sα-closed sets in Bitopological spaces

Mrs. Veronica Vijayan* & K. Reena**

*Department of mathematics, Nirmala College for women, Coimbatore, India **Department of mathematics, Sree Narayana Guru College, Coimbatore, India

(Received on: 30-11-12; Revised & Accepted on: 21-01-13)

ABASTRACT

In this paper, we introduce $s\alpha$ -closed sets in bitopological spaces. Properties of these sets are investigated and we introduce six new bitopological spaces namely, (i,j)-T, (i,j)

Keywords: (i,j)-sa-closed sets, (i,j)-T, (i,j)-T

1. INTRODUCTION

A triple (X, τ_1 , τ_2) where X is a nonempty set and τ_1 and τ_2 are topologies on X is called a bitopological space and Kelly initiated the study of such spaces. Levine introduced and studied semi-open sets and generalized closed sets in 1963 and 1970 respectively. S.P. Arya and T. Nour defined generalized semi-closed sets (briefly gs-closed sets) in 1990 for obtaining some characterizations of s-normal spaces. Njåstad and Abd El-Monsef et. al introduced α -sets (called as α -closed sets) and semi-preopen sets respectively. Semi-preopen sets are also known as β -sets. Maki et.al. introduced generalized α -closed sets (briefly $g\alpha$ -closed sets) and α -generalized closed sets (briefly α g-closed sets) in 1993 and 1994 respectively.

The purpose of this paper is to introduce the concepts of s α -closed sets, T^{\sim} space, T^{\sim} space, T^{\sim} space, s α -continuous and s α -irresolute maps for bitopological spaces and investigate some of their properties.

2. PREREQUISITES

Throughout this paper (X,τ_1, τ_2) , (Y, σ_1, σ_2) and (Z, η_1, η_2) represent non-empty bitopological spaces on which no separation axioms are assumed unless otherwise mentioned. If A is a subset of X with topology τ then cl(A), int(A) and C(A) denote the closure of A, the interior of A and the complement of A in X respectively. We recall the following definitions, which will be used often throughout this paper.

Definition 2.1: A subset A of a space (X, τ) is called

- (1) a preopen set if $A \subseteq int(cl(A))$ and a preclosed set if $cl(int(A)) \subseteq A$.
- (2) a semi-open set if $A \subseteq cl(int(A))$ and a semi-closed set if $int(cl(A)) \subseteq A$.
- (3) an α -open set if A \subseteq int(cl(int(A))) and a α -closed set if cl(int(cl(A))) \subseteq A.
- (4) a semi-preopen set $(=\beta$ -open) if $A \subseteq cl(int(cl(A)))$ and a semi-preclosed set $(=\beta$ -closed) if $int(cl(int(A))) \subseteq A$.

The semi-closure (resp. α -closure) of a subset A of (X,τ) is denoted by scl(A) (resp. $\alpha cl(A)$ and spcl(A))and is the intersection of all semi-closed (resp. α -closed and semi-preclosed) sets containing **A.**

Definition 2.2: A subset A of a space (X,τ) is called

- (1) a generalized closed (briefly g-closed) set $^2[10]$ if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .
- (2) a generalized semi-closed (briefly gs-closed) set³[3] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .
- (3) a generalized semi-preclosed (briefly gsp-closed) set $^{12}[9]$ if $spcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .
- (4) an α -generalized closed (briefly α g-closed) set⁸[12] if α cl(A) \subseteq U whenever A \subseteq U and U is open in (X, τ).
- (5) a generalized α -closed (briefly g α -closed) set⁷[13] if α cl(A) \subseteq U whenever A \subseteq U and U is α -open in (X, τ).

Corresponding author: K. Reena**

**Department of mathematics, Sree Narayana Guru College, Coimbatore, India

Definition 2.3: A function f: $(X, \tau) \rightarrow (Y, \sigma)$ is called

- (1) semi-continuous¹ [11] if $f^{-1}(V)$ is semi-open in (X, τ) for every open set V of (Y, σ) .
- (2) pre-continuous¹¹ [14] if $f^{-1}(V)$ is pre-closed in (X, τ) for every closed set V of (Y, σ) .
- (3) α -continuous¹² [15] if f⁻¹(V) is α -closed in (X, τ) for every closed set V of (Y, σ).
- (4) β -continuous⁵ [1] if $f^{-1}(V)$ is semi-preopen in (X, τ) for every open set V of (Y, σ) .
- (5) g-continuous¹³ [4] if $f^{-1}(V)$ is g-closed in (X,τ) for every closed set V of (Y,σ) .
- (6) gs-continuous¹⁴ [7] if $f^{-1}(V)$ is gs-closed in (X, τ) for every closed set V of (Y, σ) .
- (7) αg -continuous² [10] if f⁻¹(V) is αg -closed in (X, τ) for every closed set V of (Y, σ).
- (8) $g\alpha$ -continuous⁷ [13] if $f^{-1}(V)$ is $g\alpha$ -closed in (X, τ) for every closed set V of (Y, σ) .
- (9) $gsp\text{-}continuous^{16}$ [9] if $f^{-1}(V)$ is gsp-closed in (X, τ) for every closed set V of (Y, σ) .
- (10) αg -irresolute¹⁰ [6] if $f^{-1}(V)$ is αg -closed in (X,τ) for every αg -closed set V of (Y,σ) .
- (11) $pre-semi-open^{15}$ [5] if f (U) is semi-open in (Y, σ) for every semi-open set U in (X, τ).

