COMMON FIXED POINT THEOREM FOR THREE MAPS BY ALTERING DISTANCES BETWEEN THE POINTS

U. C. Gairola & Ram Krishan*

Department of Mathematics, H. N. B. Garhwal University, Pauri Campus, Pauri Garhwal, 246001, India

(Received on: 27-11-12; Revised & Accepted on: 14-01-13)

ABSTRACT

In this paper, we prove a common fixed point theorem for three maps under generalized weakly contractive condition without appeal to continuity. Our results extend and generalized the results of Choudhury et al. [2] and others.

Keywords: Fixed point, Control Function, Weakly Compatible mappings, Weak Contraction.

2000 Mathematics Subject Classifications: 47H10, 54H25.

1. INTRODUCTION

The study of fixed points of mappings satisfying certain contractive conditions has been at the centre of rigorous research activity. In 1977, Rhoades [9] showed that there are several possible types of extended forms of contraction pairs. In 1986, Jungck [4] introduced the notion of compatible mappings which are more general than commuting and weakly commuting mappings. In 1998, Jungck and Rhoades [5] introduced the concept of weakly compatible and showed that compatible maps are weakly compatible but not conversely. In [3], R. Chugh and S. Kumar proved a fixed point theorem for weakly compatible maps without appeal to continuity.

Khan *et al.* [6] introduced the altering distance and used it solving for fixed point problem in metric spaces. Recently many authors for example [7], [11] and [12] used the altering distance function and obtained some fixed point theorem. Further, the concept of weak contraction was introduced in 1997 by Alber *et al.* [1] in Hilbert spaces and subsequently extended to metric spaces by Rhoades [10]. Recently, O. Popescu [8] proved fixed point problem involving weak contraction and mapping satisfying weak contractive type inequalities.

The main purpose of this paper is to present fixed points results for three maps satisfying a generalized weak contraction condition by using the concept of weakly compatible maps in a complete metric space. Our results extend and generalized the results of Choudhury *et al.* [2] and others.

2. PRELIMINARIES

Definition 2.1 ([10]): A mapping $T: X \to X$, where (X,d) is a metric space, is said to be weakly contractive if for $x, y \in X$

$$d(Tx,Ty) \le d(x,y) - \varphi(d(x,y)),$$

where $\varphi:[0,\infty) \to [0,\infty)$ is a continuous non-decreasing function such that $\varphi(t)=0$ if and only if t=0. If one takes $\varphi(t)=(1-k)t$, where 0 < k < 1, a weak contraction reduces to a Banach contraction.

Definition 2.2 ([6]): A function $\psi:[0,\infty)\to[0,\infty)$ is called altering distance function if the following properties are satisfied,

- (i) Ψ is monotone increasing and continuous.
- (ii) $\psi(t) = 0$ if and only if t = 0.

Corresponding author: Ram Krishan*

Department of Mathematics, H. N. B. Garhwal University, Pauri Campus, Pauri Garhwal, 246001, India

Definition 2.3 ([2]): Let (X,d) be a metric space, T a self-mapping of X. We shall call T a generalized weakly contractive mapping if for all $x, y \in X$,

$$\psi\left(d\left(Tx,Ty\right)\right) \le \psi\left(m\left(x,y\right)\right) - \varphi\left(\max\left\{d\left(x,y\right),d\left(y,Ty\right)\right\}\right),\tag{2.1}$$

where

$$m(x, y) = \max\{d(x, y), d(x, Tx), d(y, Ty), \frac{1}{2}[d(x, Ty) + d(y, Tx)]\},\$$

 Ψ is an altering distance function and $\varphi:[0,\infty)\to[0,\infty)$ is continuous function with $\varphi(t)=0$ if and only if t=0.

A generalized weakly contractive mapping is more general than that satisfying,

$$d(Tx, Ty) \le km(x, y)$$
, for some constant $0 \le k < 1$, (2.2)

and is included in those mappings which satisfy

$$d(Tx,Ty) < m(x,y). \tag{2.3}$$

Using the numbering scheme in [8], (2.2) and (2.3) are (21) and (22) respectively.

