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ABSTRACT 
This paper aims at extending the idea of bI open sets in Simple Extension ideal topological spaces. Here we introduce 
the new concept of  Ωb

+* and ℧b
+*

 sets via  bI+ open and bI+ closed sets in simple extension ideal topological spaces. 

Furthur Ωb
+* and ℧b

+*
 functions are defined and their results are discussed. 

 
 
1. INTRODUCTION 
A new class of generalized open sets called b- open sets in topological spaces was defined by Andrijevic [8]. This type 
of sets was discussed by El Atik [13] under the name of γ open sets. The class of all b open sets generates the same 
topology as the class of all pre-open sets. In 1986, Maki [24] introduced the concept of generalized Λ sets and defined 
the associated closure operators by using the work of Levine [22] and Dunhem [12]. Caldas and Dontchev [9] 
introduced Λssets, ∨s sets, g Vs sets and gΛs sets.  Ganster and et al. [14] introduced the notion of pre Λ sets and pre ∨ 
sets and obtained new topologies via these sets. M.E.  Abd El-Monsef et al. [3] defined bΛ sets and b∨ sets on a 
topological space and proved that it forms a topology. In 1963 Levine [23] introduced the concept of a simple extension 
of a topology τ as τ (B) = {(B∩O) ∪O’ / B∉τ}. The concept of I open sets in ideal topological spaces were introduced 
by Jankovic and Hamlett [18], [19]. Further Abd El-Monsef et al. [2] investigated I open sets and I continuous 
functions. Dontchev [11] introduced the notion of pre I open sets and obtained a decomposition of I continuity. The 
notion of semi I open sets to obtain decomposition of continuity was introduced by Hatir and Noiri [16], [17]. In 
addition to this, Casksu Guler and Aslim [10] have introduced the concept of bI sets and bI continuous functions and 
futher research was done by Metin Akdag [28] on these sets. Nirmala and I. Arockiarani [30] have introduced the 
concept of bI open sets in the light of simple expansion topology. Using the above defined bI +sets in simple extended 
ideal topological space (SEITS), we introduce the notion of Ωb

+* sets and ℧b
+* sets in SEITS and study their properties. 

We also introduce Ωb
+* functions and ℧b

+* functions and investigate some of its properties. 

 
2. PRELIMINARIES 
All through the paper the space X is a SEITS in which no separation axioms are assumed unless and otherwise stated. 
For any subset A of X, the interior of A is the same as the interior in usual topology and the closure of A is newly 
defined as a combination of the local function [30] in ideal topology and simple extension. In SEITS the new local 
function [30] is defined as A+*={x∈X/ U∩A∉I for each neighbourhood U of x in τ+} and cl+*(A) =A∪A+*. Also τ+* = 
{V/ cl+*(X\V) = X\V}, where τ+ ⊆ τ+*. 
  
Definition 2.1: A subset A of a topological space X is said to be  
(1) α- open [29] if A ⊆  int(cl(int(A))), 
(2) semi-open [22] if A ⊆ cl(int(A)), 
(3) preopen [25] if A ⊆ int(cl (A)), 
(4) β-open [26] if A ⊆ cl(int(cl(A))), 
(5) b-open [8][13] if A⊆ int(cl(A)) ∪ cl(int(A)). 
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The class of all semi-open (resp. pre-open, α-open) sets in X are denoted by SO(X,τ) (resp. PO(X,τ), αO(X,τ)) 
 
Definition 2.2: A subset A of X in SEITS (X, τ+, I) is said to be  
(1) αI+ open [30] if A ⊆  int(cl+*(int(A))), 
(2) semiI+ open [30] if A ⊆  cl+*(int(A)), 
(3) pre I+ open [30] if A ⊆  int(cl+* (A)), 
(4) βI+ open [30] if A ⊆  cl+* (int(cl+* (A))), 
(5) bI+open [30] if A ⊆  int(cl+*(A)) ∪ cl+*(int(A)). 
 
The class of all semiI+ open (resp. preI+-open, αI+ open) sets in X are denoted by SI+O(X, τ+, I)(resp. PI+O(X, τ+, I), 
αI+O(X, τ+, I)) 
 
The complements of these sets are called semiI+ closed (resp. preI+-closed, αI+ closed) sets in X and are denoted by 
SI+C(X, τ+, I) (resp. PI+C(X, τ+, I), αI+C(X, τ+, I)) 
 
Definition 2.3: A topological space (X,τ) is said to be resolvable [15] if there is a subset A of X such that A and (X-A) 
are both dense in X. 
 
