ON SOME TOPOLOGIES INDUCED
 BY BI ${ }^{+}$OPEN SETS IN SIMPLE EXTENSION IDEAL TOPOLOGICAL SPACES

${ }^{1}$ T. Noiri
${ }^{1}$ 869-5142, Shiokita-cho, Hinagu, Yatsushiro-shi, Kumamoto-ken, Japan
${ }^{2}$ I. Arockiarani
${ }^{2}$ Department of Mathematics, Nirmala College for women, Coimbatore, India
${ }^{3}$ F. Nirmala Irudayam*
${ }^{3}$ Department of Mathematics with Computer Applications, Nirmala College for Women, Coimbatore, India

(Received on: 25-10-12; Accepted on: 18-01-13)

Abstract

This paper aims at extending the idea of bI open sets in Simple Extension ideal topological spaces. Here we introduce the new concept of $\Omega_{b}{ }^{+*}$ and ${\mho_{b}}^{+*}$ sets via bI^{+}open and $b I^{+}$closed sets in simple extension ideal topological spaces.

1. INTRODUCTION

A new class of generalized open sets called b- open sets in topological spaces was defined by Andrijevic [8]. This type of sets was discussed by El Atik [13] under the name of γ open sets. The class of all b open sets generates the same topology as the class of all pre-open sets. In 1986, Maki [24] introduced the concept of generalized Λ sets and defined the associated closure operators by using the work of Levine [22] and Dunhem [12]. Caldas and Dontchev [9] introduced $\Lambda_{s} s e t s, V_{s}$ sets, $g V_{s}$ sets and $g \Lambda_{s}$ sets. Ganster and et al. [14] introduced the notion of pre Λ sets and pre \vee sets and obtained new topologies via these sets. M.E. Abd El-Monsef et al. [3] defined $\mathrm{b} \Lambda$ sets and $\mathrm{b} v$ sets on a topological space and proved that it forms a topology. In 1963 Levine [23] introduced the concept of a simple extension of a topology τ as $\tau(\mathrm{B})=\left\{(\mathrm{B} \cap \mathrm{O}) \cup \mathrm{O}^{\prime} / \mathrm{B} \notin \tau\right\}$. The concept of I open sets in ideal topological spaces were introduced by Jankovic and Hamlett [18], [19]. Further Abd El-Monsef et al. [2] investigated I open sets and I continuous functions. Dontchev [11] introduced the notion of pre I open sets and obtained a decomposition of I continuity. The notion of semi I open sets to obtain decomposition of continuity was introduced by Hatir and Noiri [16], [17]. In addition to this, Casksu Guler and Aslim [10] have introduced the concept of bI sets and bI continuous functions and futher research was done by Metin Akdag [28] on these sets. Nirmala and I. Arockiarani [30] have introduced the concept of bI open sets in the light of simple expansion topology. Using the above defined bI^{+}sets in simple extended ideal topological space (SEITS), we introduce the notion of $\Omega_{\mathrm{b}}{ }^{+*}$ sets and $\mho_{\mathrm{b}}{ }^{+*}$ sets in SEITS and study their properties. We also introduce $\Omega_{\mathrm{b}}{ }^{+*}$ functions and $\mho_{\mathrm{b}}{ }^{+*}$ functions and investigate some of its properties.

2. PRELIMINARIES

All through the paper the space X is a SEITS in which no separation axioms are assumed unless and otherwise stated. For any subset A of X , the interior of A is the same as the interior in usual topology and the closure of A is newly defined as a combination of the local function [30] in ideal topology and simple extension. In SEITS the new local function [30] is defined as $\mathrm{A}^{+^{*}}=\left\{\mathrm{x} \in \mathrm{X} / \mathrm{U} \cap \mathrm{A} \notin \mathrm{I}\right.$ for each neighbourhood U of x in $\left.\tau^{+}\right\}$and $\mathrm{cl}^{+^{*}}(\mathrm{~A})=\mathrm{A} \cup \mathrm{A}^{+*}$. Also $\tau^{+^{*}}=$ $\left\{\mathrm{V} / \mathrm{cl}^{+^{*}}(\mathrm{X} \backslash \mathrm{V})=\mathrm{X} \backslash \mathrm{V}\right\}$, where $\tau^{+} \subseteq \tau^{+^{*}}$.

Definition 2.1: A subset A of a topological space X is said to be
(1) α - open [29] if $A \subseteq \operatorname{int}(\operatorname{cl}(\operatorname{int}(A)))$,
(2) semi-open [22] if $\mathrm{A} \subseteq \operatorname{cl}(\operatorname{int}(\mathrm{A}))$,
(3) preopen [25] if $A \subseteq \operatorname{int(cl(A)),~}$
(4) β-open $[26]$ if $A \subseteq \operatorname{cl}(\operatorname{int}(\operatorname{cl}(A)))$,
(5) b-open [8][13] if $A \subseteq \operatorname{int}(c l(A)) \cup \operatorname{cl}(\operatorname{int}(A))$.

[^0]The class of all semi-open (resp. pre-open, α-open) sets in X are denoted by $\mathrm{SO}(\mathrm{X}, \tau)$ (resp. $\mathrm{PO}(\mathrm{X}, \tau), \alpha \mathrm{O}(\mathrm{X}, \tau)$)
Definition 2.2: A subset A of X in SEITS ($\mathrm{X}, \tau^{+}, \mathrm{I}$) is said to be
(1) $\alpha \mathrm{I}^{+}$open [30] if $\mathrm{A} \subseteq \operatorname{int}\left(\mathrm{cl}^{+*}(\operatorname{int}(\mathrm{~A}))\right)$,
(2) semiI ${ }^{+}$open [30] if $\mathrm{A} \subseteq \mathrm{cl}^{+*}(\operatorname{int}(\mathrm{~A}))$,
(3) pre I^{+}open [30] if $A \subseteq \operatorname{int(cl^{+*}(A))\text {,}}$
(4) $\beta \mathrm{I}^{+}$open [30] if $\mathrm{A} \subseteq \mathrm{cl}^{+*}\left(\operatorname{int}\left(\mathrm{cl}^{+*}(\mathrm{~A})\right)\right)$,
(5) BI^{+}open [30] if $\mathrm{A} \subseteq \operatorname{int}\left(\mathrm{cl}^{+^{*}}(\mathrm{~A})\right) \cup \mathrm{cl}^{+^{+}}(\operatorname{int}(\mathrm{A}))$.

