2 n+1}, \mathrm{t}\right)\right\}
\end{aligned}
$$

 $\left.\mathrm{N}\left(\mathrm{ABABx}_{2 n}, \mathrm{Qx}_{2 n+1}, \mathrm{t}\right), \mathrm{N}\left(\mathrm{ABABx}_{2 n}, \mathrm{STx}_{2 n+1}, \mathrm{t}\right)\right\}$

Letting $\mathrm{n} \rightarrow \infty$, we get,
$\mathrm{M}(\mathrm{ABz}, \mathrm{z}, \mathrm{kt}) \geq \operatorname{Min}\{\mathrm{M}(\mathrm{ABz}, \mathrm{ABz}, \mathrm{t}), \mathrm{M}(\mathrm{z}, \mathrm{z}, \mathrm{t}), \mathrm{M}(\mathrm{z}, \mathrm{ABz}, \mathrm{t}), \mathrm{M}(\mathrm{ABz}, \mathrm{z}, \mathrm{t}), \mathrm{M}(\mathrm{ABz}, \mathrm{z}, \mathrm{t})\}$
and $N(A B z, z, k t) \leq \operatorname{Max}\{N(A B z, A B z, t), N(z, z, t), N(z, A B z, t), N(A B z, z, t), N(A B z, z, t)\}$
i.e. $M(A B z, z, k t) \geq M(A B z, z, t)$ and $N(A B z, z, k t) \leq N(A B z, z, t)$

Therefore by lemma (2), we get $\mathrm{ABz}=\mathrm{z}$.
Step 3: Putting $x=z, y=x_{2 n+1}$ with $\beta=1$ in condition (5), we get,

$$
\begin{array}{r}
\mathrm{M}\left(\mathrm{Pz}, \mathrm{Qx} x_{2 n+1}, \mathrm{kt}\right) \geq \operatorname{Min}\left\{\mathrm{M}(\mathrm{ABz}, \mathrm{Pz}, \mathrm{t}), \mathrm{M}\left(\mathrm{STx}_{2 n+1}, \mathrm{Qx}_{2 n+1}, \mathrm{t}\right), \mathrm{M}\left(\mathrm{STx}_{2 n+1}, \mathrm{Pz}, \mathrm{t}\right), \mathrm{M}\left(\mathrm{ABz}, \mathrm{Qx}_{2 n+1}, \mathrm{t}\right),\right. \\
\left.M\left(\mathrm{ABz}, \mathrm{Sx}_{2 n+1}, \mathrm{t}\right)\right\}
\end{array}
$$

and $N\left(P z, \mathrm{Qx}_{2 n+1}, k t\right) \leq \operatorname{Max}\left\{N(A B z, P z, t), N\left(\mathrm{STx}_{2 n+1}, \mathrm{Qx}_{2 n+1}, \mathrm{t}\right), N\left(\mathrm{STx}_{2 n+1}, P z, t\right), N\left(A B z, \mathrm{Qx}_{2 n+1}, t\right)\right.$,
$\left.\mathrm{N}\left(\mathrm{ABz}, \mathrm{STx}_{2 \mathrm{n}+1}, \mathrm{t}\right)\right\}$
Letting $n \rightarrow \infty$, we get

$$
\mathrm{M}(\mathrm{Pz}, \mathrm{z}, \mathrm{kt}) \geq \operatorname{Min}\{\mathrm{M}(\mathrm{z}, \mathrm{Pz}, \mathrm{t}), \mathrm{M}(\mathrm{z}, \mathrm{z}, \mathrm{t}), \mathrm{M}(\mathrm{z}, \mathrm{Pz}, \mathrm{t}), \mathrm{M}(\mathrm{Pz}, \mathrm{z}, \mathrm{t}), \mathrm{M}(\mathrm{Pz}, \mathrm{z}, \mathrm{t})\}
$$

and $\mathrm{N}(\mathrm{Pz}, \mathrm{z}, \mathrm{kt}) \leq \operatorname{Max}\{\mathrm{N}(\mathrm{z}, \mathrm{Pz}, \mathrm{t}), \mathrm{N}(\mathrm{z}, \mathrm{z}, \mathrm{t}), \mathrm{N}(\mathrm{z}, \mathrm{Pz}, \mathrm{t}), \mathrm{N}(\mathrm{Pz}, \mathrm{z}, \mathrm{t}), \mathrm{N}(\mathrm{Pz}, \mathrm{z}, \mathrm{t})\}$
i.e. $\mathrm{M}(\mathrm{Pz}, \mathrm{z}, \mathrm{kt}) \geq \mathrm{M}(\mathrm{Pz}, \mathrm{z}, \mathrm{t})$ and $\mathrm{N}(\mathrm{Pz}, \mathrm{z}, \mathrm{kt}) \leq \mathrm{N}(\mathrm{Pz}, \mathrm{z}, \mathrm{t})$

