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ABSTRACT 

An analysis is carried out to study the distribution of reactive species undergoing first-order chemical reaction in an 
incompressible homogeneous electrically conducting second-grade fluid over a shrinking surface in the presence of 
magnetic field applied normal to the plane of the flow. Using similarity variables, the boundary layer equations 
governing the flow and concentration field are reduced into a set of nonlinear ordinary differential equations which 
are then solved analytically for power-law surface concentration (PSC) as concentration boundary conditions. The 
analysis reveals that the velocity is getting more closure towards the wall for increasing magnetic, viscoelastic and 
porosity parameters. It is also found that the diffusion of reactive species is considerably reduced with increasing 
values of magnetic, reaction rate, viscoelastic and porosity parameters. 
 
Keywords: Shrinking sheet, Second-grade fluid, MHD, Porous medium, Chemically reactive species, Exact Solution 
 
 
1.  INTRODUCTION 
Boundary layer flow of viscoelastic fluid over a stretching sheet has huge applications in manufacturing industries like 
polymer sheet extrusion from a die, drawing of plastic films, glass fiber and paper production etc. Rajagopal et al. [1] 
independently examined the flow of a second order fluid over a stretching sheet and obtained similarity solutions of the 
boundary layer equations numerically. Later, this problem was extended by Rajagopal et al. [2] by introducing uniform 
free stream velocity in the problem formulation. Dandapat and Gupta [3] studied heat transfer of the problem 
considered by Rajagopal et al. [1]. Rollins and Vajravelu [4] solved the heat transfer problem in a second order fluid 
over a continuous stretching surface. Heat transfer in the viscoelastic fluid over a stretching sheet with different 
contexts were further studied by Lorence and Rao [5], Abel et al. [6] and others. Role of magnetic field in controlling 
momentum, heat and mass transfer in viscoelastic boundary layer flow over a stretching sheet were studied by 
Andersson [7], Char [8], Lawrence and Rao [9], Datti et al. [10] and others. The mass transfer along with chemical 
reaction in a viscoelastic boundary layer fluid flow is a hot research area now-a-days because of its huge engineering 
applications in polymer technology, metallurgy and chemical industries. Prasad et al. [11] studied the diffusion of 
chemically reactive species of a non-Newtonian fluid immersed in a porous medium over a stretching sheet. Recently, 
Cortell ([12], [13]) discussed the effects of magnetic field on the flow and mass transfer of a second grade fluid in 
porous medium over a stretching sheet with chemically reactive species and also explained the motion and mass 
transfer with chemically reactive species for two classes of viscoelastic fluid past a porous stretching sheet subjected to 
applied suction or blowing. The diffusion of first order chemical reaction on the viscoelastic fluid flow past an infinite 
vertical porous plate was studied by Damesh and Shannak [14].  
 
On the other hand, the flow over a shrinking sheet is quite different from the stretching out case and it is a new field of 
research with wide prospects in various engineering applications. Recently, Miklavcic and Wang [15] obtained the 
existence and uniqueness of the solution for steady viscous hydrodynamic flow over a shrinking sheet with mass 
suction.  Magnetohydrodynamic boundary layer flow of a second grade fluid over a shrinking sheet was studied by 
Hayat et al. [16]. They derived both exact and series solution using Homotopy Analysis Method (HAM). Sajid and 
Hayat [17] solved the problem of MHD viscous flow due to a shrinking sheet   using HAM. Closed-form analytical 
solution for steady MHD flow over a porous shrinking sheet subjected to wall mass suction was obtained by Fang and 
Zhang [18]. Noor et al. [19] found a solution in the form of an infinite series of MHD viscous flow over a shrinking 
sheet by applying Adomian decomposition method (ADM). The boundary layer MHD flow and heat transfer over a 
permeable shrinking surface was studied by Midya [20]. Hayat et al. [21] analyzed the MHD flow and mass transfer of 
an upper-convected Maxwell fluid past a porous shrinking sheet with chemical reaction using the Homotopy Analysis 
Method (HAM). Effect of chemical reaction, heat and mass transfer on nonlinear boundary layer past a porous 
shrinking sheet in the presence of suction was studied numerically by Muhaimin et al. [22]. Midya [23] obtained an  
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exact solution of the fluid flow and mass transfer over a shrinking sheet in the presence of chemical reaction and 
magnetic field. Recently, Van Gorder and Vajravelu [24] obtained multiple solutions for hydromagnetic flow of a 
second-grade fluid over a stretching or shrinking sheet with suction / injection. They derived the solution for fluid flow 
analytically. More recently, Midya [25] studied the diffusion of reactive species in a boundary layer flow of an 
incompressible homogeneous second order fluid over a linearly shrinking sheet in the presence of a transverse magnetic 
field. 
 