The class of all semiI ${ }^{+}$open (resp. preI ${ }^{+}$-open, $\alpha \mathrm{I}^{+}$open) sets in X are denoted by $\mathrm{SI}^{+} \mathrm{O}\left(\mathrm{X}, \tau^{+}, \mathrm{I}\right)\left(\right.$ resp. $\mathrm{PI}^{+} \mathrm{O}\left(\mathrm{X}, \tau^{+}, \mathrm{I}\right)$, $\left.\alpha \mathrm{I}^{+} \mathrm{O}\left(\mathrm{X}, \tau^{+}, \mathrm{I}\right)\right)$

The complements of these sets are called semiI ${ }^{+}$closed (resp. preI ${ }^{+}$-closed, $\alpha \mathrm{I}^{+}$closed) sets in X and are denoted by $\mathrm{SI}^{+} \mathrm{C}\left(\mathrm{X}, \tau^{+}, \mathrm{I}\right)\left(\right.$ resp. $\mathrm{PI}^{+} \mathrm{C}\left(\mathrm{X}, \tau^{+}, \mathrm{I}\right), \alpha \mathrm{I}^{+} \mathrm{C}\left(\mathrm{X}, \tau^{+}, \mathrm{I}\right)$)

Definition 2.3: A topological space (X, τ) is said to be resolvable [15] if there is a subset A of X such that A and (X-A) are both dense in X .

3. $\Omega \mathbf{b}^{+*}$ SETS

In this section we introduce the new idea of $\Omega_{\mathrm{b}}{ }^{+*}$ (resp. $\mho_{\mathrm{b}}{ }^{+*}$) sets via the concept of bI open sets under simple extension topology.

Definition 3.1: Let (X, τ^{+}, I) be a simple extension ideal topological space (SEITS) and A a subset of X . We define $\Omega_{\mathrm{b}}{ }^{+*}(\mathrm{~A})$ and $\mho_{\mathrm{b}}{ }^{+*}(\mathrm{~A})$ as follows,
a) $\Omega_{\mathrm{b}}{ }^{+*}(\mathrm{~A})=\cap\left\{\mathrm{G}: \mathrm{A} \subseteq \mathrm{G}, \mathrm{G} \in \mathrm{BI}^{+} \mathrm{O}\left(\mathrm{X}, \tau^{+}, \mathrm{I}\right)\right\}$,
b) $\mho_{b}{ }^{+*}(\mathrm{~A})=U\left\{\mathrm{~F}: \mathrm{F} \subseteq \mathrm{A}, \mathrm{F} \in \mathrm{BI}^{+} \mathrm{C}\left(\mathrm{X}, \tau^{+}, \mathrm{I}\right)\right\}$.

The class of all bI^{+}open (resp. bI^{+}closed) sets of a SEITS $\left(\mathrm{X}, \tau^{+}, \mathrm{I}\right)$ is denoted by $\mathrm{BI}^{+} \mathrm{O}\left(\mathrm{X}, \tau^{+}, \mathrm{I}\right)\left(\right.$ resp. $\mathrm{BI}{ }^{+} \mathrm{C}\left(\mathrm{X}, \tau^{+}, \mathrm{I}\right)$).
Example 3.2: Let $X=\{a, b, c\}, \tau=\{X, \phi,\{a\},\{a, b\}\}, I=\{\phi,\{b\}\}$ and $B=\{b\}$. Then $\tau^{+}(B)=\{X, \phi,\{a\},\{b\},\{a, b\}\}$, $\tau^{+*}=\{X, \phi,\{a\},\{b\},\{a, b\},\{a, c\}\}$.

Here $\mathrm{BI}^{+} \mathrm{O}\left(\mathrm{X}, \tau^{+}, \mathrm{I}\right)=\{\mathrm{X}, \phi,\{\mathrm{a}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{c}\}\}$ and $\mathrm{BI}^{+} \mathrm{C}\left(\mathrm{X}, \tau^{+}, \mathrm{I}\right)=\{\mathrm{X}, \phi,\{\mathrm{b}\},\{\mathrm{c}\},\{\mathrm{b}, \mathrm{c}\}\}$.
Here $\Omega_{\mathrm{b}}{ }^{{ }^{*}}(\mathrm{a})=\{\mathrm{a}\} ; \Omega_{\mathrm{b}}{ }^{+*}(\mathrm{~b})=\{\mathrm{a}, \mathrm{b}\} ; \boldsymbol{\Omega}_{\mathrm{b}}{ }^{+*}(\mathrm{c})=\{\mathrm{a}, \mathrm{c}\} ; \Omega_{\mathrm{b}}{ }^{+*}(\mathrm{a}, \mathrm{b})=\{\mathrm{a}, \mathrm{b}\} ; \boldsymbol{\Omega}_{\mathrm{b}}{ }^{{ }^{*}}(\mathrm{a}, \mathrm{c})=\{\mathrm{a}, \mathrm{c}\} ; \boldsymbol{\Omega}_{\mathrm{b}}{ }^{+*}(\mathrm{~b}, \mathrm{c})=$ X. Also $\mho_{b}{ }^{+*}(a)=\{\phi\} ; \mho_{b}{ }^{+*}(b)=\{b\} ; \mho_{b}{ }^{+*}(c)=\{c\} ; \mathcal{U}_{b}^{+*}(a, b)=\{b\} ; \mho_{b}{ }^{+*}(a, c)=\{c\} ; \mho_{b}^{+*}(b, c)=\{b, c\}$.