3.   Ωb+* SETS 
In this section we introduce the new idea of Ωb

+* (resp. ℧b
+*) sets via the concept of bI open sets under simple 

extension topology. 
 
Definition 3.1: Let (X, τ+, I) be a simple extension ideal topological space (SEITS) and A a subset of X. We define 
Ωb

+* (A) and ℧b
+* (A) as follows, 

a) Ωb
+*(A)  = ∩{G:A ⊆ G, G ∈ BI+O(X ,τ +, I)}, 

b) ℧b
+* (A) = ∪ {F: F ⊆ A, F ∈ BI + C(X, τ +, I)}. 

 
The class of all bI +open (resp. bI +closed) sets of a SEITS (X, τ+, I) is denoted by BI+O(X, τ +, I) (resp. BI + C(X, τ+, I)). 
 
Example 3.2: Let X = {a, b, c},τ ={X,φ ,{a},{a, b}}, I={φ,{b}} and B={b}. Then τ+ (B) ={X,φ, {a},{b},{a, b}},  
τ+*={ X,φ ,{a},{b},{a, b},{a, c}}. 
 

Here BI+O(X ,τ +, I) ={X , φ,{a}, {a, b},{a, c}}and BI + C(X ,τ +, I)={X ,φ,{b},{c},{b, c}}. 
 
Here Ωb

+*
 (a) = {a}; Ω b

+* (b) = {a, b}; Ωb
+* (c) ={a, c}; Ωb

+* (a, b) = {a, b}; Ωb
+*

 (a ,c) = {a, c}; Ωb
+*

 (b, c) = X. Also 
℧b

+*  (a)=  {φ}; ℧b
+* (b)={ b}; ℧b

+* (c) ={ c}; ℧b
+* (a, b)={ b}; ℧b

+* (a, c) = {c}; ℧b
+*  (b, c) = {b, c}.  

 
Lemma 3.3: For subsets A, B and Ai (i ∈I) of a space (X, τ+, I), the following properties hold: 
i) A ⊆ Ωb

+*(A),  

ii)  If A ⊆ B, then Ωb
+*(A) ⊆ Ω b+* (B), 

iii) Ω b+* (Ωb 
+*(A))   =   Ωb

+* (A) ,  
iv) If   A ∈ BI +O(X,τ+,I) , then A = Ωb

+* (A),   

v) Ωb
+* (∪{Ai : i ∈I}) = ∪{Ωb

+*  (Ai ): i ∈I}, 
vi)  Ωb

+* (∩{ Ai  i ∈I}) ⊆ ∩ { Ωb
+*  (Ai): i ∈I},   

vii) Ωb
+* (X \ A) = X \ ℧b

+*
 (A).   

 
Proof:  (i), (ii), (iv), (vi), (vii): These are immediate consequences of the Definition 3.1(a). 
(iii): We know from Definition 3.1(a) Ω b

+*(A) ⊆ Ωb
+* (Ωb

+* (A)). Now we prove the converse inclusion Ω b
+* (Ωb

+* (A) 

)⊆ Ωb
+*(A).  Let us consider x ∉ Ωb

+*(A), then there exists a G ∈ BI +O(X, τ+, I) such that A ⊆ G,  and x  ∉ G.  By (ii) 

and (iv), Ωb
+*(A) ⊆ Ωb

+*(G) = G. Since Ωb
+*(Ωb

+*(A)) = ∩{G: Ωb
+* (A) ⊆ G, G ∈ BI +O(X, τ+, I)}, consequently we 

have x ∉ Ωb
+* (Ωb

+* (A)). Therefore, we have Ωb 
+*(Ωb

+* (A) )  ⊆  Ωb
+* (A)  and hence Ωb 

+*(Ωb
+* (A) ) =  Ωb

+* (A). 
 
(v): Let A = ∪{Ai: i ∈ I}. Since Ai ⊆ A, by (ii) we have Ωb

+* (Ai) ⊆  Ωb
+* (A) and hence ∪{Ωb

+* (Ai ): i ∈ I}⊆  Ωb
+* (A).  

 



1T. Noiri, 2I. Arockiarani & 3F. Nirmala Irudayam*/ On Some Topologies Induced By bI+ Open sets In Simple Extension ideal 
topological spaces/IJMA- 4(1), Jan.-2013. 