Which gives $\mathrm{Pz}=\mathrm{z}$. Therefore $\mathrm{ABz}=\mathrm{Pz}=\mathrm{z}$.
Step 4: Putting $x=B z, y=x_{2 n+1}$ with $\beta=1$ in condition (5), we get,
$M\left(P B z, \mathrm{Qx}_{2 n+1}, \mathrm{kt}\right) \geq \operatorname{Min}\left\{\mathrm{M}(\mathrm{ABBz}, \mathrm{PBz}, \mathrm{t}), \mathrm{M}\left(\mathrm{STx}_{2 n+1}, \mathrm{Qx}_{2 n+1}, \mathrm{t}\right), \mathrm{M}\left(\mathrm{STx}_{2 n+1}, \mathrm{PBz}, \mathrm{t}\right), \mathrm{M}\left(\mathrm{ABBz}, \mathrm{Qx}_{2 n+1}, \mathrm{t}\right)\right\}$
and $N\left(P B z, \mathrm{Qx}_{2 n+1}, \mathrm{kt}\right) \leq \operatorname{Max}\left\{\mathrm{N}(\mathrm{ABBz}, \mathrm{PBz}, \mathrm{t}), \mathrm{N}\left(\mathrm{STx}_{2 n+1}, \mathrm{Qx}_{2 n+1}, \mathrm{t}\right), \mathrm{N}\left(\mathrm{STx}_{2 n+1}, \mathrm{PBz}, \mathrm{t}\right), \mathrm{N}\left(\mathrm{ABBz}, \mathrm{Qx}_{2 n+1}, \mathrm{t}\right)\right\}$

As $\mathrm{BP}=\mathrm{PB}, \mathrm{AB}=\mathrm{BA}$ so we have $\mathrm{P}(\mathrm{Bz})=\mathrm{B}(\mathrm{Pz})=\mathrm{Bz}$ and $\mathrm{AB}(\mathrm{Bz})=\mathrm{B}(\mathrm{ABz})=\mathrm{Bz}$.
Letting $\mathrm{n} \rightarrow \infty$, we get, $\mathrm{M}(\mathrm{Bz}, \mathrm{z}, \mathrm{kt}) \geq \operatorname{Min}\{\mathrm{M}(\mathrm{Bz}, \mathrm{z}, \mathrm{t}), \mathrm{M}(\mathrm{z}, \mathrm{z}, \mathrm{t}), \mathrm{M}(\mathrm{z}, \mathrm{Bz}, \mathrm{t}), \mathrm{M}(\mathrm{Bz}, \mathrm{z}, \mathrm{t}), \mathrm{M}(\mathrm{Bz}, \mathrm{z}, \mathrm{t})\}$

$$
\text { and } \mathrm{N}(\mathrm{Bz}, \mathrm{z}, \mathrm{kt}) \leq \operatorname{Max}\{\mathrm{N}(\mathrm{Bz}, \mathrm{z}, \mathrm{t}), \mathrm{N}(\mathrm{z}, \mathrm{z}, \mathrm{t}), \mathrm{N}(\mathrm{z}, \mathrm{Bz}, \mathrm{t}), \mathrm{N}(\mathrm{Bz}, \mathrm{z}, \mathrm{t}), \mathrm{N}(\mathrm{Bz}, \mathrm{z}, \mathrm{t})\}
$$