Definition 2.4 ([4]): Let S and T be mapping from a metric space (X,d) into itself. The mapping S and T are said to be compatible if

$$\lim_{n\to\infty} d(STx_n, TSx_n) = 0,$$

whenever $\{x_n\}$ is a sequence in X such that $\lim_{n\to\infty} Sx_n = \lim_{n\to\infty} Tx_n = t$ for some $t\in X$.

Definition 2.5 ([5]): Let S and T be mapping from a metric space (X,d) into itself. The mapping S and T are said to be weakly compatible if they commute at their coincidence points, that is, if Tu = Su for some $u \in X$, then TSu = STu.

3. RESULTS

Now we state our main results

Theorem 3.1: Let (X, d) be a complete metric space. Let $S, f, g: X \to X$ be self-mappings such that for all, $x, y \in X$,

$$S(X) \subset f(X) \cap g(X),$$
 (3.1)

$$\psi(d(Sx, Sy)) \le \psi(\max\{d(fx, gy), d(Sx, fx), d(Sy, gy), \frac{1}{2}[d(Sx, gy) + d(Sy, fx)]\}) - \phi(\max\{d(fx, gy), d(Sx, fx), d(Sy, gy)\}),$$
(3.2)

where $\varphi:[0,\infty)\to[0,\infty)$ is a continuous function with $\varphi(t)=0$ if and only if t=0 and $\psi:[0,\infty)\to[0,\infty)$ is an altering distance function. Then S, f and S, g have a coincidence point. Further if (S,f) and (S,g) are weakly compatible pairs, then S, f and g have a unique common fixed point.

Proof: Let $x_0 \in X$ be arbitrary. We define a sequence $\{y_n\}$ such that

$$y_{2n} = Sx_{2n} = fx_{2n+1}$$
$$y_{2n+1} = Sx_{2n+1} = gx_{2n+2}$$

for all $n \in N$.

If there exist a positive integer 2n such that $y_{2n}=y_{2n+1}$, then y_{2n} is a coincidence of S and f. A similar conclusion holds if $y_{2n+1}=y_{2n+2}$, for some n, then S and g have a coincidence point. Therefore, we may assume that $y_n \neq y_{n+1}$, for all $n \geq 0$.

Applying contractive condition (3.2) we obtain that

$$\begin{split} \psi(d(y_{2n+1},y_{2n+2})) &= \psi(d(Sx_{2n+1},Sx_{2n+2})) \\ &\leq \psi(\max\{d(fx_{2n+1},gx_{2n+2}),d(Sx_{2n+1},fx_{2n+1}),d(Sx_{2n+2},gx_{2n+2}), \\ &\frac{1}{2}[d(Sx_{2n+1},gx_{2n+2})+d(Sx_{2n+2},fx_{2n+1})]\}) \\ &- \phi(\max\{d(fx_{2n+1},gx_{2n+2}),d(Sx_{2n+1},fx_{2n+1}),d(Sx_{2n+2},gx_{2n+2})\}) \\ \psi(d(y_{2n+1},y_{2n+2})) &\leq \psi(\max\{d(y_{2n},y_{2n+1}),d(y_{2n+1},y_{2n}),d(y_{2n+2},y_{2n+1}), \end{split}$$

$$\frac{1}{2}[d(y_{2n+1}, y_{2n+1}) + d(y_{2n+2}, y_{2n})]\})$$

$$-\varphi(\max\{d(y_{2n}, y_{2n+1}), d(y_{2n+1}, y_{2n}), d(y_{2n+2}, y_{2n+1})\})$$

$$\psi(d(y_{2n+1}, y_{2n+2})) \le \psi(\max\{d(y_{2n}, y_{2n+1}), d(y_{2n+1}, y_{2n+2}), \frac{1}{2}[d(y_{2n}, y_{2n+1}) + d(y_{2n+1}, y_{2n+2})]\})$$

$$-\varphi(\max\{d(y_{2n}, y_{2n+1}), d(y_{2n+2}, y_{2n+1})\}).$$

Since
$$\frac{1}{2}[d(y_{2n}, y_{2n+1}) + d(y_{2n+1}, y_{2n+2})] \le \max \left\{ d(y_{2n}, y_{2n+1}), d(y_{2n+1}, y_{2n+2}) \right\} \text{ then it follows that}$$

$$\psi(d(y_{2n+1}, y_{2n+2})) \le \psi(\max\{d(y_{2n}, y_{2n+1}), d(y_{2n+1}, y_{2n+2})\})$$

$$-\varphi(\max\{d(y_{2n}, y_{2n+1}), d(y_{2n+1}, y_{2n+2})\}).$$
(3.3)

Suppose that $d(y_{2n}, y_{2n+1}) \le d(y_{2n+1}, y_{2n+2})$ for some positive integer n.