© 2013, IJMA. All Rights Reserved                                                                                                                                                                       132  

 
Conversely, if x ∉ ∪ {Ωb

+* (Ai): i ∈ I}, then for each  i ∈ I, there exists Gi ∈ BI +O(X, τ+, I) such  that  Ai ⊆ Gi,   and x ∉ 

Gi. If G = ∪ {Gi: i ∈ I}, then G ∈ BI +O(X, τ+, I) such that A ⊆ G and x ∉ G. Hence x ∉ Ωb
+*(A) and hence (v) holds.  

 
By using Lemma 3.3 (vii), we can easily verify the next result. 
 
Lemma 3.4: Let (X, τ+, I) be a SEITS. Let A, B and {Ai: i∈I} be subsets of X.  Then the following properties hold: 
i)   ℧b

+* (A) ⊆ A, 

ii) If A ⊆ B, then   ℧b
+* (A)⊆ ℧b

+* (B),   

iii)  ℧b
+*(℧b

+* (A)) = ℧b
+* (A),   

iv) If A ∈ BI +C (X, τ+, I), then A = ℧b
+*(A),   

v) ℧b
+*{∩ {Ai: i ∈I}} = ∩{℧b

+* (Ai): i ∈I}, 

vi) ∪{℧b +*(Ai): i ∈I} ⊆ ℧b
+* {∪ { Ai: i ∈I}}.  

 
Remark 3.5:  In general, for any subsets A, B ∈ (X, τ+, I), Ωb

+* (A∩B) ≠ Ωb
+* (A) ∩ Ωb

+* (B) and ℧b
+* (A∪B) ≠ ℧b

+* 

(A) ∪ ℧b
+* (B) as noted in the following example.  

 
Example 3.6: Let X={a, b, c}, τ ={X,φ ,{a},{a, b}},I={φ,{b}}and B={b}, then τ+(B)={X, φ, {a},{b},{a, b}}. Let 
A={a}and B={c}, here  Ωb

+* (A∩B) ≠ Ωb
+* (A) ∩ Ωb

+*  (B). When A= {a}; B = {b, c}, then ℧b
+* (A∪B) ≠ ℧b

+* (A) ∪ ℧
b

+* (B). 
 
Definition 3.7: A subset A of a SEITS (X, τ+, I) is called an Ωb

+* set (resp. ℧b
+* set) if A=Ωb

+* (A) [resp.A = ℧b
+* (A)]. 

The family of all Ωb
+*

 sets (resp. ℧b
+* sets) is denoted as Ωb

+* [resp. ℧b
+*]. 

 
Example 3.8: Let X = {a, b, c}, τ ={X, φ,{a}, {a, b}}, I={φ,{b}}and B={b}.Then τ+(B)={X, φ ,{a}, {b}, {a, b}},Ωb

+* 
 

= { X, φ ,{a},{a, c},{a, b}}and ℧b
+* = {X, φ, {b},{c},{b, c}}. 

 
Proposition 3.9: In a SEITS (X, τ+, I), Ωb

+* (resp. ℧b
+*) is a topology for X. 

 
Proof: It is obvious from Definition 3.1 that X and φ are Ωb

+* sets. Let Ai ∈ Ωb
+* for each i∈I. By Lemma 3.3 , Ω b

+*(∩ 
i∈I Ai )⊆ ∩ i∈I Ωb

+* (Ai) = ∩ i∈I Ai and hence  Ωb
+* ( ∩ i∈I Ai) = ∩ i∈I Ai. Therefore ∩ i∈I Ai∈ Ωb

+*.  Let {Ai: i∈I} be a 
family of Ωb

+* sets in (X, τ+, I) .Then by Lemma 3.3, ∪ i∈I Ai = ∪ i∈I Ωb
+*( Ai) = Ωb

+*(∪ i∈I
 Ai). 

 
This implies that the union of  Ωb

+*sets is also an Ωb
+* set. 

 
Hence the family of Ωb

+* sets forms a topology for X. 
 
Proposition 3.10: In a space (X, Ωb

+*) the following statements are verified. 
1) If every subset A of X is nowhere dense in (X,τ), then  Ωb

+* = Ωs
+*,where  Ωs

+*(A) ={A⊂ X: Ωs
+*(A) = A}and     

     Ωs
+*(A) = ∩{G:A ⊆ G, G ∈ SI+O(X ,τ +, I)}. 

 
2) If (X, τ+, I) is an indiscrete space, then each Ωb

+* set is a preI+ Ω set but not a semiI+ Ω set. 
 