Definition 2.4: A topological space (X, τ) is said to be

- (1) a $T_{1/2}$ space if every g-closed set in it is closed.
- (2) a T_b space if every gs-closed set in it is closed.
- (3) an $_{\alpha}T_{b}$ space if every αg -closed set in it is closed.

Definition 2.5: A subset A of a bitopological space (X, τ_1, τ_2) is called:

- (1) (i,j)-g-closed if τ_i -cl(A) \subseteq U whenever A \subseteq U and U is open in τ_i
- (2) (i,j)-g*-closed if τ_i -cl(A) \subseteq U whenever A \subseteq U and U is g-open in τ_i
- (3) (i,j)-rg-closed if τ_i -cl(A) \subseteq U whenever A \subseteq U and U is regular open in τ_i
- (4) (i,j)-gpr-closed if τ_i -pcl(A) \subseteq U whenever A \subseteq U and U is regular open in τ_i

The family of all (i,j)-g-closed sets (resp. (i,j)-g*-closed, (i,j)-rg-closed, (i,j)-gpr-closed) subsets of a bitopological space (X,τ_1,τ_2) is denoted by D(i,j) (resp. $D^*(i,j)$, $D_r(i,j)$, $\xi(i,j)$).

Definition 2.6: A subset A of a bitopological space (X, τ_1, τ_2) is called:

- (1) (i,j)- $T_{1/2}$ space if every (i,j)-g-closed sets is τ_i closed.
- (2) (i,j)- T_b space if every (i,j)-gs-closed set is τ_i -closed.
- (3) (i,j)- $_{\alpha}T_{b}$ space if every (i,j)- αg -closed set is τ_{i} closed.

Definition 2.7: A function $f:(X,\tau_1,\tau_2) \to (Y,\sigma_1,\sigma_2)$ is called

- (1) τ_1 semi-continuous [11] if $f^{-1}(V)$ is semi-open in (X, τ_1, τ_2) for every open set V of (Y, σ_1, σ_2) .
- (2) τ_{i} α -continuous¹²[15] if $f^{-1}(V)$ is α -closed in (X, τ_1, τ_2) for every closed set V of (Y, σ_1, σ_2) .
- (3) τ_{i} σ_{k} continuous if $f^{-1}(V) \in \tau_{i}$, for every $V \in \sigma_{k}$.
- (4) (i,j)-gs-continuous¹⁴[7] if $f^{-1}(V)$ is gs-closed in (X,τ_1,τ_2) , for every closed set V of (Y,σ_1,σ_2) .
- (5) (i,j)-gsp-continuous¹⁴[7] if $f^{-1}(V)$ is gsp-closed in (X,τ_1,τ_2) , for every closed set V of (Y,σ_1,σ_2) .

3. $s\alpha$ –closed sets in Bitopological spaces

In this section we introduce the concept of sα-closed sets in bitopological spaces and discuss the related properties.

Definition 3.1: A Subset A of a space (X, τ_i, τ_j) is called a (i,j)-s α -closed set if τ_j -scl $(A)\subseteq U$ whenever $A\subseteq U$ and U is α -open in τ_i

Remark 3.2: By setting $\tau_i = \tau_i$ in Definition 3.1, a (i,j)-s α -closed set is a s α -closed set.

Theorem 3.3:

- 1. If A is τ_i closed subset of (X, τ_i, τ_i) then A is (i,j)-s α -closed.
- **2.** If A is τ_i -semi closed subset of (X,τ_i,τ_i) then A is (i,j)-s α -closed.
- 3. If A is $\tau_i \alpha$ closed subset of (X, τ_i, τ_i) then A is (i, j)-s α -closed.
- **4.** Every (i,j)-g α -closed set is (i,j)-s α -closed.
- **5.** Every (i,j)-w-closed set is (i,j)-s α -closed.

Proof: Straight forward. Converse of the above need not be true as in the following examples.

Example 3.4: Let $X = \{a, b, c\}$, $\tau_1 = \{\phi, X, \{a, b\}\}$, $\tau_2 = \{\phi, X, \{a\}\}$ then $\{b\}$ is (1,2)-s α -closed but not τ_2 -closed.

Example 3.5: Let $X = \{a, b, c\}$, $\tau_1 = \{\phi, X, \{a, b\}\}$, $\tau_2 = \{\phi, X, \{a\}\}$ then $\{a, c\}$ is (1,2)-s α -closed but not τ_2 -semi closed .

Example 3.6: Let $X = \{a, b, c\}$, $\tau_1 = \{\phi, X, \{a\}, \{b, c\}\}$, $\tau_2 = \{\phi, X, \{a\}, \{a, c\}\}$ then $\{a, b\}$ is (1,2)-s α -closed but not τ_2 - α -closed

Example 3.7: Let $X = \{a, b, c\}$, $\tau_1 = \{\phi, X, \{a\}\}$, $\tau_2 = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$ then $\{a\}$ is (1,2)-s α -closed but not (1,2)-g α -closed.

