International Journal of Mathematical Archive-4(1), 2013, 271-275 MA Available online through www.ijma.info ISSN 2229 - 5046

A COMMON FIXED POINT THEOREM FOR FOUR SELF MAPS ON A FUZZY METRIC SPACE UNDER S-B PROPERTY

K. P. R. Sastry¹, G. A. Naidu² and N. Umadevi^{3*}

¹8-28-8/1, Tamil Street, Chinna Waltair, Visakhapatnam-530017, India ²Department of Mathematics, Andhra University, Visakhapatnam-530003, India ³Department of Mathematics, Raghu Engineering College, Visakhapatnam-531 162, India

(Received on: 20-12-12; Revised & Accepted on: 23-01-13)

ABSTRACT

In this paper the concept of weak compatibility in a fuzzy metric space with S-B property has been applied to obtain a common fixed point theorem for four self maps on a fuzzy metric space.

Keywords: Fuzzy metric space, weak compatible maps and S-B property.

Mathematical Subject Classification (2010): 47H10, 54H25.

1. INTRODUCTION

The concept of fuzzy sets was introduced by Zadeh [11] in 1965. Since then, to use this concept in topology and analysis, many authors have extensively developed the theory of fuzzy sets and its applications. Kramosil and Michalek [5] have introduced the concept of fuzzy metric space in different ways. In 1988, Grabiec [4] extended the fixed point theorem of Banach [1] to fuzzy metric space. George and Veeramani [3] have modified the concept of fuzzy metric space introduced by Kramosil and Michalek [5]. They have also shown that every metric induces a fuzzy metric. Singh et. al. [8] proved various fixed point theorems using the concepts of semi-compatibility, compatibility and implicit relations in Fuzzy metric space. In this paper we prove a common fixed point theorem for four self maps under S-B property [9] and obtain Rajinder Sharma's [6] result as a corollary.

Definition 1.1: (**Zadeh.L.A.** [11]) A fuzzy set *A* in a nonempty set *X* is a function with domain *X* and values in [0,1].

Definition 1.2: (Schweizer.B. and Sklar. A. [7]) A function $*:[0,1] \times [0,1] \to [0,1]$ is said to be a continuous *t*-norm if * satisfies the following conditions:

For $a, b, c, d \in [0,1]$,

- (i) * is commutative and associative
- (ii) * is continuous
- (iii) $a * 1 = a \text{ for all } a \in [0,1]$
- (iv) $a * b \le c * d$ whenever $a \le c$ and $b \le d$

We observe that $a * b = \min\{a, b\}$ is a *t*-norm.

Definition 1.3: (Kramosil. I. and Michalek. J. [5]) A triple (X, M, *) is said to be a fuzzy metric space (FM space, briefly) if X is a nonempty set, * is a continuous t –norm and M is a fuzzy set on $X^2 \times [0, \infty)$ satisfying the following conditions:

For $x, y, z \in X$ and s, t > 0.

- (i) M(x, y, 0) = 0
- (ii) M(x, y, t) = 1 if and only if x = y.
- (iii) M(x, y, t) = M(y, x, t)
- (iv) $M(x,y,t) * M(y,z,s) \le M(x,z,t+s)$
- (v) $M(x, y, \cdot) : [0, \infty) \to [0,1]$ is left continuous.

Then *M* is called a fuzzy metric on *X*.

The function M(x, y, t) denotes the degree of nearness between x and y with respect to t.

Definition 1.4: (George.A. and Veeramani.P. [3]) Let (X, M, *) be a fuzzy metric space. Then,

- (i) A sequence $\{x_n\}$ in X is said to be convergent to a point $x \in X$ if $\lim_{n\to\infty} M(x_n, x, t) = 1 \ \forall t > 0$.
- (ii) A sequence $\{x_n\}$ in X is called a Cauchy sequence if

$$\lim_{n\to\infty} M(x_{n+n}, x_n, t) = 1 \ \forall \ t > 0 \ \text{and} \ p = 1, 2, ...$$

A FM -space in which every Cauchy sequence is convergent is said to be complete.

Definition 1.5: (Singh,B. and Jain,S. [8]) Two self maps S and T of a fuzzy metric space (X, M, *) are said to be weakly compatible if they commute at coincidence points, that is, Sx = Tx implies STx = TSx.

Definition 1.6: ([9], [6]) Let S and T be two self mappings of a fuzzy metric space(X, M, *). We say that S and T satisfy the property S-B if there exists a sequence $\{x_n\}$ in X such that $\lim_{n\to\infty} Sx_n = \lim_{n\to\infty} Tx_n = z$ for some $z\in X$.

Lemma 1.7: ([2], [9]) If for all $x, y \in X$, t > 0 and for a number $k \in (0,1)$,

$$M(x, y, kt) \ge M(x, y, t)$$
 then $x = y$.