Proof: 1) Since every subset A is nowhere dense in (X, τ), we have Int(cl+*(A))= φ for all A. Then BI+O (X, τ+, I) = 
SI+O(X, τ+, I) and hence Ωb

+*(A)= Ωs
+*(A) for every A of X .Hence Ωb

+* = Ωs
+*. 

2) This is obvious, since each bI+ open set in indiscrete space is a preI+ open set but not a semiI+ open set. 
 
Definition 3.11: A space (X, τ+, I) is called a b+*T1 space if for each pair of distinct points x and y of X, there exist two 
bI+ open sets U and   V such that x ∈U, y∉U and y ∈V, x∉V. 
      
Theorem 3.12: For a space (X, τ+, I), the following properties are equivalent:  
1) (X, τ+, I) is b+*T1; 
2) For each x ∊ X,{x} is bI+ closed; 
3) For each x ∊ X,{x} is an Ωb

+* set; 
4) For each subset A of X, A is an Ωb

+* set. 
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Proof: (1) (2): Let y be any point of X-{x}.There exists a bI+ open set Vy such that  x∉ Vy and y∊ Vy . 
 
Hence X-{x} = ∪ {Vy ; y ∊ X-{x}} and hence X-{x} is bI+ open.  
 
Therefore, {x} is bI+ closed. 
 
(2) (3): Let x be any point of X and y ∊ X-{x}.  By (2), X-{y} is bI+ open and x ∊ X-{y}.By Lemma 3.3, Ω b

+*({x}) ⊂ 
X-{y} and hence Ωb

+*({x}) = {x}.Therefore,{x} is an Ωb
+* set. 

 
(3) (4): Let A be any subset of X. By (3) and Lemma 3.3, Ω b

+*(A) = Ωb
+*(∪{x/x∊A}) = ∪{ Ωb

+*{x}/x∊A}= ∪{ x / x 
∊ A}= A. Therefore, A is an Ωb

+*set. 
 
(4) (1): Let x and y be any distinct points.Then y∉ Ωb

+*({x}) = {x} and there exists a bI+ open set Ux such that y ∉ 
Ux and x ∊ Ux .Similarly x∉ Ωb

+*({y}) and there exists a bI+ open set Uy such that y ∊  Uy and x ∉Uy .This shows that 
(X,τ+,I) is b+*T1. 
 
Proposition 3.13: A SEITS (X, τ+, I) is b+*T1  if and only if (X, Ωb

+* ) is a discrete space. 
 
Proof: Let (X, τ+, I) be b+*T1 and x ∊ X. Then, by Theorem 3.12, {x} is an Ωb

+* set and {x} is open in (X, Ω b
+*). 

Therefore (X, Ωb
+*) is a discrete space.  Conversely, suppose that (X, Ωb

+*) is a discrete space. For any point x ∊ X, {x} 
is an Ωb

+* set. By Theorem 3.12, (X, τ+, I) is b+*T1. 
 
Definition 3.14: The space (X, τ+, I) is said to be resolvable in SEITS if it is the union of two disjoint dense subsets. 
 
Proposition 3.15: If (X, τ+, I) is resolvable in SEITS, then (X, Ωb

+*) and (X, ℧b
+*) are discrete. 

 
Proof: We shall show that (X, τ+, I) is b+*T1.

 
 Consider (X, τ+, I) to be resolvable in SEITS   

 
i.e.: X = D U E, where D and E are disjoint dense subsets of (X, τ+, I).  
 
Let x ∈  X, say x ∈ D then X \{x}= E ∪ [D \{x}] is dense in (X, τ+, I). Hence X-{x} is a preI+ open and hence {x}is 

preI+- closed. Since {x} is bI+ closed, by Theorem 3.12 (X, τ+, I) is b+*T1. By proposition 3.13, (X, Ω b
+* ) and (X, ℧b

+*) 
are discrete. 
 
Proposition 3.16:  If (X, Ωb

+*) is connected, then (X, τ+, I) is bI+ connected ie) X cannot be represented as a disjoint 
union of non empty bI+ open subsets of (X , τ+, I) 
 
Proof: Since every bI+-open set is an Ωb

+* set, the proof is obvious. 
 
4.  LΩb+* - CLOSED SETS  
Definition 4.1: A subset A of a SEITS (X, τ+, I)  is said to be  LΩb+* - closed if  A= L ∩ F, where L is an Ωb

+*- set and 
F is a closed set in  (X , τ+*) . 
 
Remark 4.2:  Every Ωb

+* -set and every closed set in (X, τ+*) are LΩb+* -closed. 
 
