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ABSTRACT 

We attempt to study the effect of quadratic density-temperature variation on non-Darcy convective Heat transfer flow of a 
viscous fluid through a porous medium in a vertical channel with heat generating sources. The governing equations flow, 
heat transfer are solved by using Galerkin finite element technique with quadratic polynomial approximations. The 
approximation solution is written directly as a linear combination of approximation functions with unknown nodal values 
as coefficients. Secondly, the approximation polynomials are chosen exclusively from the lower order piecewise 
polynomials restricted to contiguous elements.  The velocity, temperature, , shear stress and rate of Heat transfer are 
evaluated numerically for different variations of parameter  
 
Keywords: Magnetic field, Heat Transfer, Porous Medium, density –temperature and Finite Element Analysis. 
 
 
1. INTRODUCTION 
Non – Darcy effects on natural convection in porous media have received a great deal of attention in recent years because 
of the experiments conducted with several combinations of solids and fluids covering wide ranges of governing parameters 
which indicate that the experimental data for systems other than glass water at low Rayleigh numbers, do not agree with 
theoretical predictions based on the Darcy flow model.  This divergence in the heat transfer results has been reviewed in 
detail in Cheng (13) among others.  Extensive effects are thus being made to include the inertia and viscous diffusion terms 
in the flow equations and to examine their effects in order to develop a reasonable accurate mathematical model for 
convective transport in porous media.  The work of Vafai and Tien (10) was one of the early attempts to account for the 
boundary and inertia effects in the momentum equation for a porous medium.  They found that the momentum boundary 

layer thickness is of order of .  Vafai and Thiyagaraja (11) presented analytical solutions for the velocity and temperature 

fields for the interface region using the Brinkman Forchheimer –extended Darcy equation.  Detailed accounts of the recent 
efforts on non-Darcy convection have been recently reported in Tien and Hong (3), cheng (14), and Kladias and Prasad 
(12).  Here, we will restrict our discussion to the vertical cavity only.  Poulikakos and Bejan (4, 5) investigated the inertia 
effects through the inclusion of Forchheimer’s velocity squared term, and presented the boundary layer analysis for tall 
cavities.  They also obtained numerical results for a few cases in order to verify the accuracy of their boundary layer 
analysis for tall cavities.  They also obtained numerical results for a few cases in order to verify the accuracy of their 
boundary layer solutions.   This result in reversal of flow regimes from boundary layer to asymptotic to conduction as the 
contribution of the inertia term increases in comparison with that of the boundary term.  They also reported a criterion for 
the Darcy flow limit. 
 
The Brinkman – Extended – Darcy modal was considered in Tong and Subramanian (15), and Lauriat and Prasad (6) to 
examine the boundary effects on free convection in a vertical cavity.  While Tong and Subramanian performed a Weber – 
type boundary layer analysis, Lauriat and Prasad solved the problem numerically for A=1 and5.  It was shown that for a 
fixed modified Rayleigh number, Ra, the Nusselt number; decrease with an increase in the Darcy number; the reduction 
being larger at higher values of Ra.  A scale analysis as well as the computational data also showed that the transport term 
(v. ) v, is of low order of magnitude compared to the diffusion plus buoyancy terms (6).  A numerical study based on the 
Forchheimer-Brinkman-Extended Darcy equation of motion has also been reported recently by Beckerman et al (2).  They 
demonstrated that the inclusion of both the inertia and boundary effects is important for convection in a rectangular packed 
– sphere cavity. 
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Keeping the above application in view we made attempt in this paper to study effect of quadratic density-temperature on 
non-Darcy convective heat transfer flow of a viscous fluid through a porous medium in a vertical channel with heat 
generating sources.  The governing equations flow, heat transfer are solved by using Galerkin finite element technique with 
quadratic polynomial approximations. The approximation solution is written directly as a linear combination of 
approximation functions with unknown nodal values as coefficients. Secondly, the approximation polynomials are chosen 
exclusively from the lower order piecewise polynomials restricted to contiguous elements.  The velocity, temperature, shear 
stress and rate of Heat transfer are evaluated numerically for different variations of parameter. 
 
