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ABSTRACT 
Let G = (V, E) be a simple, finite and undirected graph.  A dominator coloring of a graph G is a proper coloring in 
which every vertex of G dominates every vertex of at least one color class.  The dominator chromatic number χd(G) is 
the minimum number of colors required for a dominator coloring of G.  The shadow graph D2(G) of a connected graph 
G is constructed by taking two copies of G say G′ and G″ and joining each vertex v′ in G′ to the neighbours of the 
corresponding vertex v″ in G″.  In this paper, we obtain dominator chromatic number of shadow graphs of some 
interesting classes of graphs and also find the dominator chromatic number of path union of graphs.    
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1. PRELIMINARIES 
All graphs considered are simple, finite and undirected graphs.  The order and size of G are denoted by n and m 
respectively.  For graph theoretic terminology, we refer to Harary [4].   
 
A subset D of V is called a dominating set of G if every vertex in V – D is adjacent to at least one vertex in D.  A 
dominating set D is called a minimal dominating set if no proper subset of D is a dominating set.  The domination 
number γ(G) of a graph G is the minimum cardinality of a minimal dominating set in G.    
 
A proper coloring of a graph G is an assignment of colors to the vertices of G in such a way that no two adjacent 
vertices receive the same color.  The chromatic number χ(G), is the minimum number of colors required for a proper 
coloring of G.  A color class is the set of vertices, having the same color.  The color class corresponding to the color i is 
denoted by Ci 
 
A dominator coloring of a graph G is a proper coloring in which every vertex of G dominates every vertex of at least 
one color class.  The convention is that if {v} is a color class, then v dominates the color class {v}.  The dominator 
chromatic number χd (G) is the minimum number of colors required for a dominator coloring of G [1, 3]. 
 
The shadow graph D2 (G) of a connected graph G is constructed by taking two copies of G say G′ and G″ and joining 
each vertex v′ in G′ to the neighbours of the corresponding vertex v″ in G″ [2, 6]. 
 
Let G1, G2… Gn, n ≥ 2 be n copies of a graph G.  The graph G′ obtained by adding an edge between Gi and Gi+1 for i = 
1, 2… n-1 is called path union of G [5]. 
 
2. DOMINATOR COLORING ON SHADOW GRAPHS OF SOME CLASSES OF GRAPHS 
In this section, dominator coloring on shadow graphs of path, cycle, complete, wheel, star graph and bistar graphs are 
consider and their corresponding chromatic numbers are obtained.  

Theorem 2.1: For path Pn of order n ≥ 2, 
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Proof: Let G = D2(Pn) be the shadow graph of path Pn.  Let v1′, v2′, …, vn′ be the vertices of Pn′, the first copy of Pn and 
let v1″, v2″, …, vn″ be the vertices of Pn″, second copy of Pn.   
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Let G = D2(Pn).  Here we note that ⃒V(G)⃒ = 2n and ⃒E(G)⃒ = 4n−4. 
 
We construct a dominator coloring f: V(G)  {1, 2, …, χd[D2(Pn)]} as follows: 
 
Case 1: When n ≤ 11 
 
When n = 3k, k ≥ 2, for each i, i = 3j+1, where 0 ≤ j ≤ k-1, f(vi′) = f(vi″) = f(vi+2′) = f(vi+2″) = 2i / 3 and let f(vi′) = 
f(vi″) = 2i / 3, for each i, i = 3j – 1,  1 ≤ j ≤ k.  When n = 3k+1, k ≥ 2, for each i, i = 3j+1, where 0 ≤ j ≤ k-2, f(vi′) = 
f(vi″) = f(vi+2′) = f(vi+2″) = 2i / 3; for each i, i = 3j – 1,  1 ≤ j ≤ k, f(vi′) = f(vi″) = 2i / 3 and let f(vn-3′) = f(vn-3″) = f(vn-

4′) + 2 = f(vn′) = f(vn″) and f(vn-1′) = f(vn-1″) = f(vn-2′)+1.  When n = 3k+2, k ≥ 1, for each i, i = 3j+1, where 0 ≤ j ≤ k-1, 
f(vi′) = f(vi″) = f(vi+2′) = f(vi+2″) = 2i / 3 and let f(vi′) = f(vi″) = 2i / 3; for each i, i = 3j – 1,  1 ≤ j ≤ k and let  f(vn-1′) 
= f(vn-1″) = f(vn-3′) + 1 and f(vn′) = f(vn″) = f(vn-1′) + 1.    
 