i.e. $M(B z, z, k t) \geq M(B z, z, t)$ and $N(B z, z, k t) \leq N(B z, z, t)$
which gives $\mathrm{Bz}=\mathrm{z}$ and $\mathrm{ABz}=\mathrm{z}$ implies $\mathrm{Az}=\mathrm{z}$. Therefore $\mathrm{Az}=\mathrm{Bz}=\mathrm{Pz}=\mathrm{z}$.
Step 5: $P(X) \subseteq S T(X)$, there exists $v \in X$ such that $z=P z=S T v$. Putting $x=x_{2 n}, y=v$ with $\beta=1$ in condition (5), we get,
$M\left(\mathrm{Px}_{2 \mathrm{n}}, \mathrm{Qv}, \mathrm{kt}\right) \geq \operatorname{Min}\left\{\mathrm{M}\left(\mathrm{ABx}_{2 \mathrm{n}}, \mathrm{Px}_{2 \mathrm{n}}, \mathrm{t}\right), \mathrm{M}(\mathrm{STv}, \mathrm{Qv}, \mathrm{t}), \mathrm{M}\left(\mathrm{STv}, \mathrm{Px}_{2 \mathrm{n}}, \mathrm{t}\right), \mathrm{M}\left(\mathrm{ABx}_{2 \mathrm{n}}, \mathrm{Qv}, \mathrm{t}\right), \mathrm{M}\left(\mathrm{ABx}_{2 \mathrm{n}}, S T v, t\right)\right\}$ and $N\left(\operatorname{Px}_{2 \mathrm{n}}, \mathrm{Qv}, \mathrm{kt}\right) \leq \operatorname{Max}\left\{\mathrm{N}\left(\mathrm{ABx}_{2 \mathrm{n}}, \mathrm{Px}_{2 \mathrm{n}}, \mathrm{t}\right), \mathrm{N}(\mathrm{STv}, \mathrm{Qv}, \mathrm{t}), \mathrm{N}\left(\mathrm{STv}, \mathrm{Px}_{2 \mathrm{n}}, \mathrm{t}\right), \mathrm{N}\left(\mathrm{ABx}_{2 \mathrm{n}}, \mathrm{Qv}, \mathrm{t}\right), \mathrm{N}\left(\mathrm{ABx}_{2 \mathrm{n}}, \mathrm{STv}, \mathrm{t}\right)\right\}$ Letting $n \rightarrow \infty$ and using eq ${ }^{\mathrm{n}}$. (3.2), we get,

$$
\begin{aligned}
& \mathrm{M}(\mathrm{z}, \mathrm{Qz}, \mathrm{kt}) \geq \operatorname{Min}\{\mathrm{M}(\mathrm{z}, \mathrm{z}, \mathrm{t}), \mathrm{M}(\mathrm{z}, \mathrm{Qv}, \mathrm{t}), \mathrm{M}(\mathrm{z}, \mathrm{z}, \mathrm{t}), \mathrm{M}(\mathrm{z}, \mathrm{Qz}, \mathrm{t}), \mathrm{M}(\mathrm{z}, \mathrm{z}, \mathrm{t})\} \\
& \text { and } \mathrm{N}(\mathrm{z}, \mathrm{Qz}, \mathrm{kt}) \leq \operatorname{Max}\{\mathrm{N}(\mathrm{z}, \mathrm{z}, \mathrm{t}), \mathrm{N}(\mathrm{z}, \mathrm{Qv}, \mathrm{t}), \mathrm{N}(\mathrm{z}, \mathrm{z}, \mathrm{t}), \mathrm{N}(\mathrm{z}, \mathrm{Q}, \mathrm{t}), \mathrm{N}(\mathrm{z}, \mathrm{z}, \mathrm{t})\}
\end{aligned}
$$

i.e. $\mathrm{M}(\mathrm{z}, \mathrm{Qz}, \mathrm{kt}) \geq \mathrm{M}(\mathrm{z}, \mathrm{Qz}, \mathrm{t})$ and $\mathrm{N}(\mathrm{z}, \mathrm{Qz}, \mathrm{kt}) \leq \mathrm{N}(\mathrm{z}, \mathrm{Qz}, \mathrm{t})$.

Therefore by lemma (2), Qv = z. Hence $\mathrm{STv}=\mathrm{Qv}$.
As $(\mathrm{Q}, \mathrm{ST})$ is weakly compatible, we have STQv = QSTv. Thus STz = Qz.
Step 6: Putting $x=x_{2 n}, y=z$ with $\beta=1$ in condition (5), we get,

$$
M\left(P_{2 n}, Q z, k t\right) \geq \operatorname{Min}\left\{M\left(A B x_{2 n}, P x_{2 n}, t\right), M(S T z, Q z, t), M\left(S T z, P x_{2 n}, t\right), M\left(A B x_{2 n}, Q z, t\right), M\left(A B x_{2 n}, S T z, t\right)\right\}
$$