Example 3.8: Let $X = \{a, b, c\}$, $\tau_1 = \{\phi, X, \{a, b\}\}$, $\tau_2 = \{\phi, X, \{a\}\}$ then $\{b\}$ is (1,2)-s α -closed but not (1,2)-w-closed.

Thus the class of (i,j)- $s\alpha$ -closed sets properly contains the classes of τ_j -closed sets, τ_j - α -closed sets, τ_j -semi-closed sets, (i,j)-g α -closed sets, (i,j)-g α -closed sets.

Theorem 3.9: In a bitopological space (X, τ_i, τ_j) , every (i,j)-s α -closed set is :

- 1. (i,j)-gs-closed and
- 2. (i,j)-gsp-closed.

Proof: follows from the definitions.

The following examples show that the reverse implications of above proposition are not true.

Example 3.10: Let $X = \{a, b, c\}$, $\tau_1 = \{\phi, X, \{a\}, \{a, c\}\}$, $\tau_2 = \{\phi, X, \{a\}, \{b, c\}\}$ then $\{b\}$ is (1,2)-gs-closed but not (1,2)-s α -closed

Example 3.11: Let $X = \{a, b, c\}$, $\tau_1 = \{\phi, X, \{a\}\}$, $\tau_2 = \{\phi, X, \{a\}, \{b, c\}\}$ then $\{b\}$ is (1,2)-gsp-closed but not (1,2) -s α -closed.

So the class of (i,j)- $s\alpha$ -closed sets is properly contained in the classes of (i,j)-gs-closed and (i,j)-gsp-closed sets .

The following examples shows that (i,j)-s α -closedness is independent from (i,j)- α g-closedness, (i,j)-gp-closedness, (i,j)-gp-closedness.

Example 3.12:Let $X = \{a, b, c\}$, $\tau_1 = \{\phi, X, \{a\}\}$, $\tau_2 = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$ then the set $\{a, b\}$ is (1,2)-ag-closed set, (1,2)-rg-closed set, (1,2)-gp-closed set, (1,2)-gp-closed set but not (1,2)-s α -closed.

Proposition 3.13: If A is (i,j)-s α -closed set such that $A \subseteq B \subseteq \tau_i$ -Scl(A) then B is also (i,j)-s α -closed.

Proof: Follows

 $\textbf{Proposition 3.14:} \ \ \text{If A is } (i,j) \text{-s}\alpha \text{-closed then } \tau_j \text{-Scl}(A) - A \ \text{contains no non-empty } \tau_i \text{-}\alpha \text{-closed set}.$

Proof:Let A be an (i,j)-s α -closed set and F be a non-empty τ_i - α -closed subset such that $F \subseteq \tau_j$ -Scl(A) $- A = \tau_j$ -Scl(A) $\cap A^c : F \subseteq \tau_j$ -Scl(A) and $F \subseteq A^c$ Since F^c is τ_i - α -open and A is (i,j)-s α -closed we have, τ_j -Scl(A) $\subseteq F^c$ i.e $F \subseteq (\tau_j$ -Scl(A)) $\in F$ 0 Hence $F \subseteq \tau_j$ -Scl(A) $\in F$ 1 i.e $F \subseteq (\tau_j$ -Scl(A) $\in F$ 2 i.e $F \subseteq (\tau_j$ -Scl(A) $\in F$ 3 i.e $F \subseteq (\tau_j$ -Scl(A) $\in F$ 4 i.e $F \subseteq (\tau_j$ -Scl(A) $\in F$ 5 i.e $F \subseteq (\tau_j$ -Scl(A) $\in F$ 5 i.e $F \subseteq (\tau_j$ -Scl(A) $\in F$ 6 i.e $F \subseteq (\tau_j$ -Scl(A) $\in F$ 7 i.e $F \subseteq (\tau_j$ -Scl(A) $\in F$ 8 i.e $F \subseteq (\tau_j$ -Scl(A)

 \therefore τ_i -Scl(A) – A contains no non-empty τ_i - α -closed set

Corollary 3.15: If A is (i,j)-s α -closed set in (X, τ_i, τ_j) , then A is τ_j -semi-closed iff τ_j -Scl(A) – A is τ_i - α -closed.

Proof: Necessity: If A is τ_j -semi-closed then τ_j -Scl(A)=A i.e τ_j -Scl(A) – A = ϕ and hence τ_j -Scl(A) – A is τ_i - α -closed. [By prop.3.14]

Sufficiency: If τ_j -Scl(A)-A is τ_i - α -closed then by proposition 3.14 we have, τ_j -Scl(A) - A = ϕ [since A is (i,j)-s α -closed]

 \therefore τ_i -Scl(A) = A. Hence A is τ_i – semi-closed.

Proposition 3.16: For each element x of (X, τ_i, τ_i) , $\{x\}$ is τ_i - α -closed (or) $\{x\}^c$ is (i,j)-s α -closed.

Proof: If $\{x\}$ is not τ_i - α -closed then the only τ_i - α -open set containing X- $\{x\}$ is X Thus X- $\{x\}$ is (i,j)-s α -closed. i.e $\{x\}^c$ is (i,j)-s α -closed. Hence Proved.

Proposition 3.17: If A is an τ_i - α -open and (i,j)-s α -closed set of (X, τ_i, τ_j) then A is τ_i -semi-closed.