It can be easily verified that χd[D2(Pn)] = 2n / 3 for n = 2, 3 or 4. Hence  χd[D2(Pn)] = 2n / 3 for n ≤ 11.   
 
Case 2: When n ≥ 12 
 
Case 2a: When n = 4k, k ≥ 3 
 
Let f(v1′) = f(v1″) = 1.  For each i, i = 4j, where 1 ≤ j ≤ k, f(vi′) = f(vi″) = 1; for each i, i = 4j+1, where 1 ≤ j ≤ k-1, f(vi′) 
= f(vi″) = 2 and let f(vi′) = f(vi″) = (i/2) + 2 and for each i, i = 4j - 2, where 1 ≤ j ≤ k, f(vi+1′) = f(vi+1″) = (i/2) + 3. 
 
Case 2b: When n = 4k+1, k ≥ 3 
 
Let f(v1′) = f(v1″) = 1 = f(vn′) = f(vn″) .  For each i, i = 4j, where 1 ≤ j ≤ k-1, f(vi′) = f(vi″) = 1; for each i, i = 4j+1, 
where 1 ≤ j ≤ k-1, f(vi′) = f(vi″) = 2 and let f(vi′) = f(vi″) = (i/2) + 2 and for each i, i = 4j - 2, where 1 ≤ j ≤ k, f(vi+1′) = 
f(vi+1″) = (i/2) + 3 and let f(vn-1′) = f(vn-1″) = f(vn-2′)+1. 
 
Case 2c: When n = 4k+2, k ≥ 3 
 
Let f(v1′) = f(v1″) = 1.  For each i, i = 4j, where 1 ≤ j ≤ k, f(vi′) = f(vi″) = 1; for each i, i = 4j+1, where 1 ≤ j ≤ k-1, f(vi′) 
= f(vi″) = 2 and let f(vi′) = f(vi″) = (i/2) + 2 and for each i, i = 4j - 2, where 1 ≤ j ≤ k, f(vi+1′) = f(vi+1″) = (i/2) + 3 and let 
f(vn-1′) = f(vn-1″) = f(vn-3′)+1 and f(vn′) = f(vn″) = f(vn-1′) + 1. 
 
Case 2d: When n = 4k+3, k ≥ 3 
 
Let f(v1′) = f(v1″) = 1.  For each i, i = 4j, where 1 ≤ j ≤ k, f(vi′) = f(vi″) = 1; for each i, i = 4j+1, where 1 ≤ j ≤ k, f(vi′) = 
f(vi″) = 2 and  for each i, i = 4j - 2, where 1 ≤ j ≤ k+1, f(vi′) = f(vi″) = (i/2) + 2 and f(vi+1′) = f(vi+1″) = (i/2) + 3. 
 
Each vertex labeled 1 or 2 dominates some uniquely colored neighbor and each vertex colored k for 3 ≤ k ≤ 3+ n/2 
dominates its own color class.   

Hence  
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Theorem 2.2: The cycle Cn, n ≥ 3 has 
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Proof: The verification of cases 3 ≤ n ≤ 8 is straightforward.  We construct a dominator coloring f: V[D2(Cn)]  {1, 2, 
…, χd [D2(Cn)] }as follows. 
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Case (i): When n = 3k, k ≥ 3 
 
For each i, 0 ≤ i ≤ k-1, f(v3i +1′) = f(v3i +1 ″) = 1; for each i, 0 ≤ i ≤ k-1, f(v3i +2′) = f(v3i +2 ″) = 2; for each i, 1 ≤ i ≤ k, f(v3i 

′) = i+2, and for each i, 1 ≤ i ≤ k, f(v3i ″) =  f(vn ′) + i. 
 