Then from (3.3), we have

$$\psi(d(y_{2n+1}, y_{2n+2})) \le \psi(d(y_{2n+1}, y_{2n+2})) - \varphi(d(y_{2n+1}, y_{2n+2})), \tag{3.4}$$

that is, $\varphi(d(y_{2n+1},y_{2n+2})) \le 0$ which implies that $d(y_{2n+1},y_{2n+2}) = 0$, or that $y_{2n+1} = y_{2n+2}$, contradicting our assumption that $y_n \ne y_{n+1}$, for each n.

Therefore $d(y_{2n+1}, y_{2n+2}) < d(y_{2n}, y_{2n+1})$ for all $n \ge 0$.

Now

$$\begin{split} \psi \Big(d(y_{2n+2}, y_{2n+3}) \Big) &= \psi \Big(d(Sx_{2n+3}, Sx_{2n+2}) \Big) \\ &\leq \psi (\max \{ d(fx_{2n+3}, gx_{2n+2}), d(Sx_{2n+3}, fx_{2n+3}), d(Sx_{2n+2}, gx_{2n+2}), \\ &\frac{1}{2} [d(Sx_{2n+3}, gx_{2n+2}) + d(Sx_{2n+2}, fx_{2n+3})] \}) \\ &- \varphi (\max \{ d(fx_{2n+3}, gx_{2n+2}), d(Sx_{2n+3}, fx_{2n+3}), d(Sx_{2n+2}, gx_{2n+2}) \}) \end{split}$$

$$\begin{split} \psi(d(y_{2n+2},y_{2n+3})) &\leq \psi(\max\{d(y_{2n+2},y_{2n+1}),d(y_{2n+3},y_{2n+2}),d(y_{2n+2},y_{2n+1}),\\ &\frac{1}{2}[d(y_{2n+3},y_{2n+1})+d(y_{2n+2},y_{2n+2})]\})\\ &-\varphi\Big(\max\big\{d\big(y_{2n+2},y_{2n+1}\big),d\big(y_{2n+3},y_{2n+2}\big),d\big(y_{2n+2},y_{2n+1}\big)\}\Big) \end{split}$$

$$\begin{split} \psi\Big(d\Big(y_{2n+2},y_{2n+3}\Big)\Big) &\leq \psi(\max\{d(y_{2n+2},y_{2n+1}),d(y_{2n+3},y_{2n+2}),d(y_{2n+2},y_{2n+1}),\\ &\frac{1}{2}[d(y_{2n+1},y_{2n+2})+d(y_{2n+2},y_{2n+3})])\\ &-\varphi(\max\{d(y_{2n+2},y_{2n+1}),d(y_{2n+3},y_{2n+2}),d(y_{2n+2},y_{2n+1})\}). \end{split}$$

Since $\frac{1}{2}[d(y_{2n+1}, y_{2n+2}) + d(y_{2n+2}, y_{2n+3})] \le \max\{d(y_{2n+1}, y_{2n+2}), d(y_{2n+2}, y_{2n+3})\}$ then it follows that

$$\psi(d(y_{2n+2}, y_{2n+3})) \le \psi(\max\{d(y_{2n+1}, y_{2n+2}), d(y_{2n+2}, y_{2n+3})\}) - \phi(\max\{d(y_{2n+1}, y_{2n+2}), d(y_{2n+2}, y_{2n+3})\}).$$

Suppose that $d(y_{2n+1}, y_{2n+2}) \le d(y_{2n+2}, y_{2n+3})$ for some positive integer n.