and $N\left(\mathrm{Px}_{2 \mathrm{n}}, \mathrm{Qz}, \mathrm{kt}\right) \leq \operatorname{Max}\left\{\mathrm{N}\left(\mathrm{ABx}_{2 \mathrm{n}}, \mathrm{Px}_{2 \mathrm{n}}, \mathrm{t}\right), \mathrm{N}(\mathrm{STz}, \mathrm{Qz}, \mathrm{t}), \mathrm{N}\left(\mathrm{STz}_{\mathrm{P}}, \mathrm{Px}_{2 \mathrm{n}}, \mathrm{t}\right), \mathrm{N}\left(\mathrm{ABx}_{2 \mathrm{n}}, \mathrm{Qz}, \mathrm{t}\right), \mathrm{N}\left(\mathrm{ABx}_{2 \mathrm{n}}, \mathrm{STz}, \mathrm{t}\right)\right\}$ Letting $n \rightarrow \infty$ and using eq ${ }^{\mathrm{n}}$. (3.1) and Step (5), we get,

$$
\mathrm{M}(\mathrm{z}, \mathrm{Qz}, \mathrm{kt}) \geq \operatorname{Min}\{\mathrm{M}(\mathrm{z}, \mathrm{z}, \mathrm{t}), \mathrm{M}(\mathrm{Qz}, \mathrm{Qz}, \mathrm{t}), \mathrm{M}(\mathrm{Qz}, \mathrm{z}, \mathrm{t}), \mathrm{M}(\mathrm{z}, \mathrm{Qz}, \mathrm{t}), \mathrm{M}(\mathrm{z}, \mathrm{Qz}, \mathrm{t})\}
$$

$$
\text { and } \mathrm{N}(\mathrm{z}, \mathrm{Qz}, \mathrm{kt}) \leq \operatorname{Max}\{\mathrm{N}(\mathrm{z}, \mathrm{z}, \mathrm{t}), \mathrm{N}(\mathrm{Qz}, \mathrm{Qz}, \mathrm{t}), \mathrm{N}(\mathrm{Qz}, \mathrm{z}, \mathrm{t}), \mathrm{N}(\mathrm{z}, \mathrm{Qz}, \mathrm{t}), \mathrm{N}(\mathrm{z}, \mathrm{Qz}, \mathrm{t})\} .
$$

i.e. $M(z, Q z, k t) \geq M(z, Q z, t)$ and $N(z, Q z, k t) \leq N(z, Q z, t)$

Hence $\mathrm{z}=\mathrm{Qz}$.
Step 7: Putting $\mathrm{x}=\mathrm{x}_{2 \mathrm{n}}, \mathrm{y}=\mathrm{z}$ with $\beta=1$ in condition (5), we get,
$M\left(\mathrm{Px}_{2 \mathrm{n}}, \mathrm{QTz}, \mathrm{kt}\right) \geq \operatorname{Min}\left\{\mathrm{M}\left(\mathrm{ABx}_{2 \mathrm{n}}, \mathrm{Px}_{2 \mathrm{n}}, \mathrm{t}\right), \mathrm{M}(\mathrm{STTz}, \mathrm{QTz}, \mathrm{t}), \mathrm{M}\left(\mathrm{STTz}, \mathrm{Px}_{2 \mathrm{n}}, \mathrm{t}\right), \mathrm{M}\left(\mathrm{ABx}_{2 \mathrm{n}}, \mathrm{QTz}, \mathrm{t}\right), \mathrm{M}\left(\mathrm{ABx}_{2 \mathrm{n}}, S T T z, \mathrm{t}\right)\right\}$ and $N\left(\operatorname{Px}_{2 n}, Q T z, k t\right) \leq \operatorname{Max}\left\{N\left(A B x_{2 n}, \operatorname{Px}_{2 n}, t\right), N(S T T z, Q T z, t), N\left(S T T z, x_{2 n}, t\right), N\left(A B x_{2 n}, Q T z, t\right), N\left(A B x_{2 n}, S T T z, t\right)\right\}$ As $\mathrm{QT}=\mathrm{TQ}$ and $\mathrm{ST}=\mathrm{TS}$ we have $\mathrm{QTz}=\mathrm{TQz}=\mathrm{Tz}$ and $\mathrm{ST}(\mathrm{Tz})=\mathrm{T}(\mathrm{STz})=\mathrm{Tz}$.