Case (ii): When n = 3k+1, k ≥ 3 
 
For each i, 0 ≤ i ≤ k-1,  f(v3i +1′) = f(v3i +1 ″) = 1; for each i, 0 ≤ i ≤ k-1, f(v3i +2′) = f(v3i +2 ″) = 2; for each i, 1 ≤ i ≤ k, f(v3i 

′) = i+2, let f(vn-1″) = f(vn-1′), let f(vn′) = f(vn-1′)+1 and  let f(vn′) = f(vn″).  Let f(v3i ″) =  f(vn ′) + i, for each i, 1 ≤ i ≤ k-1. 
 
Case (iii): When n = 3k+2, k ≥ 3 
 
For each i, 0 ≤ i ≤ k, f(v3i +1′) = f(v3i +1 ″) = 1; for each i, 0 ≤ i ≤ k-1, f(v3i +2′) = f(v3i +2 ″) = 2; for each i, 1 ≤ i ≤ k, f(v3i ′) 
= i+2 and let f(vn′) = f(vn-2′)+1 and f(vn-1′) =f(vn-1″) and for each i, 1 ≤ i ≤ k, f(v3i ″) =  f(vn ′) + i and let f(vn″) = f(vn-

2″)+1. 
 
For n ≥ 8, each vertex labeled 1 or 2 dominates some uniquely colored neighbor and each vertex colored k for 3 ≤ k ≤ 
2+ 2n / 3 dominates its own color class.  
 

Hence 
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Example: 2.3 The dominator coloring of D2 (C8) is shown in the following figure 1. 

 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure: 1 
 
The color classes of D2(C8) are C1 = {v1′, v4′, v7′, v1″,  v4″, v7″}, C2 = {v2′, v5′, v2″, v5″}, C3 = {v3′}, C4 = {v6′}, C5 = {v8′}, 
C6 = {v3″}, C7 = {v6″} and C8 = {v8″}.  Therefore χd[D2(C8)] = 8. 
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Theorem: 2.4 The wheel graph W1, n, n ≥ 3 has 
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Proof: Let D2(W1, n) be a shadow graph of wheel.  Let the vertices of D2(W1, n), n ≥ 3 be labeled as follows.  Let v1′, v2′, 
…, vn′ be the vertices of W1, n′, the first copy of W1, n and let v1″, v2″, …, vn″ be the vertices of W1, n″, second copy of 
W1, n, where the vertices at the centre of two copies of W1, n are labeled by v1′ and v1″.  The vertices on the rim of W1, n′ 
and W1, n″ be labeled consecutively by v2′, …, vn′ and v2″, …, vn″.   
 
A dominator coloring of D2(W1, n) is by coloring the centre vertices v1′ and v1″ by color 1 and coloring the vertices in 
the rim alternatively by 2 and 3 from the vertex v2′ and v2″.  When n is odd, the vertices vn-2′ and vn-2″ receive color 2, 
the vertices vn-1′ and vn-1″ receive color 3 and the vertices vn′ and vn″ receive color 4 respectively.  When n is even, the 
vertices vn-1′ and vn-1″ receive color 2 and the vertices vn′ and vn″ receive color 3 respectively.  The centre vertices v1′ 
and v1″ dominate themselves, the remaining vertices on the rim of W1, n′ and W1, n″ dominate the color class 1.  Hence  
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Theorem: 2.5 
(1) The star K1, n has χ d[D2(K1, n)] = 2 for all n ≥ 2. 
(2) The bistar Bm, n has χ d[D2(Bm, n)] = 3 for all m, n ≥ 1. 
(3) The complete graph Kn has χd [D2(K n)] = n for all n ≥ 2. 
 