Proof: Let A be τ_i - α -open and (i,j)- $s\alpha$ -closed. Since A is (i,j)- $s\alpha$ -closed, we have τ_j - $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is τ_i - α -open $\Rightarrow \tau_j$ - $scl(A) = A <math>\Rightarrow A$ is τ_j -semi-closed.

Remark 3.18: An (i,j)-s α -closed set need not be (j,i)-s α -closed.

Proof: Consider the Example Let $X = \{a, b, c\}$, $\tau_1 = \{\phi, X, \{c\}, \{a, b\}\}$, $\tau_2 = \{\phi, X, \{a\}\}$ then $\{a, c\}$ is (1,2)-s α -closed but not (2,1)-s α -closed

Definition 3.19: The family of all (i,j)-s α -closed set in (X, τ_i, τ_j) is defined as $D^s(i,j)$

Proposition 3.20: If A, B \in D^s(i,j) then A \cup B \in D^s(i,j)

Proof: Follows.

Proposition 3.21: The intersection of (i,j)-s α -closed sets need not be (i,j)-s α -closed as seen from the following example.

Example 3.22: Let $X = \{a, b, c\}$, $\tau_1 = \{\phi, X, \{a\}, \{b, c\}\}$, $\tau_2 = \{\phi, X, \{a\}, \{a, c\}\}$ then the sets $\{a, b\}$, $\{a, c\}$ are (1,2)- so-closed but $\{a\}$ is not a (1,2)- so-closed set.

Remark 3.23: The family of all τ_i -semi-closed set is denoted by F_i .

Theorem 3.24: In a bitopological space (X, τ_i, τ_i) , $\alpha o(X, \tau_i) \subseteq F_i$. Iff every subset of X is an (i,j)-s α -closed set.

Proof: Follows.

The following figure shows the relationships of (i,j)-sα-closed sets with other sets

Where A → B represents A implies B and A → B represents A and B are independent.

4. Applications of (i,j)-sα-closed Set

In this chapter we introduce six new spaces namely (i,j)- T^{α} space, (i,j)- T^{α} space, (i,j)- T^{α} space, (i,j)- T^{α} space, (i,j)- T^{α} space.

We now introduce a new space (i,j)-T~space.

Definition 4.1: A space (X, τ_i, τ_i) is called an (i,j)- T^{\sim} space if every (i,j)-s α -closed set is τ_i -closed.

Proposition 4.2: Every (i,j)- T_b space is an (i,j)- T^{\sim} space but not conversely.

Proof: follows

The converse of above proposition need not be true which is shown by the following example.

Example 4.3: Consider the example $X = \{a,b,c\}, \tau_1 = \{\phi,X,\{a\}\}, \tau_2 = \{\phi,X,\{a\},\{b,c\}\}\}$ then (X,τ_1,τ_2) is (1,2)- T^{\sim} space but not (1,2)- T_b -space.

Characterization of (i,j)-T~space

Theorem 4.4: If (X, τ_i, τ_i) is an (i,j)- T^{\sim} space, then every singleton of X is either τ_i - α -closed or τ_i -open

Proof: Let $x \in X$ and suppose that $\{x\}$ is not τ_i - α -closed. Then $X - \{x\}$ is (i,j)-s α -closed set since X is the only τ_i - α -open set containing $X - \{x\}$. So $X - \{x\}$ is τ_i -closed.(i.e) $\{x\}$ is τ_i -open

Remark 4.5: (X, τ_1) space is not generally T^{\sim} space even if (X, τ_1, τ_2) is (1,2)- T^{\sim} space shown in the following example.

Example 4.6: Consider the example $X = \{a, b, c\}, \tau_1 = \{\phi, X, \{a\}\}, \tau_2 = \{\phi, X, \{a\}, \{b, c\}\} \text{ then } (X, \tau_1, \tau_2) \text{ is } (1, 2) - T^{\sim} \text{ space but } (X, \tau_1) \text{ is not } T^{\sim} - \text{space}.$

We now introduce a new space (i,j)-T^{-s}

Definition 4.7: A space (X, τ_i, τ_i) is called (i,j)- T^{-s} space if every (i,j)-s α -closed set is τ_i -semi closed.

Proposition 4.8: Every (i,j)- T_b space is an (i,j)- T^{-s} space but not conversely.

Proof: follows.

Example 4.9: Let $X = \{a,b,c\}$, $\tau_1 = \{\phi,X,\{a\}\}$, $\tau_2 = \{\phi,X,\{a\},\{b\},\{a,b\}\}$ then (X, τ_1, τ_2) is (1,2)-T^{-s} space but not (1,2)-T_b space.

Proposition 4.10: Every $(i,j)-T_{1/2}$ space is an $(i,j)-T^s$ space but not conversely.

Proof: follows.

Example 4.11: Let $X = \{a, b, c\}$, $\tau_1 = \{\phi, X, \{a\}\}$, $\tau_2 = \{\phi, X, \{a\}, \{b, c\}\}$ then (X, τ_1, τ_2) is (1,2)- T^{-s} space but not (1,2)- $T_{1/2}$ space.

Proposition 4.12: Every (i,j)- T^{\sim} space is (i,j)- $T^{\sim s}$ space but not conversely.