In this work, we investigate the diffusion of chemically reactive species undergoing first-order chemical reaction in an 
electrically conducting second-grade fluid flowing in a porous medium over a linearly shrinking sheet in the presence 
of magnetic field. Using the similarity solution technique, the governing boundary layer partial differential equations 
are transformed into a set of nonlinear self-similar ordinary differential equations. After being substituted the analytical 
solution for fluid flow into the concentration equation, it is solved analytically for power-law surface concentration 
(PSC) as boundary conditions. Closed form exact solutions of the concentration equation are obtained in terms of 
Kummer's function. The effects of various parameters on the concentration distribution are analyzed and are presented 
graphically. 
 
2.  MATHEMATICAL FORMULATION 
Consider the flow of an electrically conducting incompressible homogeneous fluid of second-grade over a flat plate 
coinciding with the plane y = 0. The flow is confined to y > 0. Two equal and opposite forces are applied opposite to 
the x -axis so that the wall is shrinked keeping the origin fixed. A magnetic induction B0 is applied perpendicular to the 
shrinking surface. The shrinking sheet velocity is proportional to the distance i.e. uw = -ax, (a > 0). Using boundary 
layer approximation and neglecting the induced magnetic field (by assuming the magnetic Reynolds number Rm for the 
flow to be very small i.e. Rm << 1 (see Midya et al. [26]), the equations for steady two-dimensional flow and the 
reactive concentration equation can be written in usual notation as 
 
𝜕𝜕𝜕𝜕
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where u and v are the components of velocity respectively in the x and y directions, C is the concentration, C∞ is the 
concentration far from the sheet, 𝜌𝜌 is the fluid density (assumed constant), 𝜎𝜎 is the electrical conductivity of the fluid, 𝜈𝜈 
(= μ/𝜌𝜌) is the coefficient of fluid viscosity, D is the mass diffusion coefficient, 𝛼𝛼1 (> 0) is the second-grade elastic 
parameter, kp is the permeability of the porous medium, r1 is the chemical reaction coefficient. 
 
The boundary conditions for the velocity components and concentration are given by 
 
𝜕𝜕 = −𝑎𝑎𝜕𝜕,   𝜕𝜕 = 0,   𝜕𝜕 = 𝜕𝜕𝑤𝑤 = 𝜕𝜕∞ + 𝐴𝐴𝜕𝜕𝑝𝑝      𝑎𝑎𝑎𝑎 𝜕𝜕 = 0                                                                                                      (4) 
and 
𝜕𝜕 ⟶ 0,   𝜕𝜕 ⟶ 0,   𝜕𝜕 ⟶ 𝜕𝜕∞      𝑎𝑎𝑎𝑎 𝜕𝜕 ⟶ ∞                                                                                                                         (5) 
 
where Cw is the wall concentration. 
 