Lemma 3.3: For subsets A, B and $\mathrm{Ai}(\mathrm{i} \in \mathrm{I})$ of a space ($\left.\mathrm{X}, \tau^{+}, \mathrm{I}\right)$, the following properties hold:
i) $\mathrm{A} \subseteq \Omega_{\mathrm{b}}{ }^{+*}(\mathrm{~A})$,
ii) If $\mathrm{A} \subseteq \mathrm{B}$, then $\Omega_{\mathrm{b}}{ }^{+*}(\mathrm{~A}) \subseteq \Omega_{\mathrm{b}}{ }^{+*}(\mathrm{~B})$,
iii) $\Omega_{\mathrm{b}}^{{ }^{+*}}\left(\Omega_{\mathrm{b}}{ }^{+*}(\mathrm{~A})\right)=\Omega_{\mathrm{b}}{ }^{+*}(\mathrm{~A})$,
iv) If $\mathrm{A} \in \mathrm{BI}^{+} \mathrm{O}\left(\mathrm{X}, \tau^{+}, \mathrm{I}\right)$, then $\mathrm{A}=\Omega_{\mathrm{b}}{ }^{+*}(\mathrm{~A})$,
v) $\Omega_{\mathrm{b}}{ }^{+*}\left(\mathrm{U}\left\{\mathrm{A}_{\mathrm{i}}: \mathrm{i} \in \mathrm{I}\right\}\right)=\mathrm{U}\left\{\Omega_{\mathrm{b}}{ }^{+*}\left(\mathrm{~A}_{\mathrm{i}}\right): \mathrm{i} \in \mathrm{I}\right\}$,
vi) $\Omega_{b}{ }^{+*}\left(\cap\left\{A_{i} i \in I\right\}\right) \subseteq \cap\left\{\Omega_{b}{ }^{+*}\left(A_{i}\right): i \in I\right\}$,
vii) $\Omega_{\mathrm{b}}{ }^{+*}(\mathrm{X} \backslash \mathrm{A})=\mathrm{X} \backslash{U_{\mathrm{b}}}^{+*}(\mathrm{~A})$.

Proof: (i), (ii), (iv), (vi), (vii): These are immediate consequences of the Definition 3.1(a).
(iii): We know from Definition 3.1(a) $\Omega_{\mathrm{b}}^{{ }^{+*}(\mathrm{~A}) \subseteq \Omega_{\mathrm{b}}{ }^{+*}\left(\Omega_{\mathrm{b}}{ }^{+*}(\mathrm{~A}) \text {). Now we prove the converse inclusion } \Omega_{\mathrm{b}}{ }^{+*}\left(\Omega_{\mathrm{b}}{ }^{+*}(\mathrm{~A}), ~\right.\right.}$ $) \subseteq \Omega_{\mathrm{b}}{ }^{+*}(\mathrm{~A})$. Let us consider $\mathrm{x} \notin \Omega_{\mathrm{b}}{ }^{+*}(\mathrm{~A})$, then there exists a $\mathrm{G} \in \mathrm{BI}{ }^{+} \mathrm{O}\left(\mathrm{X}, \tau^{+}, \mathrm{I}\right)$ such that $\mathrm{A} \subseteq \mathrm{G}$, and $\mathrm{x} \notin \mathrm{G}$. By (ii) and (iv), $\Omega_{\mathrm{b}}{ }^{+*}(\mathrm{~A}) \subseteq \Omega_{\mathrm{b}}^{{ }^{+*}}(\mathrm{G})=\mathrm{G}$. Since $\Omega_{\mathrm{b}}{ }^{+*}\left(\Omega_{\mathrm{b}}{ }^{+*}(\mathrm{~A})\right)=\cap\left\{\mathrm{G}: \Omega_{\mathrm{b}}{ }^{+*}(\mathrm{~A}) \subseteq \mathrm{G}, \mathrm{G} \in \mathrm{BI}{ }^{+} \mathrm{O}\left(\mathrm{X}, \tau^{+}, \mathrm{I}\right)\right\}$, consequently we have $\mathrm{x} \notin \Omega_{\mathrm{b}}{ }^{+*}\left(\Omega_{\mathrm{b}}{ }^{+*}(\mathrm{~A})\right)$. Therefore, we have $\Omega_{\mathrm{b}}{ }^{+^{*}}\left(\Omega_{\mathrm{b}}{ }^{+*}(\mathrm{~A})\right) \subseteq \Omega_{\mathrm{b}}{ }^{+*}(\mathrm{~A})$ and hence $\Omega_{\mathrm{b}}{ }^{+*}\left(\Omega_{\mathrm{b}}{ }^{+*}(\mathrm{~A})\right)=\Omega_{\mathrm{b}}^{{ }^{+*}}(\mathrm{~A})$.
(v): Let $A=U\left\{A_{i}: i \in I\right\}$. Since $A_{i} \subseteq A$, by (ii) we have $\Omega_{b}{ }^{+*}\left(A_{i}\right) \subseteq \Omega_{b}{ }^{+*}(A)$ and hence $u\left\{\Omega_{b}{ }^{+*}\left(A_{i}\right): i \in I\right\} \subseteq \Omega_{b}{ }^{+*}(A)$.

Conversely, if $x \notin \cup\left\{\Omega_{b}{ }^{+*}\left(A_{i}\right): i \in I\right\}$, then for each $i \in I$, there exists $G_{i} \in B I{ }^{+} O\left(X, \tau^{+}, I\right)$ such that $A_{i} \subseteq G_{i}$, and $x \notin$ G_{i}. If $G=U\left\{G_{i}: i \in I\right\}$, then $G \in B I^{+} O\left(X, \tau^{+}, I\right)$ such that $A \subseteq G$ and $x \notin G$. Hence $x \notin \Omega_{b}{ }^{+*}(A)$ and hence (v) holds.