Proof: Follows

Example 4.13: Let $X = \{a, b, c\}$, $\tau_1 = \{\phi, X, \{a\}\}$, $\tau_2 = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$. Then (X, τ_1, τ_2) is $(1, 2) - T^{-s}$ space but not $(1, 2) - T^{-s}$ space

Characterization of (i,j)-T~s space

Theorem 4.14: For a space (X, τ_i, τ_i) the following are equivalent.

- 1. (X, τ_i, τ_j) is a (i,j)- T^{s} space
- 2. Every singleton of X is either τ_i - α -closed or τ_i -semi open.

Proof: To Prove (1) \Rightarrow (2) Let $x \in X$ and suppose that $\{x\}$ is not τ_i - α -closed. Then $X - \{x\}$ is (i,j)-s α -closed set since X is the only τ_i - α -open set containing $X - \{x\}$. Therefore $X - \{x\}$ is τ_i - semi-closed.(i.e) $\{x\}$ is τ_i - semi-open

To Prove (2) \Rightarrow (1)_Let A be a (i,j)-s α -closed set of (X, τ_i , τ_j). Clearly A \subseteq τ_j -scl(A). Let $x \in X$. by (2) $\{x\}$ is either τ_i - α -closed or τ_j -semi-open

Case (i): Suppose $\{x\}$ is τ_i - α -closed. If $x \notin A$, then τ_j – scl (A)-A contains the τ_i - α -closed set $\{x\}$ and A is (i,j)-s α -closed set. Hence we arrive at a contradiction. Thus $x \in A$.

Case (ii): Suppose that $\{x\}$ is τ_j - semi-open. Since $x \in \tau_j - scl(A)$, then $\{x\} \cap A \neq \emptyset$. So $x \in A$. Thus in any case $x \in A$. So $\tau_i - scl(A) \subseteq A$: $A = \tau_i - scl(A)$ (or) equivalently A is τ_i - semi-closed. Thus (X, τ_i, τ_i) is an (i,j)- T^{-s} space.

Definition 4.15: A space (X, τ_i, τ_i) is called strongly pairwise T^{-s} space if it is both (1,2)- T^{-s} and (2,1)- T^{-s}

Proposition 4.16: If (X, τ_1, τ_2) is strongly pairwise T_b space then it is strongly pairwise T^{-s} space but not conversely.

Proof: follows

Example 4.17: Let $X = \{a, b, c\}$, $\tau_1 = \{\phi, X, \{a\}, \{a, b\}\}$, $\tau_2 = \{\phi, X, \{a\}\}$ then (X, τ_1, τ_2) is strongly pairwise T^{-s} space but not strongly pairwise T_b space.

We introduce another new space (i,j)-T space

Definition 4.18: A space (X, τ_i, τ_j) is called (i,j)- T space if every (i,j)-s α -closed set is $\tau_j - \alpha$ -closed

Proposition 4.19: Every (i,j)-T_b space is (i,j)-T space but not conversely.

Proof: Let (X, τ_i, τ_j) be a (i,j)- T_b space and A be a (i,j)-s α -closed set of (X, τ_i, τ_j) . Since (X, τ_i, τ_j) is a (i,j)- T_b space, A is τ_i -closed. Since every τ_i -closed set is τ_i - α -closed set. Implies A is τ_i - α -closed \therefore (X, τ_i, τ_j) is a (i,j)-T space.

Example 4.20: Let $X = \{a, b, c\}$, $\tau_1 = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}\$, $\tau_2 = \{\phi, X\}$ then (X, τ_1, τ_2) is (1,2)- T space but not (1,2)- T_b space.

Proposition 4.21: Every (i,j)-T space is (i,j)-T space but not conversely.

Proof: follows

Example 4.22: Let $X = \{a, b, c\}$, $\tau_1 = \{\phi, X, \{a\}\}$, $\tau_2 = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$ then (X, τ_1, τ_2) is (1,2)- T^{s} space but not (1,2)- T space.

Proposition 4.23: Every (i,j)-T space is (i,j)-T space but not conversely.

Proof: follows.

Example 4.24: Let $X = \{a, b, c\}$, $\tau_1 = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}\$, $\tau_2 = \{\phi, X\}$ then (X, τ_1, τ_2) is (1,2)-T space but not (1,2)-T space.

Theorem 4.25: If (X, τ_i, τ_i) is a (i,j)-T space, then every singleton of X is either $\tau_i - \alpha$ -closed or $\tau_i - \alpha$ -open.

Proof: Suppose that (X, τ_i, τ_j) is a (i,j)- T space. Suppose that $\{x\}$ is not $\tau_i - \alpha$ -closed for some $x \in X$. Then $X - \{x\}$ is not $\tau_i - \alpha$ -open. Then X is the only $\tau_i - \alpha$ -open set containing $X - \{x\}$ is a (i,j)-s α -closed. Since (X, τ_i, τ_j) is a (i,j)- T space, $X - \{x\}$ is $\tau_i - \alpha$ -closed or equivalently $\{x\}$ is $\tau_i - \alpha$ -open.

We now introduce a new space (i,j)-*T space

Definition 4.26: A space (X, τ_i, τ_i) is called a (i,j)-sT space if every (i,j)-gs-closed set is (i,j)-s α -closed.