Proposition 4.3: For a subset A of   a SEITS (X, τ+, I), the following properties are equivalent: 
(1) A is LΩb+* -closed, 
(2) A = L ∩ cl+*(A), where L is an  Ωb

+* set,  
(3) A = Ωb

+*(A) ∩ cl+* (A). 
 
Proof: (1) → (2): Let A be LΩb+* - closed.  Then A = L ∩ F, where L is an Ωb

+* set and F is closed in (X, τ+*). Since  

A⊆ F, we have cl+*(A) ⊆ cl+*(F)= F. Therefore A ⊆ L ∩ cl+*(A) ⊆ L ∩ F = A and hence A = L ∩ cl +*(A). 
 
(2) → (3): Let A = L ∩ cl+*(A), where L is an Ωb

+* set. Since A ⊆ L, we have Ωb
+* (A) ⊆ Ωb

+* (L) = L. And hence  

A ⊆ Ωb
+* (A)  ∩ cl+*(A) ⊆ L  ∩ cl+*(A) =A. 

 
Thus we have obtained A = Ωb

+*(A) ∩ cl+* (A). 
 
(3) → (1): Since Ωb

+*(A)  is an Ωb
+*set, the proof is obvious. 
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5.  Ωb

+* and ℧b
+* MAPPINGS 

Definition 5.1: Let (X, τ+ , I) and (Y , σ+, J) be SEITS. A map f: (X, τ+, I)        (Y, σ+, J) is said to be 
(i) Ωb

+* map if f (U) ∈ BI+C(Y, σ+, J) for all   U ∈ Ωb
+*, 

(ii)  ℧b
+* map if f (U) ∈  BI+O (Y, σ+, J) for   all   U∈ ℧b

+*.   
 
Theorem 5.2: For a map f: (X, τ+, I)          (Y, σ+, J), the following are equivalent: 
(i) f is Ωb

+* map,   
(ii) For each A ⊆ Y and each F ∈ ℧b

+* with f-1(A) ⊆ F, there exists G ∈BI+O(Y, σ+, J) such that  A ⊆ G and f-1(G) ⊆ F. 
 
Proof: (i)⇒(ii): For each  A ⊆ Y and each  F ∈℧b

+*with f-1 (A) ⊆ F, let G = Y – f (X-F).  

Since  f  is Ωb
+* map , f (X-F) ∈ BI+C(Y, σ+, J)  and hence G ∈BI+O(Y, σ+, J).   

Since  f -1 (A) ⊆ F, we have X-F ⊆ X-f-1 (A) = f-1(Y-A) and f(X-F) ⊆ Y-A. 

Taking complements we have A ⊆ Y- f (X-F) = G. 
 
Moreover f-1 (G) = f-1 (Y- f (X-F)) = f-1(Y) - f-1(f (X-F))⊂ X-(X-F) = F. 
 
(ii)⇒(i): Let A ∈ Ωb

+*, y ∈  Y\f(A) and let F=X\A. Since F ∈ ℧b
+* and f-1(y) ⊂ F, by (ii) there exists Oy ∈BI+O(Y , σ+ ,J) 

with y ∈  Oy and f-1 (Oy) ⊆ F. Since F = X-A, y∈ Oy  ⊆  Y\f(A). Hence Y\f(A) = ∪{Oy : y∈ Y\f(A)}. 
 
Thus f(A) ∈ BI+C (Y , σ+, J).Therefore f is Ωb

+* map.      
 
Theorem 5.3: For a map f: (X, τ+, I)          (Y, σ+, J), the following are equivalent: 
(i) f is ℧b

+* map,   

(ii) For each A ⊆ Y and each F ∈ Ωb
+* with f-1(A) ⊆ F, there exists G ∈BI+C(Y, σ+, J) with A ⊆ G with f-1(G) ⊆ F. 

 
Proof: The proof is similar to the proof of Theorem 5.2. 
 
Theorem 5.4: If f: (X, τ+, I)             (Y, σ+, J) is a surjective  Ωb

+* map and (X , τ+ , I) is b+*T1, then (Y , σ+, J) is b+*T1. 
 
Proof: Let y be any point of Y. Since f is surjective, there exists x∈ X such that f(x) =y. Since (X, τ+, I) is b+*T1, by 
Theorem 3.12, {x} is an Ωb

+*set and hence f({x}) is bI+ closed. Therefore, {y} is bI+ closed and hence by Theorem 3.12 
(Y, σ+, J) is b+*T1. 
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