Then from (3.3), we have

$$\psi(d(y_{2n+2}, y_{2n+3})) \le \psi(d(y_{2n+2}, y_{2n+3})) - \varphi(d(y_{2n+2}, y_{2n+3})), \tag{3.5}$$

that is, $\varphi(d(y_{2n+2},y_{2n+3})) \le 0$ which implies that $d(y_{2n+2},y_{2n+3}) = 0$ or that $y_{2n+2} = y_{2n+3}$, contradicting our assumption that $y_n \ne y_{n+1}$, for each n.

Therefore $d(y_{2n+2}, y_{2n+3}) < d(y_{2n+1}, y_{2n+2})$ for all $n \ge 0$.

Thus $\{d(y_n,y_{n+1})\}$ is a monotone decreasing sequence of non-negative real numbers. Hence there exist an $r \geq 0$ such that

$$\lim_{n \to \infty} d(y_n, y_{n+1}) = r. \tag{3.6}$$

In view of (3.3), for all $n \ge 0$

$$\psi(d(y_{2n+1}, y_{2n+2})) \le \psi(d(y_{2n}, y_{2n+1})) - \varphi(d(y_{2n}, y_{2n+1})).$$

Taking the limit as $n \to \infty$ in the above inequality and using the continuities of φ and ψ we have

$$\psi(r) \leq \psi(r) - \varphi(r)$$
,

Which is a contradiction unless r = 0.

Hence we have

$$\lim_{n \to \infty} d(y_n, y_{n+1}) = 0. {3.7}$$

Now we shall show that $\{y_n\}$ is a Cauchy sequence. It is sufficient to show that $\{y_{2n}\}$ is a Cauchy sequence.

Suppose that $\{y_{2n}\}$ is not a Cauchy sequence.

Then there exist an $\mathcal{E} \ge 0$ such that for each even integer 2(k) there exist an even integer, 2m(k) > 2n(k) > 2(k) such that

$$d(y_{2n(k)}, y_{2m(k)}) \ge \varepsilon, \tag{3.8}$$

for every integer 2(k) . Let 2m(k) be the least even integer exceeding 2n(k) satisfying (3.8) such that

$$d(y_{2n(k)}, y_{2m(k)-2}) < \varepsilon.$$

Using the triangle inequality, we have

$$\begin{split} \varepsilon & \leq d(y_{2n(k)}, y_{2m(k)}) \leq d(y_{2n(k)}, y_{2m(k)-2}) + d(y_{2m(k)-2}, y_{2m(k)-1}) + d(y_{2m(k)-1}, y_{2m(k)}), \\ \text{that is,} \quad & \varepsilon \leq d(y_{2n(k)}, y_{2m(k)}) \leq \varepsilon + d(y_{2m(k)-2}, y_{2m(k)-1}) + d(y_{2m(k)-1}, y_{2m(k)}). \end{split}$$

Letting $k \to \infty$ in the above inequality and using (3.7), we have

$$\lim_{k \to \infty} d(y_{2n(k)}, y_{2m(k)}) = \varepsilon. \tag{3.9}$$

Again

$$d(y_{2n(k)}, y_{2m(k)}) \le d(y_{2n(k)}, y_{2n(k)+1}) + d(y_{2n(k)+1}, y_{2m(k)+1}) + d(y_{2m(k)+1}, y_{2m(k)})$$

and

$$d(y_{2n(k)+1},y_{2m(k)+1}) \leq d(y_{2n(k)+1},y_{2n(k)}) + d(y_{2n(k)},y_{2m(k)}) + d(y_{2m(k)},y_{2m(k)+1}).$$

Letting $k \to \infty$ in the above inequality and using (3.7) and (3.9), we have

$$\lim_{k \to \infty} d(y_{2n(k)+1}, y_{2m(k)+1}) = \varepsilon. \tag{3.10}$$

Again

$$d(y_{2n(k)}, y_{2m(k)+2}) \le d(y_{2n(k)}, y_{2n(k)+1}) + d(y_{2n(k)+1}, y_{2m(k)+1}) + d(y_{2m(k)+1}, y_{2m(k)+2}).$$