3. SOLUTION OF THE PROBLEM 
Equations (1) - (3) admit self-similar solutions of the form 

𝜕𝜕 = 𝑎𝑎𝜕𝜕𝑓𝑓′(𝜂𝜂),   𝜕𝜕 = −√𝑎𝑎𝜈𝜈𝑓𝑓(𝜂𝜂),   𝜂𝜂 = 𝜕𝜕�𝑎𝑎
𝜈𝜈

,   𝜕𝜕 = 𝜕𝜕∞ + 𝜃𝜃(𝜂𝜂)(𝜕𝜕𝑤𝑤 − 𝜕𝜕∞)                                                                        (6) 

 
where f and θ are the dimensionless stream function and dimensionless temperature and 𝜂𝜂 is the similarity variable. 
Substituting these Eqs. (2) and (3) become 
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                                                                              (7) 
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where k/ [=μ/(akp)], M [=�𝜎𝜎𝐵𝐵0

2/(𝑎𝑎𝜌𝜌)], k [= (a𝛼𝛼1 )/(𝜌𝜌𝜈𝜈) (> 0)],  Sc [= 𝜈𝜈/D] and γ [=r1/a] represents respectively porosity 
parameter, magnetic parameter, visco-elastic parameter, Schmidt number and reaction rate parameter. 
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The boundary conditions are then reduces to 
 
𝑓𝑓′(0) = −1,   𝑓𝑓(0) = 0,   𝑎𝑎𝑎𝑎𝑑𝑑  𝑓𝑓/(∞ ) = 0,                                                                                                                     (9) 
 
𝜃𝜃(0) = 1,   𝑎𝑎𝑎𝑎𝑑𝑑   𝜃𝜃(∞) = 0.                                                                                                                                           (10) 
 
We now assume a solution to the nonlinear ordinary differential equation (7) in the form f(𝜂𝜂)=P+Qe-R𝜂𝜂. This 
assumption is often motivated by the the result of Crane [27], where an exact solution was obtained for flow equation 
of Newtonian fluid flowing over a stretching sheet. Van Gorder and Vajravelu [24] also obtained an exact solution of 
the above form for hydromagnetic flow of a second-grade fluid over a stretching or shrinking sheet when porosity 
parameter k/ = 0. In the present problem, we find that 
 
𝑓𝑓(𝜂𝜂) = 1

𝛼𝛼
(𝑒𝑒−𝛼𝛼𝜂𝜂 − 1),   𝛼𝛼 = �(𝑀𝑀2 + 𝑘𝑘/ − 1)/(1 − 𝑘𝑘)                                                                                                  (11) 

 
is a solution of the equation (7) with associated boundary conditions (9). It is seen that this solution is valid for M2 + k/ 
> 1and 0< k < 1 or M2+k/ < 1 and k > 1. 
 
The non-dimensional horizontal velocity component is given by 
 
𝑓𝑓/ (𝜂𝜂) = −𝑒𝑒−𝛼𝛼𝜂𝜂                                                                                                                                                               (12) 
 
The shear stress at the wall is denoted by τw and is defined as 
 

𝜏𝜏𝑤𝑤 = 𝜇𝜇(𝜕𝜕𝜕𝜕 𝜕𝜕𝜕𝜕⁄ )𝜕𝜕=0 = 𝜇𝜇𝑎𝑎𝜕𝜕�𝑎𝑎
𝜈𝜈
𝑓𝑓⁄⁄ (0) =  𝜇𝜇𝑎𝑎𝜕𝜕�𝑎𝑎

𝜈𝜈
 𝛼𝛼                                                                                                      (13) 

 
The skin friction coefficient Cf at the wall is obtained as 
 
𝜕𝜕𝑓𝑓 = 𝜏𝜏𝑤𝑤

�𝜇𝜇𝑎𝑎𝜕𝜕 �𝑎𝑎𝜈𝜈�
= 𝑓𝑓⁄⁄ (0) = 𝛼𝛼                                                                                                                                           (14) 

 
Now, substituting (11) into Eq. (8), we have 
 
𝑑𝑑2𝜃𝜃
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𝛼𝛼
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− 𝑆𝑆𝑆𝑆(𝛾𝛾 − 𝑝𝑝𝑒𝑒−𝛼𝛼𝜂𝜂 )𝜃𝜃 = 0                                                                                                             (15) 