By using Lemma 3.3 (vii), we can easily verify the next result.
Lemma 3.4: Let $\left(X, \tau^{+}, I\right)$ be a SEITS. Let A, B and $\left\{A_{i}\right.$: $\left.i \in I\right\}$ be subsets of X. Then the following properties hold:
i) ${\mho_{b}}^{+*}(A) \subseteq A$,
ii) If $\mathrm{A} \subseteq \mathrm{B}$, then $\mho_{\mathrm{b}}{ }^{+*}(\mathrm{~A}) \subseteq \mho_{\mathrm{b}}{ }^{+*}(\mathrm{~B})$,
iii) $\mho_{b}^{+*}\left(\mho_{b}^{+*}(A)\right)=\mho_{b}^{+*}(A)$,
iv) If $A \in B I{ }^{+} C\left(X, \tau^{+}, I\right)$, then $A=\mho_{b}{ }^{+*}(A)$,

vi) $\cup\left\{\mho_{b}{ }^{+*}\left(A_{i}\right): i \in I\right\} \subseteq \mho_{b}{ }^{+*}\left\{U\left\{A_{i}: i \in I\right\}\right\}$.

Remark 3.5: In general, for any subsets $\mathrm{A}, \mathrm{B} \in\left(\mathrm{X}, \tau^{+}, \mathrm{I}\right), \Omega_{\mathrm{b}}{ }^{+*}(\mathrm{~A} \cap \mathrm{~B}) \neq \Omega_{\mathrm{b}}{ }^{+*}(\mathrm{~A}) \cap \Omega_{\mathrm{b}}{ }^{+*}(\mathrm{~B})$ and $\mho_{\mathrm{b}}{ }^{+*}(\mathrm{~A} \cup \mathrm{~B}) \neq{\mho_{\mathrm{b}}{ }^{+*}}^{*}$ (A) $\cup \mho_{b}{ }^{+*}(B)$ as noted in the following example.

Example 3.6: Let $X=\{a, b, c\}, \tau=\{X, \phi,\{a\},\{a, b\}\}, I=\{\phi,\{b\}\}$ and $B=\{b\}$, then $\tau^{+}(B)=\{X, \phi,\{a\},\{b\},\{a, b\}\}$. Let $\mathrm{A}=\{\mathrm{a}\}$ and $\mathrm{B}=\{\mathrm{c}\}$, here $\Omega_{\mathrm{b}}{ }^{+*}(\mathrm{~A} \cap \mathrm{~B}) \neq \Omega_{\mathrm{b}}{ }^{+*}(\mathrm{~A}) \cap \Omega_{\mathrm{b}}{ }^{+*}(\mathrm{~B})$. When $\mathrm{A}=\{\mathrm{a}\} ; \mathrm{B}=\{\mathrm{b}, \mathrm{c}\}$, then $\mho_{\mathrm{b}}{ }^{+*}(\mathrm{~A} \cup \mathrm{~B}) \neq \mho_{\mathrm{b}}{ }^{+*}(\mathrm{~A}) \cup \mho$ ${ }^{b^{*}}(\mathrm{~B})$.
 The family of all $\Omega_{\mathrm{b}}{ }^{+*}$ sets (resp. $\mho_{\mathrm{b}}{ }^{+*}$ sets) is denoted as $\Omega_{\mathrm{b}}{ }^{+*}$ [resp. $\left.\mho_{\mathrm{b}}{ }^{+*}\right]$.

Example 3.8: Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \tau=\{\mathrm{X}, \phi,\{\mathrm{a}\},\{\mathrm{a}, \mathrm{b}\}\}, \mathrm{I}=\{\phi,\{\mathrm{b}\}\}$ and $\mathrm{B}=\{\mathrm{b}\}$. Then $\tau^{+}(\mathrm{B})=\{\mathrm{X}, \phi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\}\}, \Omega_{\mathrm{b}}{ }^{+*}$ $=\{X, \phi,\{a\},\{a, c\},\{a, b\}\}$ and $\mho_{b}^{+*}=\{X, \phi,\{b\},\{c\},\{b, c\}\}$.

Proposition 3.9: In a SEITS $\left(\mathrm{X}, \tau^{+}, \mathrm{I}\right), \Omega_{\mathrm{b}}{ }^{+*}\left(\right.$ resp. $\left.\mho_{\mathrm{b}}{ }^{+*}\right)$ is a topology for X .
Proof: It is obvious from Definition 3.1 that X and ϕ are $\Omega_{b}{ }^{+*}$ sets. Let $A_{i} \in \Omega_{b}{ }^{+*}$ for each $i \in I$. By Lemma $3.3, \Omega_{b}{ }^{+*}(\cap$ $\left.{ }_{i \in I} A_{i}\right) \subseteq \cap_{i \in I} \Omega_{b}{ }^{+*}\left(A_{i}\right)=\cap_{i \in I} A_{i}$ and hence $\Omega_{b}{ }^{+*}\left(\cap_{i \in I} A_{i}\right)=\cap_{i \in I} A_{i}$. Therefore $\cap_{i \in I} A_{i} \in \Omega_{b}{ }^{+*}$. Let $\left\{A_{i}: i \in I\right\}$ be a family of $\Omega_{b}{ }^{+*}$ sets in (X, $\left.\tau^{+}, \mathrm{I}\right)$.Then by Lemma 3.3, $\cup_{i \in I} A_{i}=\cup_{i \in I} \Omega_{b}^{+*}\left(A_{i}\right)=\Omega_{b}{ }^{+*}\left(\cup_{i \in I} A_{i}\right)$.

This implies that the union of $\Omega_{\mathrm{b}}{ }^{+*}$ sets is also an $\Omega_{\mathrm{b}}{ }^{+*}$ set.
Hence the family of $\Omega_{\mathrm{b}}{ }^{+*}$ sets forms a topology for X.
Proposition 3.10: In a space $\left(\mathrm{X}, \Omega_{\mathrm{b}}{ }^{+*}\right)$ the following statements are verified.