Letting $k \to \infty$ in the above inequality and using (3.7) and (3.10), we have

$$\lim_{k \to \infty} d(y_{2n(k)}, y_{2m(k)+2}) = \varepsilon. \tag{3.11}$$

Further

$$d(y_{2n(k)}, y_{2m(k)+1}) \le d(y_{2n(k)}, y_{2n(k)+1}) + d(y_{2n(k)+1}, y_{2m(k)+1}).$$

Letting $k \to \infty$ in the above inequality and using (3.7) and (3.10), we have

$$\lim_{k \to \infty} d(y_{2n(k)}, y_{2m(k)+1}) = \varepsilon. \tag{3.12}$$

For $x = y_{2n(k)}$ and $y = y_{2m(k)+1}$, we have from (3.2),

$$\begin{split} \psi(d(y_{2n(k)+1},y_{2m(k)+2})) &= \psi(d(Sx_{2n(k)},Sx_{2m(k)+1})) \\ &\leq \psi(\max\{d(fx_{2n(k)},gx_{2m(k)+1}),d(Sx_{2n(k)},fx_{2n(k)}),d(Sx_{2m(k)+1},gx_{2m(k)+1}), \\ &\frac{1}{2}[d(Sx_{2n(k)},gx_{2m(k)+1})+d(Sx_{2m(k)+1},fx_{2n(k)})]\}) \\ &- \varphi(\max\{d(fx_{2n(k)},gx_{2m(k)+1}),d(Sx_{2n(k)},fx_{2n(k)}),d(Sx_{2m(k)+1},gx_{2m(k)+1})\}) \end{split}$$

$$\begin{split} \psi(d(y_{2n(k)+1},y_{2m(k)+2})) &\leq \psi(\max\{d(y_{2n(k)},y_{2m(k)+1}),d(y_{2n(k)+1},y_{2n(k)}),d(_{2m(k)+2},y_{2m(k)+1}),\\ &\frac{1}{2}[d(y_{2n(k)+1},y_{2m(k)+1})+d(y_{2m(k)+2},y_{2n(k)})]\})\\ &-\varphi\Big(\max\Big\{d(y_{2n(k)},y_{2m(k)+1}),d(y_{2n(k)+1},y_{2n(k)}),d(y_{2m(k)+2},y_{2m(k)+1})\Big\}\Big). \end{split}$$

Letting $k \to \infty$ in the above inequality and using (3.7), (3.9-3.12) and using the continuities of ${\cal P}$ and ${\cal W}$, we have

$$\psi(\varepsilon) \leq \psi(\varepsilon) - \varphi(\varepsilon)$$
,

which is a contradiction by virtue of a property of φ .

Therefore, $\{y_{2n}\}$ is a Cauchy sequence. In view of (3.7), $\{y_n\}$ is also a Cauchy sequence in X.

Since X is complete then there exist a point $\mathcal Z$ in X such that

$$\begin{split} \lim_{n\to\infty}\,y_{2n} &= \lim_{n\to\infty}\,Sx_{2n} = \lim_{n\to\infty}\,fx_{2n+1} = z \quad \text{and} \\ \lim_{n\to\infty}\,y_{2n+1} &= \lim_{n\to\infty}\,Sx_{2n+1} = \lim_{n\to\infty}\,gx_{2n+2} = z. \end{split}$$

Since $S(X) \subset f(X) \cap g(X)$, then there exist a points u and $v \in X$ such that fu = z and gv = z.

We shall prove that fu = Su and gv = Sv.

For this firstly we have,

$$\psi(d(Su, fx_{2n+1})) = \psi(d(Su, Sx_{2n}))$$

$$\leq \psi(\max\{d(fu, gx_{2n}), d(Su, fu), d(Sx_{2n}, gx_{2n}), \frac{1}{2}[d(Su, gx_{2n}) + d(Sx_{2n}, fu)]\}) - \phi(\max\{d(fu, gx_{2n}), d(Su, fu), d(Sx_{2n}, gx_{2n})\}).$$

Taking limit $n \to \infty$ we have

$$\psi(d(Su, z)) \le \psi(\max\{d(z, z), d(Su, z), d(z, z), \frac{1}{2}[d(Su, z) + d(z, z)]\})$$
$$-\phi(\max\{d(z, z), d(Su, z), d(z, z)\})$$

$$\psi(d(Su, z)) \le \psi(\max\{0, d(Su, z), 0, \frac{1}{2}[d(Su, z) + 0]\}) - \varphi(\max\{0, d(Su, z), 0\})$$

$$\psi(d(Su,z)) \le \psi(d(Su,z)) - \varphi(d(Su,z)).$$

Which implies that $\varphi(d(Su, z)) = 0$. Hence d(Su, z) = 0, that is, z = Su.