 
Now, let us introduce a new variable 𝜉𝜉 = 𝑆𝑆𝑆𝑆

𝛼𝛼2 𝑒𝑒−𝛼𝛼𝜂𝜂  so that the above equation transforms to 
 
𝜉𝜉 𝑑𝑑
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𝛼𝛼2𝜉𝜉
− 𝑝𝑝� 𝜃𝜃 = 0                                                                                                                   (16) 

 
The boundary conditions (10) then become 
 
𝜃𝜃 �𝑆𝑆𝑆𝑆

𝛼𝛼2� = 1,   𝑎𝑎𝑎𝑎𝑑𝑑   𝜃𝜃(0) = 0                                                                                                                                           (17) 
 
Now, transforming the above equation (16) into confluent hypergeometric equation, we can obtain the solution (see 
Abramowitz and Stegun [28]) given by 
 
𝜃𝜃(𝜉𝜉) = (𝛼𝛼2𝜉𝜉 𝑆𝑆𝑆𝑆⁄ )𝛽𝛽 𝛷𝛷(𝛽𝛽 − 𝑝𝑝, 1 + 𝑏𝑏0, 𝜉𝜉) 𝛷𝛷(𝛽𝛽 − 𝑝𝑝, 1 + 𝑏𝑏0, 𝑆𝑆𝑆𝑆 𝛼𝛼2⁄ ),⁄                                                                               (18) 
 
where 𝛽𝛽 = (𝑏𝑏0 − 𝑎𝑎0) 2⁄ , 𝑎𝑎0 = 𝑆𝑆𝑆𝑆 𝛼𝛼2,   𝑏𝑏0 = �𝑎𝑎0

2 + 4𝑎𝑎0𝛾𝛾⁄   and 𝜱𝜱(a/,b/,x) is the confluent hypergeometric function of 
the first kind or Kummer function. 
 
Therefore, 
𝜃𝜃(𝜂𝜂) = 𝑒𝑒−𝛼𝛼𝛽𝛽𝜂𝜂 𝛷𝛷(𝛽𝛽 − 𝑝𝑝, 1 + 𝑏𝑏0, 𝑆𝑆𝑆𝑆𝑒𝑒−𝛼𝛼𝜂𝜂 𝛼𝛼2⁄ ) 𝛷𝛷(𝛽𝛽 − 𝑝𝑝, 1 + 𝑏𝑏0, 𝑆𝑆𝑆𝑆 𝛼𝛼2⁄ ).⁄                                                                      (19) 
 
The dimensionless wall concentration gradient θ/(0) is obtained as 
 
𝜃𝜃/ (0) = −𝛼𝛼𝛽𝛽 − 𝑆𝑆𝑆𝑆

𝛼𝛼
�𝛽𝛽−𝑝𝑝

1+𝑏𝑏0
� 𝛷𝛷�1+𝛽𝛽−𝑝𝑝 ,2+𝑏𝑏0,𝑆𝑆𝑆𝑆 𝛼𝛼2⁄ �

𝛷𝛷(𝛽𝛽−𝑝𝑝 ,1+𝑏𝑏0,𝑆𝑆𝑆𝑆 𝛼𝛼2⁄ )
                                                                                                               (20) 
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4. RESULTS AND DISCUSSION 
In this section some examples will be shown and discussed for certain values of the controlling parameters. 
 
The velocity distributions for various values of magnetic interaction parameter M is displayed in Figure 1(a) for fixed 
viscoelastic parameter k = 0.1 and porosity parameter k/ = 0.1. It is seen that the velocity is going closer to the wall and 
boundary layer thickness becomes thinner for larger magnetic field parameter. The reason behind this is that increase in 
M results the increase in Lorentz force which in turn produce more resistance to the velocity field. As a result, the 
boundary layer thickness becomes thinner for larger magnetic field parameter. 
 
Figure 1(b) presents the velocity curves for various values of viscoelastic parameter k for fixed magnetic field 
parameter M = 2 and viscoelastic parameter k/ = 0.1. The figure reveals that velocity profiles are going closer to the 
wall and the boundary layer thickness becomes thinner for the increasing viscoelastic parameter k. 
 