Letting $n \rightarrow \infty$, we get,
$\mathrm{M}(\mathrm{z}, \mathrm{Tz}, \mathrm{kt}) \geq \operatorname{Min}\{\mathrm{M}(\mathrm{z}, \mathrm{z}, \mathrm{t}), \mathrm{M}(\mathrm{Tz}, \mathrm{Tz}, \mathrm{t}), \mathrm{M}(\mathrm{Tz}, \mathrm{z}, \mathrm{t}), \mathrm{M}(\mathrm{z}, \mathrm{Tz}, \mathrm{t}), \mathrm{M}(\mathrm{z}, \mathrm{Tz}, \mathrm{t})\}$ and $\mathrm{N}(\mathrm{z}, \mathrm{Tz}, \mathrm{kt}) \leq \operatorname{Max}\{\mathrm{N}(\mathrm{z}, \mathrm{z}, \mathrm{t}), \mathrm{N}(\mathrm{Tz}, \mathrm{Tz}, \mathrm{t}), \mathrm{N}(\mathrm{Tz}, \mathrm{z}, \mathrm{t}), \mathrm{N}(\mathrm{z}, \mathrm{Tz}, \mathrm{t}), \mathrm{N}(\mathrm{z}, \mathrm{Tz}, \mathrm{t})\}$
i.e. $M(z, T z, k t) \geq M(z, T z, t)$ and $N(z, T z, k t) \leq N(z, T z, t)$. Therefore by lemma (2), $T z=z$.

Now $\mathrm{STz}=\mathrm{Tz}=\mathrm{z}$ implies $\mathrm{Sz}=\mathrm{z}$. Hence $\mathrm{Sz}=\mathrm{Tz}=\mathrm{Qz}=\mathrm{z}$.

Combining (3.4) and (3.5), we get, $\mathrm{Az}=\mathrm{Bz}=\mathrm{Pz}=\mathrm{Qz}=\mathrm{Tz}=\mathrm{Sz}=\mathrm{z}$.
Hence, the six self maps have a common fixed point in this case also.
Case II: P is continuous. As P is continuous, $\mathrm{P}^{2} \mathrm{x}_{2 \mathrm{n}} \rightarrow \mathrm{Pz}$ and $\mathrm{P}\left(\mathrm{ABx}_{2 \mathrm{n}}\right) \rightarrow \mathrm{Pz}$. As $(\mathrm{P}, \mathrm{AB})$ is compatible, we have

$$
(\mathrm{AB}) \mathrm{Px}_{2 \mathrm{n}} \rightarrow \mathrm{Pz}
$$

Step 8: Putting $\mathrm{x}=\mathrm{Px}_{2 \mathrm{n}}, \mathrm{y}=\mathrm{x}_{2 \mathrm{n}+1}$ with $\beta=1$ in condition (5), we get,

$$
\begin{aligned}
& \left.\mathrm{M}\left(\mathrm{ABPx}_{2 \mathrm{n}}, \mathrm{Qx}_{2 \mathrm{n}+1}, \mathrm{t}\right), \mathrm{M}\left(\mathrm{ABPx}_{2 \mathrm{n}}, \mathrm{STx}_{2 \mathrm{n}+1}, \mathrm{t}\right)\right\} \\
& \text { and } N\left(P^{2 n} x_{2 n}, \mathrm{Qx}_{2 \mathrm{n}+1}, \mathrm{kt}\right) \leq \operatorname{Max}\left\{\mathrm{N}\left(\mathrm{ABPx}_{2 \mathrm{n}}, \mathrm{PPx}_{2 \mathrm{n}}, \mathrm{t}\right), \mathrm{N}\left(\mathrm{STx}_{2 \mathrm{n}+1}, \mathrm{Qx}_{2 \mathrm{n}+1}, \mathrm{t}\right), \mathrm{N}\left(\mathrm{STx}_{2 \mathrm{n}+1}, \mathrm{PPx}_{2 \mathrm{n}}, \mathrm{t}\right)\right. \text {, } \\
& \left.N\left(A B P x_{2 n}, \text { Qx }_{2 n+1}, t\right), N\left(\text { ABPx }_{2 n}, \text { STx }_{2 n+1}, t\right)\right\} .
\end{aligned}
$$