Therefore z = fu = Su.

Now

$$\psi(d(gx_{2n+2}, Sv)) = \psi(d(Sx_{2n+1}, Sv))$$

$$\leq \psi(\max\{d(fx_{2n+1}, gv), d(Sx_{2n+1}, fx_{2n+1}), d(Sv, gv), \frac{1}{2}[d(Sx_{2n+1}, gv) + d(Sv, fx_{2n+1})]\})$$

$$-\varphi(\max\{d(fx_{2n+1}, gv), d(Sx_{2n+1}, fx_{2n+1}), d(Sv, gv)\}).$$

Taking limit $n \to \infty$ we have

$$\psi(d(z,S)) \leq \psi(\max\{d(z,z),d(z,z),d(S,yz),\frac{1}{2}[d(z,z)+d(S,yz)]\})$$

$$-\varphi(\max\{d(z,z),d(z,z),d(S,yz)\})$$

$$\psi(d(z,Sv)) \leq \psi(\max\{0,0,d(Sv,z),\frac{1}{2}[0+d(Sv,z)]\}) - \varphi(\max\{0,0,d(Sv,z)\})$$

$$\psi(d(z,Sv)) \leq \psi(d(z,Sv)) - \varphi(d(z,Sv)).$$

Which implies that $\varphi(d(z, Sv)) = 0$. Hence d(z, Sv) = 0, that is, z = Sv.

Therefore,
$$z = gv = Sv$$
. Thus $z = fu = Su = Sv = gv$.

Since pair of maps S and f are weakly compatible then Sfu = fSu, that is, Sz = fz.

Now we show that \mathcal{Z} is a fixed point of f.

$$\psi(d(fz,z)) = \psi(d(Sz,Sv))$$

$$\leq \psi(\max\{d(fz,gv),d(Sz,fz),d(Sv,gv),\frac{1}{2}[d(Sz,gv)+d(Sv,fz)]\})$$

$$-\varphi(\max\{d(fz,gv),d(Sz,fz),d(Sv,gv)\})$$

$$= \psi(\max\{d(fz,z),0,0,\frac{1}{2}[d(fz,z)+d(z,fz)\})-\varphi(\max\{d(fz,z),0,0\})$$

$$\psi(d(fz,z)) \leq \psi(d(fz,z))-\varphi(d(fz,z)).$$

Which implies that $\varphi(d(fz,z)) = 0$. Hence d(fz,z) = 0, that is, fz = z.

Therefore z = fz = Sz.

Similarly the pair of maps S and g are weakly compatible, then Sgv = gSv, that is, Sz = gz.

Now we show that $\,\mathcal{Z}\,$ is a fixed point of $\,\mathcal{g}\,.$

$$\psi(d(z,gz)) = \psi(d(Su,Sz))$$

$$\leq \psi(\max\{d(fu,gz),d(Su,fu),d(Sz,gz),\frac{1}{2}[d(Su,gz)+d(Sz,fu)]\})$$

$$-\phi(\max\{d(fu,gz),d(Su,fu),d(Sz,gz)\})$$

$$= \psi(\max\{d(z,gz),0,0,\frac{1}{2}[d(z,gz)+d(z,gz)]\}) - \phi(\max\{d(z,gz),0,0\})$$

$$\psi(d(z,gz)) \le \psi(d(z,gz)) - \varphi(d(z,gz))$$

Which implies that $\varphi(d(z, gz)) = 0$. Hence d(z, gz) = 0, that is, z = gz.

Therefore z = gz = Sz.

Thus z = Sz = fz = gz, and Z is a common fixed point of S, f and g.

Finally in order to prove the uniqueness of \mathcal{Z} , suppose that \mathcal{Z} and \mathcal{W} , $\mathcal{Z} \neq \mathcal{W}$ are common fixed points of S, f and g.