2. FORMULATION OF THE PROBLEM 
We consider a fully developed laminar convective heat transfer flow of a viscous, electrically conducting fluid through a 
porous medium confined in a vertical channel bounded by flat walls. We choose a Cartesian co-ordinate system O(x, y, z) 
with x- axis in the vertical direction and y-axis normal to the walls. The walls are taken at y= ± 1.The walls are maintained 
at constant temperature. The temperature gradient in the flow field is sufficient to cause natural convection in the flow field. 
A constant axial pressure gradient is also imposed so that this resultant flow is a mixed convection flow. The porous 
medium is assumed to be isotropic and homogeneous with constant porosity and effective thermal diffusivity. The thermo 
physical properties of porous matrix are also assumed to be constant and Boussinesq approximation is invoked by confining 
the density variation to the buoyancy term. In the absence of any extraneous force flow is unidirectional along the x-axis 
which is assumed to be infinite.  
 
The Brinkman-Forchheimer-extended Darcy equation which account for boundary inertia effects in the momentum 
equation is used to obtain the velocity field. Based on the above assumptions the governing equations are  
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The axial temperature gradient 
x
T
∂
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 are assumed to be constant, say, A  

where u is the velocity, T, is the temperature, p is the pressure ,ρ is the density of the fluid ,Cp is the specific heat at 
constant pressure, µ is the coefficient of viscosity, k is the permeability of  the porous medium, δ is the porosity of the 
medium,β is the coefficient of thermal expansion ,λ is the coefficient of thermal conductivity ,F is a function that depends 
on the Reynolds number and the microstructure of porous medium, J is the current density vector, H is the magnetic field 
vector, and Q is the strength of the heat generating source. Here, the thermo physical properties of the solid and fluid have 
been assumed to be constant except for the density variation in the body force term (Boussinesq approximation) and the 
solid particles and the fluids are considered to be in the thermal equilibrium). 
We define the following non-dimensional variables as  
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Introducing these non-dimensional variables the governing equations in the dimensionless form reduce to (on dropping the 
dashes) 
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where 
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The corresponding boundary conditions are  
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3. FINITE ELEMENT ANALYSIS 
To solve these differential equations with the corresponding boundary conditions, we assume if ui, θi are the 
approximations of u, and θ  we define the errors (residual) ii

u EE θ,  as 

))(()()( 22221 iiii
i

i
u GuuMD

d
du

d
dE θγθδδ

ηη
+−∆++−








= −

                                                                                              (2.8)                         

i
T

i
i

i uPN
dy
d

dy
dE −−








= αθθ

θ
                                                                                             (2.9) 

 
where  










=

=

∑

∑

=

=

kk
k

i

kk
k

i uu

ψθθ

ψ

3

1

3

1                                                                     (3.0) 

 
These errors are orthogonal to the weight function over the domain of ei under Galerkin finite element technique we choose 
the approximation functions as the weight function. Multiply both sides of the equations (2.8 – 3.0) by the weight function 
i.e. each of the approximation function i

jψ  and integrate over the typical three nodded linear element (ηe, ηe+1) we obtain 
 

),4,3,2,1(                          0
1

==∫
+

idyE
e

e

i
j

i
u

η

η

ψ                                                                  (3.1) 

),4,3,2,1(                          0
1

==∫
+

idyE
e

e

i
j

i
η

η
θψ                                                                               (3.2) 

 
 



C. Sulochana, Sharanamma V A*/ FINITE ELEMENT ANALYSIS OF NON LINEAR DENSITY-TEMPERATURE VARIATION …/  
IJMA- 3(10), Oct.-2012. 

© 2012, IJMA. All Rights Reserved                                                                                                                                                                           3627   

 
where 
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Following the Galerkin weighted residual method and integration by parts method to the equations (3.3) – (3.4) we obtain 
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Making use of equations (3.0) we can write above equations as  
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Choosing different i

jΨ ’s corresponding to each element ηe in the equation (3.8) yields a local stiffness matrix of order 3×3 
in the form  
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inter element continuity and equilibrium conditions to obtain the coupled global matrices in terms of the global nodal 
values of k, θ. In case we choose n-quadratic elements then the global matrices are of order 2n+1. The ultimate coupled 
global matrices are solved to determine the unknown global nodal values of the velocity, temperature and concentration in 
fluid region. In solving these global matrices an iteration procedure has been adopted to include the boundary and effects in 
the porous region. 
 