1) If every subset A of X is nowhere dense in (X, τ), then $\Omega_{b}{ }^{+*}=\Omega_{s}{ }^{+*}$, where $\Omega_{s}{ }^{+*}(\mathrm{~A})=\left\{\mathrm{A} \subset \mathrm{X}: \Omega_{\mathrm{s}}{ }^{+*}(\mathrm{~A})=\mathrm{A}\right\}$ and $\Omega_{\mathrm{s}}^{+^{*}}(\mathrm{~A})=\cap\left\{\mathrm{G}: \mathrm{A} \subseteq \mathrm{G}, \mathrm{G} \in \mathrm{SI}^{+} \mathrm{O}\left(\mathrm{X}, \tau^{+}, \mathrm{I}\right)\right\}$.
2) If (X, τ^{+}, I) is an indiscrete space, then each $\Omega_{\mathrm{b}}{ }^{+*}$ set is a preI ${ }^{+} \Omega$ set but not a semiI Ω^{+}set.

Proof: 1) Since every subset A is nowhere dense in (X, τ), we have $\operatorname{Int}\left(\mathrm{cl}^{+*}(\mathrm{~A})\right)=\phi$ for all A . Then $\mathrm{BI}^{+} \mathrm{O}\left(\mathrm{X}, \tau^{+}, \mathrm{I}\right)=$ $\mathrm{SI}^{+} \mathrm{O}\left(\mathrm{X}, \tau^{+}, \mathrm{I}\right)$ and hence $\Omega_{\mathrm{b}}{ }^{+*}(\mathrm{~A})=\Omega_{\mathrm{s}}{ }^{+*}(\mathrm{~A})$ for every A of X . Hence $\Omega_{\mathrm{b}}{ }^{+*}=\Omega_{\mathrm{s}}{ }^{+*}$.
2) This is obvious, since each bI^{+}open set in indiscrete space is a preI ${ }^{+}$open set but not a semiI ${ }^{+}$open set.

Definition 3.11: A space ($\mathrm{X}, \tau^{+}, \mathrm{I}$) is called a $\mathrm{b}^{+*} \mathrm{~T}_{1}$ space if for each pair of distinct points x and y of X , there exist two bI^{+}open sets U and V such that $\mathrm{x} \in \mathrm{U}, \mathrm{y} \notin \mathrm{U}$ and $\mathrm{y} \in \mathrm{V}, \mathrm{x} \notin \mathrm{V}$.

Theorem 3.12: For a space ($\mathrm{X}, \tau^{+}, \mathrm{I}$), the following properties are equivalent:

1) $\left(X, \tau^{+}, I\right)$ is $b^{+*} T_{1}$;
2) For each $x \in X,\{x\}$ is bI^{+}closed;
3) For each $x \in X,\{x\}$ is an $\Omega_{b}{ }^{+*}$ set;
4) For each subset A of X, A is an $\Omega_{b}{ }^{+*}$ set.

Proof: (1) $\Rightarrow \mathbf{(2)}$: Let y be any point of $X-\{x\}$.There exists a bI ${ }^{+}$open set V_{y} such that $x \notin V_{y}$ and $y \in V_{y}$.
Hence $X-\{x\}=\cup\left\{V_{y} ; y \in X-\{x\}\right\}$ and hence $X-\{x\}$ is bI^{+}open.
Therefore, $\{\mathrm{x}\}$ is bI^{+}closed.
(2) \Rightarrow (3): Let x be any point of X and $y \in X-\{x\}$. By (2), $X-\{y\}$ is bI^{+}open and $x \in X-\{y\}$.By Lemma $3.3, \Omega_{b}{ }^{+*}(\{x\}) \subset$ $\mathrm{X}-\{\mathrm{y}\}$ and hence $\Omega_{\mathrm{b}}{ }^{+*}(\{\mathrm{x}\})=\{\mathrm{x}\}$. Therefore, $\{\mathrm{x}\}$ is an $\Omega_{\mathrm{b}}{ }^{+*}$ set.
(3) $\Rightarrow \mathbf{(4)}$: Let A be any subset of X . By (3) and Lemma $3.3, \Omega_{\mathrm{b}}{ }^{+^{*}}(\mathrm{~A})=\Omega_{\mathrm{b}}{ }^{{ }^{*}}(\cup\{\mathrm{x} / \mathrm{x} \in \mathrm{A}\})=\cup\left\{\Omega_{\mathrm{b}}{ }^{+*}\{\mathrm{x}\} / \mathrm{x} \in \mathrm{A}\right\}=\cup\{\mathrm{x} / \mathrm{x}$ $\in \mathrm{A}\}=\mathrm{A}$. Therefore, A is an $\Omega_{\mathrm{b}}{ }^{+*}$ set.
(4) $\Rightarrow \mathbf{(1) : ~ L e t ~} \mathrm{x}$ and y be any distinct points.Then $\mathrm{y} \notin \Omega_{\mathrm{b}}{ }^{+*}(\{\mathrm{x}\})=\{\mathrm{x}\}$ and there exists a bI ${ }^{+}$open set U_{x} such that $\mathrm{y} \notin$ U_{x} and $\mathrm{x} \in \mathrm{U}_{\mathrm{x}}$. Similarly $\mathrm{x} \notin \Omega_{\mathrm{b}}{ }^{+*}(\{y\})$ and there exists a bI ${ }^{+}$open set U_{y} such that $\mathrm{y} \in \mathrm{U}_{\mathrm{y}}$ and $\mathrm{x} \notin \mathrm{U}_{\mathrm{y}}$. This shows that $\left(\mathrm{X}, \tau^{+}, \mathrm{I}\right)$ is $\mathrm{b}^{+*} \mathrm{~T}_{1 .}$.

Proposition 3.13: A SEITS $\left(\mathrm{X}, \tau^{+}, \mathrm{I}\right)$ is $\mathrm{b}^{+*} \mathrm{~T}_{1}$ if and only if $\left(\mathrm{X}, \Omega_{\mathrm{b}}{ }^{+*}\right)$ is a discrete space.
Proof: Let $\left(\mathrm{X}, \tau^{+}, \mathrm{I}\right)$ be $\mathrm{b}^{+*} \mathrm{~T}_{1}$ and $\mathrm{x} \in \mathrm{X}$. Then, by Theorem 3.12, $\{\mathrm{x}\}$ is an $\Omega_{\mathrm{b}}{ }^{+*}$ set and $\{\mathrm{x}\}$ is open in (X $\Omega \mathrm{b}^{{ }^{+*}}$). Therefore $\left(\mathrm{X}, \Omega_{\mathrm{b}}{ }^{+*}\right)$ is a discrete space. Conversely, suppose that $\left(\mathrm{X}, \Omega_{\mathrm{b}}{ }^{+*}\right)$ is a discrete space. For any point $\mathrm{X} \in \mathrm{X},\{\mathrm{x}\}$ is an $\Omega_{\mathrm{b}}{ }^{+*}$ set. By Theorem 3.12, $\left(\mathrm{X}, \tau^{+}, \mathrm{I}\right)$ is $\mathrm{b}^{+*} \mathrm{~T}_{1}$.