Then by (3.2), we obtain,

$$\psi(d(z, w)) = \psi(d(Sz, Sw))$$

$$\leq \psi(\max\{d(fz, gw), d(Sz, fz), d(Sw, gw), \frac{1}{2}[d(Sz, gw) + d(Sw, fz)]\}),$$

$$-\phi(\max\{d(fz, gw), d(Sz, fz), d(Sw, gw)\})$$

$$\psi(d(z, w)) \leq \psi(\max\{d(z, w), 0, 0, \frac{1}{2}[d(z, w) + d(z, w)]\}) - \phi(\max\{d(z, w), 0, 0\})$$

$$\psi(d(z, w)) \leq \psi(d(z, w)) - \phi(d(z, w)).$$

Which implies that $\varphi(d(z, w)) = 0$. Hence d(z, w) = 0, that is, z = w.

Corollary 3.1: Let (X,d) be a complete metric space. Let $S,f:X\to X$ be self-mappings such that for all $x,y\in X$,

$$S(X) \subset f(X),$$
 (3.13)

$$\psi(d(Sx, Sy)) \le \psi(\max\{d(fx, fy), d(Sx, fx), d(Sy, fy), \frac{1}{2}[d(Sx, fy) + d(Sy, fx)]\}) - \varphi(\max\{d(fx, fy), d(Sx, fx), d(Sy, fy)\}),$$
(3.14)

where $\varphi:[0,\infty)\to[0,\infty)$ is a continuous function with $\varphi(t)=0$ if and only if t=0 and $\psi:[0,\infty)\to[0,\infty)$ is an altering distance function. Then S and f have a coincidence point. Further if (S,f) is a weakly compatible pair, then S and f have a unique common fixed point.

Proof: By taking f = g in theorem 3.1, we get the proof.

Remark 3.1: If we take f as an identity map in Corollary 3.1, then we obtain Theorem 3.1 of [2].

REFERENCES

- 1. Ya.I. Alber and S. Guerre. Delabriere, *Principle of weakly contractive maps in Hilbert space*, In: New Results in Operation Theory, In: I. Goldberg, Yu. Lyubich (Eds) Advance and Appl., Vol. 98, Birkhauser Verlag (1997), 7-22.
- 2. B.S. Choudhury P. Konar, B.E. Rhoades, N. Metiya, Fixed point theorem for generalized weakly contractive mappings, Nonlinear Anal., 74(2011), 2116-2126.
- 3. R. Chugh and S. Kumar, *Common fixed point for weakly compatible maps*, Pro. Indian Acad. Sci., Vol.111 (2), (2001), 241-247.

- 4. G. Jungck, Compatible mapping and common fixed points, Int. Indian Math. and Math. Sci., 9(1986), 771-779.
- 5. G. Jungck and B.E. Rhoades, *Fixed point for set valued function without continuity*, Internat J. Pure and Appl. Math., 29(3) (1998),381-386.
- 6. M.S. Khan, M. Swaleh and S. Sessa, *Fixed point theorem by altering distance between the points*, Bull. Aust. Math. Soc., 30(1984), 1-9.
- 7. S.V.R. Naidu, Some fixed point theorems in metric spaces by altering distances, Chechoslovak Math. J., 53(1) (2003), 205-212.
- 8. O. Popescu, Fixed points for (ψ, φ) -weak contractions, Appl. Math. Letter, 24(2011), 1-4.
- 9. B.E. Rhoades, A comparison of various definitions of contractive mappings, Trans. Amer. Math. Soc. 226 (1977), 256-290.
- 10. B.E. Rhoades, Some theorem on weakly contractive maps, Nonlinear Anal. TMA, 47(4) (2001), 2683-2693.
- 11. K.P.R. Sastry and G.V.R. Babu, *Some fixed point theorems by altering distances between the points*, Indian J. Pure Appl. Math., 30(6), (1999), 641-647.
- 12. A. Singh and R.C. Dimri: A common fixed point theorem through generalized altering distance functions, Kochi J. Math., 6 (2011), 149-157.

Source of support: Nil, Conflict of interest: None Declared