Letting $n \rightarrow \infty$, we get,

$$
\begin{aligned}
\mathrm{M}(\mathrm{Pz}, \mathrm{z}, \mathrm{kt}) & \geq \operatorname{Min}\{\mathrm{M}(\mathrm{Pz}, \mathrm{z}, \mathrm{t}), \mathrm{M}(\mathrm{z}, \mathrm{z}, \mathrm{t}), \mathrm{M}(\mathrm{z}, \mathrm{Pz}, \mathrm{t}), \mathrm{M}(\mathrm{Pz}, \mathrm{z}, \mathrm{t}), \mathrm{M}(\mathrm{Pz}, \mathrm{z}, \mathrm{t})\} \\
\text { and } \mathrm{N}(\mathrm{Pz}, \mathrm{z}, \mathrm{kt}) & \leq \operatorname{Max}\{\mathrm{N}(\mathrm{Pz}, \mathrm{z}, \mathrm{t}), \mathrm{N}(\mathrm{z}, \mathrm{z}, \mathrm{t}), \mathrm{N}(\mathrm{z}, \mathrm{Pz}, \mathrm{t}), \mathrm{N}(\mathrm{Pz}, \mathrm{z}, \mathrm{t}), \mathrm{N}(\mathrm{Pz}, \mathrm{z}, \mathrm{t})\}
\end{aligned}
$$

i.e. $M(P z, z, k t) \geq M(P z, z, t)$ and $N(P z, z, k t) \leq N(P z, z, t)$.
which gives $\mathrm{Pz}=\mathrm{z}$. now using Step (5) and (7) gives us $\mathrm{Qz}=\mathrm{STz}=\mathrm{Sz}=\mathrm{Tz}=\mathrm{z}$.
Step 9: $A s Q(X) \subseteq A B(X)$ there exists $w \in X$ suh that $z=Q z=A B w$. Putting $x=w, y=x_{2 n+1}$ with $\beta=1$ in condition (5), we get,
$M\left(P w, \mathrm{Qx}_{2 n+1}, k t\right) \geq \operatorname{Min}\left\{\mathrm{M}(\mathrm{ABw}, \mathrm{Pw}, \mathrm{t}), \mathrm{M}\left(\mathrm{STx}_{2 \mathrm{n}+1}, \mathrm{Qx}_{2 \mathrm{n}+1}, \mathrm{t}\right), \mathrm{M}\left(\mathrm{STx}_{2 \mathrm{n}+1}, \mathrm{Pw}, \mathrm{t}\right), \mathrm{M}\left(\mathrm{ABw}, \mathrm{Qx}_{2 \mathrm{n}+1}, \mathrm{t}\right), \mathrm{M}\left(\mathrm{ABw}, \mathrm{STx}_{2 \mathrm{n}+1}, \mathrm{t}\right)\right\}$ and $N\left(P w, Q x_{2 n+1}, k t\right) \leq \operatorname{Max}\left\{N(A B w, P w, t), N\left(S T x_{2 n+1}, Q x_{2 n+1}, t\right), N\left(S T x_{2 n+1}, P w, t\right), N\left(A B w, Q x_{2 n+1}, t\right)\right.$, N(ABw, STx $\left.\left.{ }_{2 n+1}, t\right)\right\}$
Letting $n \rightarrow \infty$, we get,

$$
\mathrm{M}(\mathrm{Pw}, \mathrm{z}, \mathrm{kt}) \geq \operatorname{Min}\{\mathrm{M}(\mathrm{z}, \mathrm{Pw}, \mathrm{t}), \mathrm{M}(\mathrm{z}, \mathrm{z}, \mathrm{t}), \mathrm{M}(\mathrm{z}, \mathrm{Pw}, \mathrm{t}), \mathrm{M}(\mathrm{z}, \mathrm{z}, \mathrm{t}), \mathrm{M}(\mathrm{z}, \mathrm{z}, \mathrm{t})\}
$$