The effects of porosity parameter k/ on the velocity field is shown in Figure 1(c) for fixed magnetic parameter M = 1.1 
and k = 0.2. The figure reflects that velocity profiles are going closer to the wall and the same time, the boundary layer 
thickness is decreasing for increasing porosity parameter k/. It is obvious that increase in porosity parameter leads to the 
increase in resistance in the velocity field and as a result the velocity goes closure to the wall.    
 
Figure 2(a) demonstrates the effects of Schmidt number Sc on the concentration profile. It is seen that concentration is 
decreased with the enhanced values of Sc for M = 2, p = 0, k = 0.1, k/ = 0.1, γ = 0.2. Physically it means that increase 
of Schmidt number Sc induces a decrease of molecular diffusivity D which in turn decrease in concentration boundary 
layer. Hence, concentration of the species is higher for small values of Sc and it is lower for higher values of Sc. 
  
We shall now discuss the effect of reaction rate parameter 𝜎𝜎 on the diffusion of chemically reactive species and this is 
presented in Figure 2(b) for fixed values of k = 0.1, k/ = 0.1, Sc = 0.6, M = 2 and p = 1. It is noticed from the graph that 
the thickness of concentration boundary layer decreases with increasing γ. This is due to the decelerating nature of 
reaction rate parameter. As a result it thins the boundary layer formed in the neighbourhood of the sheet. 
 
Now, we shall draw our attention to the effects of solute distribution when the initial distribution of solute is varied 
over the sheet. The concentration profiles for different values of power-law exponent p are plotted in Figure 2(c) for M 
= 2, γ = 0.1, Sc = 0.6, k = 0.1, k/ = 0.1. It is observed from the figure that the rate of species transfer is increased with 
the increase of distribution of concentration at the shrinking sheet. Concentration overshoot at the sheet is noticed for 
higher values of p. 
 
Next, Figure 2(d) presents the concentration profiles for various values of M with fixed k = 0.1, k/ = 0.1, Sc = 0.8, γ = 
0.1, p = 1. The figure reveals that the value of concentration at a particular 𝜂𝜂 is reduced with increasing values of 
magnetic field parameter M. Due to increase in the magnetic parameter M, the velocity boundary layer thickness 
becomes thinner and thinner and consequently decrease in concentration of reactive species in the shrinking sheet. 
 
Now we concentrate in the diffusion of concentration boundary layer thickness for various values of viscoelastic 
parameter k and this is presented in Figure 2(e).  Other parameters are kept fixed at M = 2, Sc = 0.5, γ = 0.05, p = 2, k/ 
= 0.1. It is observed that concentration boundary layer thickness is decreased for enhanced values of viscoelastic 
parameter k.  
 
The concentration boundary layer thickness for different values of the viscoelastic parameter k/ is displayed in Figure 
2(f) keeping all other parameters fixed at M = 2, Sc = 1.5, γ = 0.05, p = 3, k = 0.1. It is observed that concentration 
boundary layer thickness is decreased for increasing porosity parameter k/. 
 
The skin friction coefficient f//(0) and the concentration gradient on the wall is tabulated in the Tables I-VI. From the 
results of Tables I-III, it is found that the wall skin friction coefficient is increased and the wall concentration gradient 
is decreased for increasing values of M, k and  k/. From Tables IV - V, it is observed that wall concentration gradient is 
decreased with the increase of Sc and γ. Table VI indicates that concentration gradient at the wall is increased for 
increasing power-law index p. 
 
5. CONCLUSION 
The chemically reactive species distribution in an electrically conducting fluid of second grade over a shrinking sheet 
embedded in porous medium and subjected to transverse magnetic field is investigated in this work. The basic 
boundary layer equations of momentum and concentration field are converted into nonlinear ordinary differential 
equations by means of similarity transformations. The resulting nonlinear ordinary differential equations of momentum 
are solved exactly. The concentration equation is transformed to a confluent hypergeometric differential equation using 
a new variable and the solution is expressed in terms of Kummer's function. It is noticed that the rate of reactant  
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transfer is decreased for increasing values of Schmidt number, viscoelastic, reaction rate, magnetic and porosity 
parameters. It is also seen that increase in power-law exponent leads to the increase in reactive species transport rate. 
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Figure 1(a): Velocity profiles f/(𝜂𝜂) for various values 
of magnetic parameter M (M = 1.5,2,3) for k = 0.1 and 
k/ = 0.1. 
 