Proposition 4.27: Every (i,j)- $T_{1/2}$ space is a (i,j)- ^{-s}T space but not conversely.

Proof: Let (X, τ_i, τ_j) be a (i,j)- $T_{1/2}$ space .Let A be a (i,j)-gs-closed set. Since (X, τ_i, τ_j) is (i,j)- $T_{1/2}$ space, A is τ_j -semi-closed. Therefore A is (i,j)-s α -closed. Hence (X, τ_i, τ_j) is a (i,j)-s τ -space. Hence proved.

Example 4.28: Let $X = \{a, b, c\}$, $\tau_1 = \{\phi, X, \{a, c\}, \{c\}\}\$, $\tau_2 = \{\phi, X, \{a\}\}\$ then (X, τ_1, τ_2) is $(1,2)^{-s}T$ space but not $(1,2)^{-T_{1/2}}$ space.

Proposition 4.29: Every (i,j)- T_b space is (i,j)- s T space but not conversely.

Proof: follows

Example 4.30: Let $X = \{a, b, c\}$, $\tau_1 = \{\phi, X, \{c\}, \{a, b\}\}\$, $\tau_2 = \{\phi, X, \{a\}\}\$ then (X, τ_1, τ_2) is $(1,2)^{-s}T$ space but not $(1,2)^{-s}T$ space.

Theorem 4.31: A space (X, τ_i, τ_j) is a (i,j)- $T_{1/2}$ -space if and only if (X, τ_i, τ_i) is (i,j)- s T and (i,j)- T^s space.

Proof: follows.

Theorem 4.32: A space (X, τ_i, τ_i) is a (i,j)- T_b -space if and only if (X, τ_i, τ_i) is (i,j)- $^{\sim}T$ and (i,j)-T space.

Proof: follows.

We now introduce a new space (i,j)- T^{α} space

Definition 4.33: A space (X, τ_i, τ_i) is called (i,j)- T^a space if every (i,j)-s α -closed set is (i,j)-g α -closed.

Proposition 4.34: Every (i,j)- T^{α} space is (i,j)- T^{α} space but not conversely.

Proof: follows

Example 4.35: Let $X = \{a, b, c\}$, $\tau_1 = \{\phi, X, \{a\}\}$, $\tau_2 = \{\phi, X, \{c\}, \{a, b\}\}$ then (X, τ_1, τ_2) is (1,2)- T^{α} space but not (1,2)- T^{α} space.

Proposition 4.36: Every (i,j)- T space is (i,j)- T^{α} space but not conversely.

Proof: follows

Example 4.37: Let $X = \{a, b, c\}$, $\tau_1 = \{\phi, X, \{a, b\}\}$, $\tau_2 = \{\phi, X, \{c\}, \{a, b\}\}$ then (X, τ_1, τ_2) is (1,2)- T^{α} space but not (1,2)- T space.

We now introduce a new space (i,j)-T^{a~} space

Definition 4.38: A space (X, τ_i, τ_j) is called (i,j)- T^{α} space if every (i,j)-s α -closed set is (i,j)-w-closed.

Proposition 4.39: Every (i,j)- T_b space is (i,j)- T^{α} space but not conversely.

Proof: follows

Example 4.40: Let $X=\{a, b, c\}$, $\tau_1=\{\phi, X, \{a, b\}\}$, $\tau_2=\{\phi, X, \{a\}, \{b, c\}\}$ then (X, τ_1, τ_2) is (1,2)- T^{α} space but not (1,2)- T_b space.

Proposition 4.41: Every (i,j)- T^{α} space is (i,j)- T^{α} space but not conversely.

Proof: follows

Example 4.42: Let $X = \{a, b, c\}$, $\tau_1 = \{\phi, X, \{a, b\}\}$, $\tau_2 = \{\phi, X, \{a\}\}$ then (X, τ_1, τ_2) is (1,2)- T^{α} space but not (1,2)- $T^{\alpha - \alpha}$ space.

The following diagram shows the inter relationships between the separation axioms discussed in this section.

where A _____ B represents A implies B but B need not imply A.

5. sα-continuous maps in bitopological spaces

We introduce the following definition.

Definition 5.1: A function $f:(X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is called (i,j)- $s\alpha$ –continuous if $f^{-1}(V)$ is (i,j)- $s\alpha$ - closed set of (X, τ_1, τ_2) for every closed set V of (Y, σ_1, σ_2) .

Proposition 5.2: If $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is $\tau_i - \sigma_k$ —continuous then it is (i,j)- s α —continuous but not conversely.

Proof: follows from the definitions.

Example 5.3: Let $X = \{a, b, c\}$, $\tau_1 = \{\phi, X, \{a, b\}\}$, $\tau_2 = \{\phi, X, \{a\}\}$ and $Y = \{p, q\}$, $\sigma_1 = \{\phi, Y, \{p\}\}$, $\sigma_2 = \{\phi, Y, \{q\}\}$. Define a map $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ by f(a) = q, f(b) = f(c) = p. then f is (1, 2)- s α –continuous but not τ_1 - σ_2 – continuous.

Proposition 5.4: If $f:(X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is (i,j)- $s\alpha$ –continuous, then it is (i,j)- gs –continuous and (i,j)- gsp –continuous but not conversely.

Proof: follows from the definitions.

The converses are not true which is shown by the following examples.