4. STIFFNESS MATRICES 
The global matrix for θ is  

1 1 1A  X  = B                                                      (3.12) 
        

The global matrix u is 

2 2 2A  X  = B                                                                                                                         (3.13) 
  

In fact, the non-linear term arises in the modified Brinkman linear momentum equation (3.8) of the porous medium. The 
iteration procedure in taking the global matrices is as follows.  We split the square term into a product term and keeping one 
of them say ui’s under  integration, the other is expanded in terms of local nodal values as in  (3.4),  resulting in the 
corresponding coefficient matrix )'( sn j

k
i   in (3.12),  whose coefficients involve the unknown ui’s . To evaluated (3.13) to 

begin with choose the initial global nodal values of ui’s as zeros in the zeroth approximation.  We evaluate ui’s , θi’s in the 
usual procedure mentioned earlier.  Later choosing these values of ui’s as first order approximation calculate θi’s, In the 
second iteration, we substitute for ui’s the first order approximation of and ui’s and the first approximation of θi’s obtain 
second order approximation.  This procedure is repeated till the consecutive values of ui’s and θi’s differ by a reassigned 
percentage. For computational purpose we choose five elements in flow region. 
 
5. DISCUSSION OF RESULTS 
In this analysis we investigate the effect of quadratic density temperature variation on Non-Darcy convective heat transfer 
flow of a viscous fluid through a porous medium in a vertical channel in the presence of constant heat source. The 
equations governing the flow of heat transfer are solving by employing the Galerkin finite element analysis with quadratic 
approximation functions. Figures 1-5 represent the axial flow for different of G, M, 1D− , α and  γ. Fig-1 represent variation 
of u with Groshof no. G it is found that the velocity is vertically down word direction and it increases with increase in G. 
with maximum attained at y=-0.4 and in this point of maximum shift towards maximum with increase in G. the variation of 
u with M shows that higher the Lorentz  force smaller the velocity in flow region (fig -2).  
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With respect to D we find that lesser the permeability of the porous medium larger the velocity in the flow region and 
further lower of permeability smaller u  in flow region (fig-3). The variation of u with α shows that the magnitude of u 

enhances with increase in the strength of heat source α≤ 4 enhances u and for higher value of α≤6. We notice a 

depreciation u except in narrow region adjacent to y=-1 and it enhances with increase in the strength of heat sink (fig-4). 
The variation of density ratio γ shows that an increase in γ results depreciation in entire flow region (fig-5).  
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The non dimensional parameter θ is shows in figures 6-10 for different   of G , M 1D− α, γ. We fallow the convection that 
the non dimensional temperature θ for positive or negative according as the actual temperature is greater or lesser than T2. 
fig-6 represent θ with G we found the actual temperature enhances with increase in G with maximum attained at y=-0.2. 
The variation θ with Hartmann no M shows that higher the Lorentz force lesser the actual temperature (fig-7). With respect 
to Darcy parameter D we found that the lesser the permeability of porous medium larger the actual temperature and further 
lowering of the permeability smaller the actual temperature (fig-8). 
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From fig-9 we notice that the actual temperature enhances with increase in strength of heat source and reduces with heat 
sink. The variation of density ratio γ is shows in fig -10 we find that the actual temperature enhances with smaller and 
higher values of γ and reduces with intermediate values of γ (γ= 0.005).   
 
The shear stress at boundary layer y=±1 is exhibited in the table 1 and 2 for different values G D M and γ. It is found that 
the τ enhances at y= ± 1 with increase in G. the variation of τ with D shows that lesser the permeability of the porous 
medium smaller τ at y=+1 and at y=-1 smaller /τ/ for D ≤ 2×100 and for higher D≥ 3X100 it depreciates in magnitude. With 
respect to M we find that higher the Lorentz force lesser /τ / (M≤10) and for further higher the Lorentz force lesser /τ / at 
y=1, while at y=-1 smaller /τ / an increase in strength off heat sources/ sink results an enhancement in / τ / at both walls. 
The variation of stress with density ratio γ shows that the stress enhances with γ at y=+1 and at y=-1 it enhances with γ ≤ 
0.005 and reduces with higher values at γ ≥ 0.007 (table 1and 2). The rate of heat transfer (Nusselt number) at boundary y = 
± 1 is exhibited in table 3 and 4 for different values. It is found that rate of heat transfer is enhances with increase in G at 
both the walls. The variation of Nu with D shows that lesser the permeability of porous medium smaller the rate of heat 
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transfer at y= ± 1. with respect to Hartmann number M we find that higher the Lorentz  force smaller /Nu / (M≤10)  and for 
further higher the Lorentz  force (M ≥ 1 5) larger / Nu / at y=+1 while lesser / Nu / at y=-1. An increase in strength of heat 
source / sink results in enhancement in the rate of heat transfer at y= ± 1. The variation of Nu with density ratio γ shows 
that the rate of heat transfer at y=+1 enhances with increase in γ and at y=-1 it enhances with increase in γ ≤ 0.005 and 
reduces with higher values at γ ≥ 0.007.  