Definition 3.14: The space (X, τ^{+}, I) is said to be resolvable in SEITS if it is the union of two disjoint dense subsets.
Proposition 3.15: If $\left(\mathrm{X}, \tau^{+}, \mathrm{I}\right)$ is resolvable in SEITS, then $\left(\mathrm{X}, \Omega_{\mathrm{b}}{ }^{+*}\right)$ and $\left(\mathrm{X},{\mho_{\mathrm{b}}}^{+*}\right)$ are discrete.
Proof: We shall show that $\left(\mathrm{X}, \tau^{+}, \mathrm{I}\right)$ is $\mathrm{b}^{+*} \mathrm{~T}_{1 .}$. Consider $\left(\mathrm{X}, \tau^{+}, \mathrm{I}\right)$ to be resolvable in SEITS
i.e.: $X=D U E$, where D and E are disjoint dense subsets of $\left(X, \tau^{+}, I\right)$.

Let $x \in X$, say $x \in D$ then $X \backslash\{x\}=E \cup[D \backslash\{x\}]$ is dense in $\left(X, \tau^{+}, I\right)$. Hence $X-\{x\}$ is a preI I^{+}open and hence $\{x\}$ is preI ${ }^{+}$- closed. Since $\{\mathrm{x}\}$ is bI^{+}closed, by Theorem $3.12\left(\mathrm{X}, \tau^{+}, \mathrm{I}\right)$ is $\mathrm{b}^{+*} \mathrm{~T}_{1}$. By proposition $3.13,\left(\mathrm{X}, \Omega_{\mathrm{b}}{ }^{+*}\right)$ and $\left(\mathrm{X},{\left.\mho_{b}{ }^{+*}\right)}^{\text {(}}\right.$ are discrete.

Proposition 3.16: If ($\mathrm{X}, \Omega_{\mathrm{b}}{ }^{+*}$) is connected, then ($\mathrm{X}, \tau^{+}, \mathrm{I}$) is bI^{+}connected ie) X cannot be represented as a disjoint union of non empty bI^{+}open subsets of (X , τ^{+}, I)

Proof: Since every bI^{+}-open set is an $\Omega_{\mathrm{b}}{ }^{+*}$ set, the proof is obvious.

4. $\mathrm{L} \Omega \mathrm{b}^{+*}$ - CLOSED SETS

Definition 4.1: A subset A of a SEITS (X, τ^{+}, I) is said to be $L \Omega b^{+*}$ - closed if $A=L \cap F$, where L is an $\Omega_{b}{ }^{+*}$ - set and F is a closed set in $\left(\mathrm{X}, \tau^{+^{*}}\right)$.

Remark 4.2: Every $\Omega_{\mathrm{b}}{ }^{+*}$-set and every closed set in (X, $\tau^{+^{*}}$) are $\mathrm{L} \Omega \mathrm{b}^{+*}$-closed.
Proposition 4.3: For a subset A of a SEITS (X, τ^{+}, I), the following properties are equivalent:
(1) A is $\mathrm{L} \Omega b^{+*}$-closed,
(2) $\mathrm{A}=\mathrm{L} \cap \mathrm{cl}^{+^{*}}(\mathrm{~A})$, where L is an $\Omega_{\mathrm{b}}{ }^{+*}$ set,
(3) $\mathrm{A}=\Omega_{\mathrm{b}}{ }^{+*}(\mathrm{~A}) \cap \mathrm{cl}^{+*}(\mathrm{~A})$.

Proof: (1) $\rightarrow \mathbf{(2)}$: Let A be $\mathrm{L} \Omega \mathrm{b}^{+*}$ - closed. Then $\mathrm{A}=\mathrm{L} \cap \mathrm{F}$, where L is an $\Omega_{\mathrm{b}}{ }^{+*}$ set and F is closed in $\left(\mathrm{X}, \tau^{+*}\right)$. Since $\mathrm{A} \subseteq \mathrm{F}$, we have $\mathrm{cl}^{+^{*}}(\mathrm{~A}) \subseteq \mathrm{cl}^{+*}(\mathrm{~F})=\mathrm{F}$. Therefore $\mathrm{A} \subseteq \mathrm{L} \cap \mathrm{cl}^{+^{*}}(\mathrm{~A}) \subseteq \mathrm{L} \cap \mathrm{F}=\mathrm{A}$ and hence $\mathrm{A}=\mathrm{L} \cap \mathrm{cl}^{+*}(\mathrm{~A})$.
(2) \rightarrow (3): Let $A=L \cap \mathrm{cl}^{+^{+}}(\mathrm{A})$, where L is an $\Omega_{\mathrm{b}}{ }^{+*}$ set. Since $\mathrm{A} \subseteq \mathrm{L}$, we have $\Omega_{\mathrm{b}}{ }^{+*}(\mathrm{~A}) \subseteq \Omega_{\mathrm{b}}{ }^{+*}(\mathrm{~L})=\mathrm{L}$. And hence $\mathrm{A} \subseteq \Omega_{\mathrm{b}}{ }^{+*}(\mathrm{~A}) \cap \mathrm{cl}^{+*}(\mathrm{~A}) \subseteq \mathrm{L} \cap \mathrm{cl}^{+*}(\mathrm{~A})=\mathrm{A}$.