Example 5.5: Let $X = \{a, b, c\}$, $\tau_1 = \{\phi, X, \{a\}\}$, $\tau_2 = \{\phi, X, \{a\}, \{b, c\}\}$ and $Y = \{p, q\}$, $\sigma_1 = \{\phi, Y, \{p\}\}\}$, $\sigma_2 = \{\phi, Y, \{q\}\}\}$. Define a map $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ by f(a) = f(c) = q, f(b) = p. then f is (1, 2)- gs –continuous but not (1, 2)- s α –continuous.

Example 5.6: Let $X = \{a, b, c\}$, $\tau_1 = \{\phi, X, \{a\}\}$, $\tau_2 = \{\phi, X, \{a\}, \{b, c\}\}$ and $Y = \{p, q\}$, $\sigma_1 = \{\phi, Y, \{p\}\}\}$, $\sigma_2 = \{\phi, Y, \{q\}\}\}$. Define a map $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ by f(a) = f(c) = q, f(b) = p. then f is (1, 2)- gsp –continuous but not (1, 2)- s α –continuous.

Remark 5.7: (i ,j)- g-continuous and (i ,j)-s α -continuous are independent which are shown by the following example. Let $X = \{a, b, c\}$, $\tau_1 = \{\phi, X, \{a\}\}$, $\tau_2 = \{\phi, X, \{a\}, \{b, c\}\}$ and $Y = \{p, q\}$, $\sigma_1 = \{\phi, Y, \{p\}\}$, $\sigma_2 = \{\phi, Y, \{q\}\}$. Define a map $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ by f(a) = f(c) = q, f(b) = p. then f is (1, 2)- g -continuous but not (1, 2)- g -continuous.

Theorem 5.8 : Let $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be a map.

- 1. If (X, τ_1, τ_2) is an (i,j)- $T_{1/2}$ space then f is (i,j)- s α –continuous if it is (i,j)- g –continuous.
- 2. If (X, τ_1, τ_2) is an (i,j)- T^{\sim} space then f is τ_j - σ_k -continuous. Iff it is (i,j)- s α -continuous.

Proof:

1. Let V be a σ_k - closed set Since f is (i,j)-g-continuous, f⁻¹(V) is (i,j)-g-closed But (X, τ_1 , τ_2) is an (i,j)-T_{1/2} space we have every (i,j)-g-closed set is τ_i -closed.

∴ $f^{-1}(V)$ is (i,j)-s α -closed. Hence f is (i,j)-s α -continuous.

2. Obviously, f is (i,j)-s α -continuous. Conversely, suppose that f is (i,j)-s α -continuous. Let V be a σ_k - closed set.

Since f is (i ,j)-s α -continuous we have f $^{-1}$ (V) is (i ,j)-s α -closed. But (X, τ_1 , τ_2) is an (i,j)-T $^{\sim}$ space we have f $^{-1}$ (V) is τ_j - closed \therefore f is τ_j - σ_k -continuous Hence proved.

Theorem 5.9: Every $\tau_i - \sigma_k$ –semi-continuous map is (i, j)-s α –continuous but not conversely.

Proof: obvious.

The following example supports that the converse of the above theorem is not true in general.

Example 5.10: Let $X = \{a, b, c\}$, $\tau_1 = \{\phi, X, \{a, b\}\}$, $\tau_2 = \{\phi, X, \{a\}\}$ and $Y = \{a, b, c\}$, $\sigma_1 = \{\phi, Y, \{a\}\}$, $\sigma_2 = \{\phi, Y, \{b,c\}\}$. Define a map $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ by f(a) = b, f(b) = a, f(c) = c. then f is (1, 2)-s α -continuous but not τ_1 - σ_2 -semi-continuous.

Theorem 5.11: Every $\tau_i - \sigma_k - \alpha$ -continuous map is (i ,j)-s α -continuous. But not conversely.

Proof: follows from definitions.

The converse of the above theorem is not true which is shown by the following example.

Example 5.12: Let $X = \{a, b, c\}$, $\tau_1 = \{\phi, X, \{a, b\}\}$, $\tau_2 = \{\phi, X, \{a\}\}$ and $Y = \{a, b, c\}$, $\sigma_1 = \{\phi, Y, \{a\}\}$, $\sigma_2 = \{\phi, Y, \{b, c\}\}$. Define a map $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ by f(a) = b, f(b) = a, f(c) = c. then f is (1, 2)-s α –continuous but not τ_1 - σ_2 - α –continuous.

Thus the class of (i,j)-s α -continuous maps properly contains the class of τ_j - σ_k -continuous maps, the class of τ_j - σ_k -continuous maps, the class of τ_j - σ_k -semi-continuous maps. And also the class of (i,j)-s α -continuous maps is properly contained in the class of (i,j)- gs-continuous maps and hence in the class of (i,j)- gsp-continuous maps.

Theorem 5.13:Let $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2)$ be a (i,j)-s α -continuous map. If (X,τ_1,τ_2) , the domain of f is an (i,j)- T^{-s} space, then f is τ_i - σ_k -semi-continuous.

Proof: follows

Theorem 5.14: Let $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be a (i, j)-s α -continuous map. If (X, τ_1, τ_2) , the domain of f is (i, j)-T space, then f is τ_i - σ_k - α -continuous.