 
 

Table-1 
Shear Stress τ at y=+1 

 
G I II III IV V VI VII VIII IX X XI XII XII IVX 
10 -

0.1043 
-
0.0998 

-
0.109 

0.00037 0.00105 0.00038 -
0.2063 

-
0.3122 

0.1167 0.2136 0.30986 -0.1455 -0.1767 -
0.20045 

20 -
0.2086 

-
0.2037 

-
0.193 

-0.0517 0.00077 0.00191 -
0.3935 

-
0.6123 

0.2256 0.418 0.649 -
0.29102 

-
0.38776 

-
0.42141 

30 -0.335 -
0.3014 

-
0.298 

-
0.00024 

0.00302 -0.0068 -
0.6386 

-
0.9621 

0.3198 0.6312 0.9659 0.4589 -0.5250 -0.7106 

50 -
0.5325 

-0.529 -
0.533 

0.00292 0.007138 0.0075 -
1.1344 

-
1.6321 

0.5669 0.0276 1.8079 -0.8527 -1.0051 -1.2199 

 
Annexury-1 

 
1D−  1000 2000 3000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 

M 5 5 5 10 15 20 5 5 5 5 5 5 5 5 
α  2 2 2 2 2 2 4 6 -2 -4 -6 2 2 2 
γ 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.003 0.005 0.007 

 
Table-2 

Shear Stress (τ ) at y =-1 
 

G I II III IV V VI VII VIII IX X XI XII XII IVX 
10 0.08195 0.0817 0.0115 0.0021 0.00087 0.00047 0.1709 0.2430 -

0.1176 
-
0.1274 

-
0.2509 

0.2837 0.364 0.3007 

20 0.1724 0.1582 0.134 0.0099 0.00182 0.00098 0.4716 0.5994 -
0.1034 

-
0.3462 

-
0.4284 

0.2131 0.2723 0.1864 

30 0.2044 0.2810 0.2425 0.0080 0.00263 0.00146 0.52203 0.7733 -
0.2560 

-
0.5482 

-
0.5978 

0.2737 0.4396 0.1595 

50 0.2139 0.4152 0.2831 0.01006 0.00436 0.00249 0.7608 1.4164 -
0.2615 

-
6.0387 

-
0.6799 

0.3482 0.48155 0.5186 

See Annexury-1 
 

Table-3 
Nusselt number (Nu1) at y=+1 

 
G I II III IV V VI VII VIII IX X XI XII XIII IVX 
10 28.2335 28.2202 28.1824 27.8763 27.8862 27.862 55.0879 81.9298 -

25.623 
-
52.31 

-
79.88 

28.3741 28.525 28.509 

20 28.6253 28.5968 28.7367 27.5415 27.9013 27.9081 55.938 83.1738 -
25.859 

-
53.10 

-
79.97 

28.935 29.171 29.371 

30 29.0353 28.9979 28.9429 28.0267 27.9504 27.6511 56.6873 84.3342 -
26.288 

-
53.92 

-
81.40 

29.524 29.841 30.061 

50 29.3942 29.8003 29.6355 27.9785 28.054 28.0602 58.388 86.8562 -
27.042 

-
55.13 

-
83.75 

30.925 31.419 32.231 

 
See Annexury-1 
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Table-2 

Nusselt number Nu2 at y=-1 
 

G I II III IV V VI VII VIII IX X XI XII XII IVX 
10 41.6821 41.6666 41.4319 41.1739 41.137 41.1158 83.2288 124.87 -

41.932 
-
84.01 

-
124.38 

41.922 42.10 41.36 

20 42.301 42.2457 43.3548 39.8246 41.17 41.1147 84.7659 126.78 -
41.847 

-
84.04 

-
123.88 

42.43 42.97 42.03 

30 42..6997 42.915 42.7596 41.4212 41.21 40.9388 85.6991 128.442 -
42.631 

-
85.44 

-
126.87 

44.16 45.20 42.19 

50 42.4765 44.001 43.4078 41.4241 41.296 41.2461 85.7374 123.228 -43.19 -
85.14 

-
128.74 

44.66 44.59 45.301 

 
See Annexury-1 
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