Thus we have obtained $\mathrm{A}=\Omega_{\mathrm{b}}{ }^{+*}(\mathrm{~A}) \cap \mathrm{cl}^{+*}(\mathrm{~A})$.
(3) $\rightarrow \mathbf{(1)}$: Since $\Omega_{\mathrm{b}}{ }^{+*}(\mathrm{~A})$ is an $\Omega_{\mathrm{b}}{ }^{+*}$ set, the proof is obvious.

5. $\Omega_{\mathrm{b}}{ }^{+*}$ and $\mho_{\mathrm{b}}{ }^{+*}$ MAPPINGS

Definition 5.1: Let $\left(\mathrm{X}, \tau^{+}, \mathrm{I}\right)$ and $\left(\mathrm{Y}, \sigma^{+}, \mathrm{J}\right)$ be SEITS. A map $\mathrm{f}:\left(\mathrm{X}, \tau^{+}, \mathrm{I}\right) \rightarrow\left(\mathrm{Y}, \sigma^{+}, \mathrm{J}\right)$ is said to be
(i) $\Omega_{\mathrm{b}}{ }^{+*}$ map if $\mathrm{f}(\mathrm{U}) \in \mathrm{BI}^{+} \mathrm{C}\left(\mathrm{Y}, \sigma^{+}, \mathrm{J}\right)$ for all $\mathrm{U} \in \Omega_{\mathrm{b}}{ }^{+*}$,
(ii) $\mho_{b}{ }^{+*}$ map if $f(U) \in \mathrm{BI}^{+} \mathrm{O}\left(\mathrm{Y}, \sigma^{+}, \mathrm{J}\right)$ for all $\mathrm{U} \in \mathrm{J}_{\mathrm{b}}{ }^{+*}$.

Theorem 5.2: For a map f: $\left(\mathrm{X}, \tau^{+}, \mathrm{I}\right) \longrightarrow\left(\mathrm{Y}, \sigma^{+}, \mathrm{J}\right)$, the following are equivalent:
(i) f is $\Omega_{\mathrm{b}}{ }^{+*}$ map,
(ii) For each $A \subseteq Y$ and each $F \in \mathcal{U}_{b}^{+*}$ with $f^{-1}(A) \subseteq F$, there exists $G \in B I^{+} O\left(Y, \sigma^{+}, J\right)$ such that $A \subseteq G$ and $f^{-1}(G) \subseteq F$.

Proof: (i) \Rightarrow (ii): For each $A \subseteq Y$ and each $F \in \mathcal{J}_{b}{ }^{+*}$ with $f^{-1}(A) \subseteq F$, let $G=Y-f(X-F)$.
Since f is $\Omega_{\mathrm{b}}{ }^{+*}$ map , $\mathrm{f}(\mathrm{X}-\mathrm{F}) \in \mathrm{BI}^{+} \mathrm{C}\left(\mathrm{Y}, \sigma^{+}, \mathrm{J}\right)$ and hence $\mathrm{G} \in \mathrm{BI}^{+} \mathrm{O}\left(\mathrm{Y}, \sigma^{+}, \mathrm{J}\right)$.
Since $f^{-1}(A) \subseteq F$, we have $X-F \subseteq X-f^{-1}(A)=f^{-1}(Y-A)$ and $f(X-F) \subseteq Y-A$.
Taking complements we have $\mathrm{A} \subseteq \mathrm{Y}-\mathrm{f}(\mathrm{X}-\mathrm{F})=\mathrm{G}$.
Moreover $\mathrm{f}^{-1}(\mathrm{G})=\mathrm{f}^{-1}(\mathrm{Y}-\mathrm{f}(\mathrm{X}-\mathrm{F}))=\mathrm{f}^{-1}(\mathrm{Y})-\mathrm{f}^{-1}(\mathrm{f}(\mathrm{X}-\mathrm{F})) \subset \mathrm{X}-(\mathrm{X}-\mathrm{F})=\mathrm{F}$.
(ii) $\Rightarrow(\mathbf{i}):$ Let $A \in \Omega_{b}{ }^{+*}, y \in Y \backslash f(A)$ and let $F=X \backslash A$. Since $F \in \mathcal{U}_{b}{ }^{* *}$ and $f^{-1}(y) \subset F$, by (ii) there exists $O_{y} \in B I^{+} O\left(Y, \sigma^{+}, J\right)$ with $y \in O_{y}$ and $f^{-1}\left(O_{y}\right) \subseteq F$. Since $F=X-A, y \in O_{y} \subseteq Y \backslash f(A)$. Hence $Y \backslash f(A)=\cup\left\{O_{y}: y \in Y \backslash f(A)\right\}$.

Thus $\mathrm{f}(\mathrm{A}) \in \mathrm{BI}^{+} \mathrm{C}\left(\mathrm{Y}, \sigma^{+}, \mathrm{J}\right)$.Therefore f is $\Omega_{\mathrm{b}}{ }^{+*}$ map.
Theorem 5.3: For a map f: $\left(\mathrm{X}, \tau^{+}, \mathrm{I}\right) \longrightarrow\left(\mathrm{Y}, \sigma^{+}, \mathrm{J}\right)$, the following are equivalent:
(i) f is $\mho_{b}{ }^{+*}$ map,
(ii) For each $A \subseteq Y$ and each $F \in \Omega_{b}{ }^{+*}$ with $f^{-1}(A) \subseteq F$, there exists $G \in B I^{+} C\left(Y, \sigma^{+}, J\right)$ with $A \subseteq G$ with $f^{-1}(G) \subseteq F$.