 
 
Figure 1(b): Velocity profiles f/(𝜂𝜂)  for various values 
of visco-elastic parameter k (k = 0.1,0.3,0.5) for M = 2 
and k/ = 0.1. 
 

 
 
Figure 1(c): Velocity profiles f/(𝜂𝜂)  for various values 
of porosity parameter k (k/ = 0.05, 0.1, 0.2) for M = 1.1 
and k = 0.2. 
 

 
 
Figure 2(a): Variation of concentration for several 
values of Sc (Sc = 0.5, 1.0, 1.5), for M = 2, k = 0.1, k/ 
= 0.1, γ = 0.2 and p = 0. 

 
 
Figure 2(b): The concentration profiles for different 
values of γ (= 0.05, 0.1, 0.2), for M = 2, k = 0.1, k/ = 
0.1, Sc = 0.6 and p = 1. 
 

 
 
Figure 2(c): The concentration distribution for several 
values of p (p = 0,2,4) with M = 2, γ  = 0.1  k = 0.1, k/ 
= 0.1, Sc = 0.6. 
 

 
 
Figure 2(d): The concentration profiles for several 
values of M (M = 1.5, 2, 3) for γ = 0.1, k = 0.1, k/ = 
0.1, Sc = 0.8 and p = 1. 
 

 
 
Figure 2(e): Variation of concentration for several 
values of k (k = 0.1, 0.5, 0.8) with M = 2, k/ = 0.1, Sc = 
0.5, γ = 0.05 and p = 2. 
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Figure 2(f): Variation of concentration for several 
values of k/ (k/ = 0.1, 0.4, 0.7) for M = 2, k = 0.1, Sc = 
1.5, γ = 0.05 and p = 3. 
 
Table I Effect of M on f//(0) and θ/(0) with Sc=1, 
k=0.1, k/=0.1, γ=0.2 and p=0 
M 1.1                   2              2.5                3 
f//(0) 
θ/(0) 

0.58689     1.85592      2.43812            3 
-0.248512  -0.304831 -0.323599  -0.337964 

 
Table II Effect of k on f//(0) and θ/(0) with Sc=1, M=2, 
k/=0.1, γ=0.2 and p=0 
k 0.1              0.3                 0.5                     0.7 
f//(0) 
θ/(0) 

1.85592     2.10442      2.48998             3.21455 
-0.304828   -0.31339  -0.325068       -0.342665 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Table III Effect of k/ on f//(0) and θ/(0) with Sc=1, 
k=0.1, M=2, γ=0.2 and p=0 
k/ 0.1               0.3               0.5                 0.7 
f//(0) 
θ/(0) 

1.85592      1.91485        1.97203          2.02759 
-0.304828   -0.306937  -0.308936     -0.310835 

 
Table IV Effect of Sc on θ/(0) with k = 0.1, k/ = 0.1, M = 
2, γ = 0.2 and p = 0 
Sc 0.5              1.0           1.5           2.0           2.5 
θ/(0) -0.23245 -0.30483 -0.35719 -0.40019  -0.43756 

 
Table V Effect of p on θ/(0) with Sc = 1, k/ = 0.1, M = 2, 
γ = 0.2 and k = 0.1 
p 0                  1               2                3                  4 
θ/(0) -0.30483   0.1084   0.61116   1.25139      2.12071 

 
Table VI Effect of γ on θ/(0) with Sc = 1, k/ = 0.1, M = 2, 
p = 0 and k = 0.1 
γ   0.1             0.2             0.5             1            1.5 
θ/(0) -0.17885  -0.30483 -0.57247  -0.87961   -1.11465 
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