Proof: follows

Theorem 5.15: Let $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be a (i,j)-s α -continuous map. If (X, τ_1, τ_2) , the domain of f is (i,j)- T^{\sim} space, then f is τ_j - σ_k -continuous.

Proof: follows

Theorem 5.16: Let $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be a (i, j) - gs-continuous map. If (X, τ_1, τ_2) , the domain of f is (i, j)- s T space, then f is (i, j)-s α -continuous.

Proof: follows

We introduce the following definition

Definition 5.17: A function $f:(X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is called (i,j)-s α –irresolute map if $f^{-1}(V)$ is (i,j)-s α – closed set of (X, τ_1, τ_2) for every (i,j)-s α – closed set of (Y, σ_1, σ_2) .

Theorem 5.18: Every (i, j)-s α –irresolute map is (i, j)-s α –continuous but not conversely.

Proof: Let f is (i, j)-s α -irresolute Let V be σ_k -closed set. Then f $^{-1}$ (V) is (i, j) - s α -closed, since f is (i, j)-s α -continuous. Hence proved.

The converse of the above theorem is not true which is shown by the following example. Consider example 5.10

From example 5.10 we have, f is (1, 2)-s α –continuous.

But f is not (1,2)-s α –irresolute because {b} is (1,2)-s α –closed and f⁻¹ ({b}) = {a} and {a} is not (1,2)-s α –closed. Hence proved.

Theorem 5.19: Let $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ and $g: (Y, \sigma_1, \sigma_2) \to (Z, \eta_1, \eta_2)$ be any two functions. Then

- 1. gof is (i,j)-s α –continuous, if g is σ_i - η_k continuous and f is (i,j)-s α -continuous.
- **2.** gof is (i,j)-s α irresolute, if g is (i,j)-s α irresolute and f is (i,j)-s α irresolute.
- 3. gof is (i,j)-s α –continuous, if g is (i,j)-s α –continuous and f is (i,j)-s α -irresolute.

Proof: follows

Remark 5.20: The following diagram summarizes the above discussions.

where A __ B (resp. A \displays B) represents A implies B but B need not imply A (resp. A and B are independent).

REFERENCES

- 1. M.E.ABD EL-MONSEF, S.N.EL-DEEB AND MAHMOUD, β-open sets and β-continuous mapping, Bull Fac. Sci. Assiut Univ.12(1983) 77-90
- 2. D.ANDRUEVIC, Semi-preopen sets, Mat. Vesnik38 (1) (1986)24-32.
- S.P.ARYA AND T.NOUR, Characterizations of s-normal spaces, Indian J. Pure. Appl. Math. 12(8) (1990)717-719.
- 4. K.BALACHANDRAN, P.SUNDARAM AND H.MAKI, On generalized continuous maps in topological spaces, Mem. Fac. Sci. Kochi Univ. Ser. A. Math. 12(1991)5-13.
- 5. S.G. CROSSLEY AND S.K.HILDEBRAND, semi-topological properties, Fund. Math. 74(1972)233-254.
- 6. R.DEVI,K.BALACHANDRAN AND H.MAKI, Generalized α -closed maps and α -generalized closed maps, Indian J.Pure.Appl.Math.29(1)(1998)37-49.
- 7. R.DEVI, K.BALACHANDRAN AND H.MAKI, Semi-generalized homeomorphisms and generalized semi-homeomorphisms in topological spaces, Indian. J.Pure.Appl.Math.26 (3) (1995)271-284.
- 8. R.DEVI, H.MAKI AND K.BALACHANDRAN, Semi-generalized closed maps and generalized semi-closed maps Mem. Fac. Sci. Kochi. Univ. Ser. A. Math. 14 (1993) 41-54.
- 9. J.DONTCHEV, On generalizing semi-pre open sets, Mem. Fac. Sci. Kochi Univ.Ser.A.Math.16 (1995)35-48.
- 10. N.LEVINE, generalized closed sets in topology, Rend. Circ. Mat. Palermo 19(2)(1970)
- 11. N.LEVINE, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963)36-41.
- 12. H.MAKI, R.DEVI AND K.BALACHANDRAN, Associated topologies of generalized α -closed sets and α -generalized closed sets, Mem. Fac. Sci. Kochi Univ.Ser.A.Math.15 (1994)51-63.
- 13. H.MAKI, R.DEVI AND K.BALACHANDRAN, Generalized α-closed sets in topology, Bull. Fukuoka Univ. Ed. part III 42(1993)13-21.
- 14. A.S.MASHHOUR, M.E.ABD EL-MONSEF AND S.N.EL-DEEB, On pre-continuous and weak pre-continuous mappings, Proc. Math. And Phys. Soc. Egypt 53(1982)47-53.
- 15. A.S.MASHHOUR, I.A.HASANEIN AND S.N.EL.DEEB, α -continuous and α -open mappings, Acta Math. Hung. 41 (3-4)(1983)213-218.
- 16. O.NJASTAD, On some classes of nearly open sets, Pacific J.Math.15 (1965)961-870.
- 17. M.K.R.S.VEERA KUMAR, g[#] semi closed sets in topological spaces, Indian Journal of mathematics Vol.44, No.1, 2002, 73-87.

Source of support: Nil, Conflict of interest: None Declared