Proof: 
(1) Since χ d[D2(K1, n)] ≥ χ [D2(K1, n)], the result follows. 
(2) Let G = D2(Bm, n) be a shadow graph of bistar.  Let V(G) =X1 ∪ X2 ∪ Y1 ∪ Y2, where  X1= {u1, u1′}, Y1 = {u2, u2′},  
 
X2 = {v1, v2, …, vm, v1′, v2′, …, vm′} and Y2 = {w1, w2, …, wn, w1′, w2′, …, wn′}.  Consider a proper coloring of G in 
which V1 = X2 ∪ Y2, V2 = X1 and V3 = Y1.  Each vertex in the set X2 dominates the color class V2, each vertex in the 
set Y2 dominate the color class V3, each vertex in the set X1 dominate the color class V3 and each vertex in the set Y1 
dominate the color class V2.  Therefore this is a dominator coloring and χ d[D2(Bm, n)] ≤ 3.   
 
Now we construct a different proper coloring in which V1 = Y1 ∪ X2 and V2 = X1 ∪ Y2.  This is not a dominator 
coloring, since, for example, the vertex xi, 1 ≤ i  ≤ m does not dominate a color class.  But this is the only proper 
coloring of G using two colors.  Thus χd[D2(Bm, n)] > 2, hence the result. 
 
(3) A dominator coloring of D2 (Kn) is by coloring its vertices by colors 1, 2,, n respectively.Therefore χd [D2 (K n)] = n. 
 
3. DOMINATOR COLORING ON PATH UNION OF GRAPHS 
In this section, dominator chromatic number of path union of graphs is obtained. 
 
Theorem: 3.1 Let G be a connected graph of order n.  Then χd[P(mG)] = m+n-1 if and only if G = Kn for n ∈ N, where 
P(mG) denotes the path union of m copies of G. 
 
Proof: Let G be a connected graph of order n with χd[P(mG)] = m+n-1.  Assume the contrary that G ≠ Kn.  Thus, there 
are at least two non-adjacent vertices, say x and y.  Define a coloring of G such that x and y receive the same color, and 
each of the remaining vertices receive unique color.  This is a dominator coloring, and so χd[P(G)] < m+n-1, which is a 
contradiction.   
 
Thus G = Kn.  
 
The converse part is obvious.   
 
Example: 3.2 In figure 3, Path union of 3 copies of K5 is depicted with a dominator coloring.  
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Figure: 3 
 
The color classes of P(3K5) are C1 = {u1}, C2 = {u2, v2, w2}, C3 = {u3, v3, w3}, C4 = { u4, v4, w4}, C5 = { u5, v5, w5}, C6 
= {v1} and C7 = {w1}.Therefore χd[P(3K5)] = 7.   
 
Theorem 3.3: Let G be a connected graph of order n.  Then χd[P(mG)] ≤ m[χd(G)], where G ≠ Kn, n ∈ N and P(mG) 
denotes the path union of m copies of G. 
 
Proof: Let G be a connected graph with χd- colors.  In P(mG), let the m copies of G be colored with disjoint χd- colors.  
This coloring in P(mG) with m(χd) is already a dominator coloring.  Therefore dominator chromatic number of P(mG), 
which is the minimum number of colors required dominator coloring, is less than or equal to m(χd). 
 
The bound in the above Theorem is sharp, because: 
(i) χd[P(mC4)] = m[χd(C4)] = 2m.  
(ii) χd[P(m(Kn-e))] < mχd(Kn-e), n ≥ 2.   
 
OBSERVATION 
For a connected graph G, n ≥ 2, χd[D2(G)] ≥ χd(G) ≥ χ(G). 
 
Strict inequality as well as equality in observation is possible.  As by Theorem 2.2, χd[D2(Cn)] > χd(Cn) > χ(Cn), where 
n ≥ 8 and χd[D2(K1, n)] = χd(K1, n) = χ(K1, n), n ≥ 2.  Therefore the bound in the observation is sharp.  
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