and $\mathrm{N}(\mathrm{Pw}, \mathrm{z}, \mathrm{kt}) \leq \operatorname{Max}\{\mathrm{N}(\mathrm{z}, \mathrm{Pw}, \mathrm{t}), \mathrm{N}(\mathrm{z}, \mathrm{z}, \mathrm{t}), \mathrm{N}(\mathrm{z}, \mathrm{Pw}, \mathrm{t}), \mathrm{N}(\mathrm{z}, \mathrm{z}, \mathrm{t}), \mathrm{N}(\mathrm{z}, \mathrm{z}, \mathrm{t})\}$
i.e. $M(P w, z, k t) \geq M(P w, z, t)$ and $N(P w, z, k t) \leq N(P w, z, t)$
which gives $\mathrm{Pw}=\mathrm{z}=\mathrm{ABw}$. $\mathrm{As}(\mathrm{P}, \mathrm{AB})$ is weakly compatible.
We have $\mathrm{Pz}=\mathrm{ABz}$. Also $\mathrm{Bz}=\mathrm{z}$ follows from Step 4.
Thus, $\mathrm{Az}=\mathrm{Bz}=\mathrm{Pz}=\mathrm{z}$ and we obtain that z is the common fixed point of the six self maps in this case also.
Step 10: (Uniqueness) let u be another common fixed point of A, B, P, Q, S and T.
Then $\mathrm{Au}=\mathrm{Bu}=\mathrm{Pu}=\mathrm{Tu}=\mathrm{Qu}=\mathrm{Su}=\mathrm{u}$. Putting $\mathrm{x}=\mathrm{z}, \mathrm{y}=\mathrm{u}$ with $\beta=1$ in condition (5), we get,

$$
\mathrm{M}(\mathrm{Pz}, \mathrm{Qu}, \mathrm{kt}) \geq \operatorname{Min}\{\mathrm{M}(\mathrm{ABz}, \mathrm{Pz}, \mathrm{t}), \mathrm{M}(\mathrm{STu}, \mathrm{Pu}, \mathrm{t}), \mathrm{M}(\mathrm{STu}, \mathrm{Au}, \mathrm{t}), \mathrm{M}(\mathrm{ABz}, \mathrm{Qu}, \mathrm{t}), \mathrm{M}(\mathrm{ABz}, \mathrm{STu}, \mathrm{t})\}
$$

and $\quad N(P z, Q u, k t) \leq \operatorname{Max}\{N(A B z, P z, t), N(S T u, P u, t), N(S T u, A u, t), N(A B z, Q u, t), N(A B z, S T u, t)\}$
i.e. $\mathrm{M}(\mathrm{z}, \mathrm{u}, \mathrm{kt}) \geq \mathrm{M}(\mathrm{z}, \mathrm{u}, \mathrm{t})$ and $\mathrm{N}(\mathrm{z}, \mathrm{u}, \mathrm{kt}) \leq \mathrm{N}(\mathrm{z}, \mathrm{u}, \mathrm{t})$
which gives $\mathrm{z}=\mathrm{w}$. Therefore z is a unique common fixed point of $\mathrm{A}, \mathrm{B}, \mathrm{P}, \mathrm{Q}, \mathrm{S}$ and T .

REFERENCES

[1]. C. Alaka, D. Turkoglu and C. Yildiz: Fixed points in intuitionistic fuzzy metric spaces, Smallerit Choas, Solitons \& Fractals, 29(5)(2006), 1073-1078.
[2]. K. Atanassav, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20(1986), 87-96.
[3]. A.George and P. Veeramani,: on some results in fuzzy metric spaces, Fuzzy Sets and Systems 64 (1994), 395-399.
[4]. G. Jungck and B. E. Rhoades,: Fixed point for set valued functions without continuity, Ind. J. Pure \& Appl. Math. 29(1998), no. 3, 227-238.
[5]. S. Kutukcu,: A common fixed point theorem for a sequence of self maps in intuitionistic fuzzy metric spaces, Common. Korean Math. Soc. 21 (2006), no. 4, 679-687.
[6]. J. H. Park,: Intuitionistic fuzzy metric spaces, chaos, Solitions \& Fractals 22 (2004), 1039-1046.
[7]. J. S. Park and S. Y. Kim, Common fixed point and example in intuitionistic fuzzy metric space, J. K. I. I. S. 18 (2008), NO. 4, 524 - 529.
[8]. B. Schweizer and A. Sklar,: Statistical metric spaces, Pacific J. Math. 10 (1960), 314 - 334.
[9]. D. Turkoglu, C. Alaca, Y. J. cho., and C. Yildiz,: Common fixed points theorems in intuitionistic Fuzzy metric spaces, J. Appl. Math. \& computing 22 (2006), 411-424.
[10]. D. Turkoglu, C. Alaca and C. Yildiz: Compatible maps and compatible maps of type (α) and (β) in intuitionistic fuzzy metric spaces, Demonstratio Math. 39 (2006), no. 3, 71-684.
[11]. L. A. Zadeh, Fuzzy Sets, Inform. And control 89 (1965), 338-358.

Source of support: Nil, Conflict of interest: None Declared