Proof: The proof is similar to the proof of Theorem 5.2.
Theorem 5.4: If $\mathrm{f}:\left(\mathrm{X}, \tau^{+}, \mathrm{I}\right) \longrightarrow\left(\mathrm{Y}, \sigma^{+}, \mathrm{J}\right)$ is a surjective $\Omega_{\mathrm{b}}{ }^{+*}$ map and $\left(\mathrm{X}, \tau^{+}, \mathrm{I}\right)$ is $\mathrm{b}^{+*} \mathrm{~T}_{1}$, then $\left(\mathrm{Y}, \sigma^{+}, \mathrm{J}\right)$ is $\mathrm{b}^{+*} \mathrm{~T}_{1}$.
Proof: Let y be any point of Y. Since f is surjective, there exists $x \in X$ such that $f(x)=y$. Since (X, τ^{+}, I) is $b^{+*} T_{1}$, by Theorem 3.12, $\{\mathrm{x}\}$ is an $\Omega_{\mathrm{b}}{ }^{+*}$ set and hence $\mathrm{f}(\{\mathrm{x}\})$ is bI^{+}closed. Therefore, $\{\mathrm{y}\}$ is bI^{+}closed and hence by Theorem 3.12 $\left(\mathrm{Y}, \sigma^{+}, \mathrm{J}\right)$ is $\mathrm{b}^{+*} \mathrm{~T}_{1}$.

REFERENCES

[1] M.E Abd El-Monsef, S. N El-Deeb and R.A. Mahmoud, " β-open sets and β-continuous mapping", Bull. Fac. Assuit Univ., 12(1983),77-90.
[2] M.E Abd El-Monsef, E. F Lashien and A. A. Nasef, "On I open sets and I continuous functions", Kyungpook Math. J., 32 (1992), 21-30.
[3] M.E. Abd El-Monsef, A.A El- Atik and M.M. El-Sharkasy, "Some topologies induced by b - open sets", Kyunpook Math. J., 45(2005), 539-547.
[4] P.Alexandroff, "Discrete Raume", Mat.Sb. 2(1937), 501-508
[5] D.Andrijević, "Some properties of the topology of α-sets", Mat. Vesnik, 36(1984), 1-10.
[6] D. Andrijević, "Semi-preopen sets", Mat. Vesnik, 38(1986), 24-32.
[7] D. Andrijević, "On the topology generated by pre-open sets", Mat. Vesnik, 39(1987), 367-376.
[8] D. Andrijević, "On b-open sets", Mat. Vesnik, 48, (1996), 59-64.
[9] M. Caldas and J. Dontchev, "G $\Lambda_{\mathrm{s}^{-}}$sets and G Λ_{s}-sets", Mem. Fac. Sci. Kochi Univ. Math., 21(2000), 21-30.
${ }^{1}$ T. Noiri, ${ }^{2}$ I. Arockiarani \& ${ }^{3}$ F. Nirmala Irudayam*/ On Some Topologies Induced By bl Open sets In Simple Extension ideal topological spaces/IJMA- 4(1), Jan.-2013.
[10] A. Caksu Guler and G. Aslim, "bI open sets and decomposition of continuity via idealization", Proc. Inst. Math. and Mech., Nat. Acad Sci. Azerbaijan., 22(2005), 27-32.
[11] J.Dontchev, "On pre -I- open sets and a decomposition of I- continuity", Banyan Math. J., 2 (1996).
[12] W.A Dunham, "New closure operator for non T_{1} topologies", Kyunpook Math. J., 22(1982), 55-60.
[13] A.A El-Atik, "A study of some type of mappings on topological spaces", M. Sc thesis, Tanta University, Tanta, Eygpt, 1997.
[14] M. Ganster, S. Jafari and T. Noiri, "On pre- Λ-sets and pre-V- sets", Acta. Math. Hungar., 95(4)(2002),337-343.
[15] M. Ganster, "Preopen sets and presolvable spaces", Kyunpook Math. J., 27(1987), 135-143.
[16] E. Hatir and T. Noiri, "On decompositions of continuity via idealization", Acta Math. Hungar, 96 (2002), 341349.
[17] E. Hatir and T. Noiri, "On Semi-I-open sets and semi-I-continuous functions," Acta Math. Hungar.107(2005), 345-353.
[18] D. Jankovic and T. R Hamlett, "New topologies from old via ideals", Amer. Math. Monthly, 97(1990), 295-310.
[19] D. Jankovic and T. R Hamlett, "Compatible extensions of ideals", Boll. Un. Mat. Ital. B. Serie VII, .6(1992), 453 465.
[20] E. Khalimsky, R. Kopperman and P.R Meyer, "Computer graphics and connected topologies on finite ordered sets", TopologyAppl.,36(1)(1990),1-17.
[21] N. Levine, "Generalized closed sets in topology" Rend. Circ. Mat. Palermo (2), 19(1970), 89-96.
[22] N. Levine, "Semi-open sets and semi-continuity in topological spaces" Amer. Math. Monthly, 70 (1963), 36-41.
[23] N. Levine , "Simple extension of topology", Amer. Math. Monthly,71(1964), 22-105.
[24] H. Maki, "Generalized Λ-sets and the associated closure operator", The Special Issue in commemoration of Prof. Kazusada Ikeda’s retirement, 1.Oct.(1986),139-146.
[25] A. S. Mashhour, M. E. Abd El Monsef and S. N. El-Deeb, "On precontinuous and weak precontinuous mappings", Proc. Math. Phys. Soc. Eygpt, 53(1982), 47-53.
[26] A. S. Mashhour I.A Hasanein and S. N. El-Deeb, " α-continuous and α-open mappings", Acta Math. Hungar., 41 (1983), 213-218.
[27] A. S. Mashhour, M. E. Abd El Monsef, I.A Hasanein and T. Noiri, "Strongly compact spaces", Delta. J. Sci., 8 (1984), 30-46.
[28] Metin Adkag, "On bI open sets and bI continuous functions", Internat. J. Math. Math. Sci., Vol 2007, Article ID 75721, 13 pages.
[29] O. Njastad , "On some classes of nearly open sets", Pacific J.Math.,15(1965), 961-970.
[30] F. Nirmala Irudayam and Sr. I. Arockiarani, "A note on the weaker form of bI set and its generalization in SEITS", International Journal of Computer Application, Issue 2, Vol. 4 (Aug 2012), 42-54.

Source of support: Nil, Conflict of interest: None Declared

[^0]: Corresponding author: ${ }^{3}$ F. Nirmala Irudayam*
 ${ }^{3}$ Department of Mathematics with Computer Applications, Nirmala College for Women, Coimbatore, India