In the rest of the paper, we assume that a fuzzy metric space (X, M, *) satisfies the following condition:

$$\lim_{t \to \infty} M(x, y, t) = 1 \text{ for all } x, y \in X. \tag{I}$$

Rajinder Sharma [6] proved the following:

Theorem 1.8 [6]: Let (X, M, *) be a fuzzy metric space with $t * t \ge t$ for all $t \in [0,1]$ and condition (I). Let A, B, S and T be mappings of X into itself such that

 $(1.8.1)A(X) \subset T(X)$ and $B(X) \subset S(X)$,

(1.8.2)(A, S) or (B, T) satisfies the property (S - B),

(1.8.3) there exists a constant $k \in (0,1)$ such that

$$M^{2p}(Ax, By, kt) \ge min\{M^{2p}(Sx, Ty, t), M^{q}(Sx, Ax, t), M^{q'}(Ty, By, t), M^{r}(Sx, By, t), M^{r'}(Ty, Ax, (2 - \alpha)t), M^{s}(Sx, Ax, t), M^{s'}(Ty, Ax, (2 - \alpha)t), M^{l}(Sx, By, t), M^{l'}(Ty, By, t)\}$$

for all $x, y \in X$, $\alpha \ge 0$, $\alpha \in (0,2)$, t > 0 and $0 < p, q, q', r, r', s, s', l, l' \le 1$ such that

$$2p = q + q' = r + r' = s + s' = l + l'$$
.

(1.8.4) the pairs (A, S) and (B, T) are weakly compatible

(1.8.5) one of A(X), B(X), S(X) or T(X) is a closed subset of X.

Then A, B, S and T have a unique common fixed point in X.

2. MAIN RESULT

In this section we present our main result and obtain theorem 1.8 as a corollary.

Theorem 2.1:Let (X, M, *) be a fuzzy metric space and * is min t - norm with condition (I). Let A, B, S and T be appings of X into itself such that

- $(2.1.1)A(X) \subset T(X)$ and $B(X) \subset S(X)$, T(X) is a closed subset of X.
- (2.1.2) (B,T) satisfies the property (S-B),
- (2.1.3) there exists a constant $k \in (0,1)$ and $\alpha \in (0,2)$, such that $k < \alpha, k + \alpha < 2$ and satisfies

$$M(Ax, By, kt) \ge min\{M(Sx, Ty, t), M(Sx, Ax, t), M(Ty, By, t), M(Sx, By, \alpha t), M(Ty, Ax, (2 - \alpha)t)\} \quad \forall t > 0.$$

(2.1.4) (A, S) and (B, T) are weakly compatible.

Then A, B, S and T have a unique common fixed point in X.

K. P. R. Sastry¹, G. A. Naidu² and N. Umadevi^{3*}/ A common fixed point theorem for four self maps on a fuzzy metric space under S-B property/IJMA- 4(1), Jan.-2013.

Proof: Without loss of generality we suppose that (B, T) satisfies the S-B property, so there exists a sequence $\{x_n\}$ in X such that

$$\lim_{n\to\infty} Bx_n = \lim_{n\to\infty} Tx_n = z \text{ for some } z \in X.$$
 (J)

Since $B(X) \subset S(X)$ there exists a sequence $\{y_n\}$ in X such that $Bx_n = Sy_n$.

Hence $\lim_{n\to\infty} Sy_n = z$. Now we prove that $\lim_{n\to\infty} Ay_n = z$. By (2.1.3),

$$M(Ay_n, Bx_n, kt) \geq \min \{ M(Sy_n, Tx_n, t), M(Sy_n, Ay_n, t), M(Tx_n, Bx_n, t), M(Sy_n, Bx_n, \alpha t), M(Tx_n, Ay_n, (2 - \alpha)t) \}$$

$$= \min \{ M(Bx_n, Tx_n, t), M(Bx_n, Ay_n, t), M(Tx_n, Bx_n, t), M(Bx_n, Bx_n, \alpha t), M(Tx_n, Ay_n, (2 - \alpha)t) \}$$

$$= \min \{ M(Tx_n, Bx_n, t), M(Bx_n, Ay_n, t), 1, M(Tx_n, Ay_n, (2 - \alpha)t) \}$$

$$\lim_{n\to\infty}\inf M(Ay_n,Bx_n,kt)\geq \min \left\{\lim_{n\to\infty}\inf M(Tx_n,Bx_n,t),\lim_{n\to\infty}\inf M(Bx_n,Ay_n,t)\right\} \\ \lim_{n\to\infty}\inf M(Tx_n,Ay_n,(2-\alpha)t) \text{ by (J)} \\ \geq \lim_{n\to\infty}\inf M(Ay_n,Bx_n,\lambda t) \text{ where } \lambda=\min\{1,(2-\alpha)\}$$

$$\geq \lim_{n\to\infty} \inf M(Ay_n, Bx_n, kt)$$
 (since $k < \lambda$)

$$\lim_{n\to\infty}\inf M(Ay_n,Bx_n,t)\geq\inf M(Bx_n,Ay_n,\left(\frac{\lambda}{k}\right)t)\geq\ldots\geq\lim_{n\to\infty}\inf M(Bx_n,Ay_n,\left(\frac{\lambda}{k}\right)^mt)$$

$$\lim_{n\to\infty}\inf M(Bx_n,Ay_n,(\frac{\lambda}{k})^mt)\to 1$$
 as $m\to\infty$

$$\Rightarrow \lim_{n\to\infty}\inf M(Ay_n, Bx_n, t) \geq 1$$

$$\Rightarrow \lim_{n\to\infty} \inf M(Ay_n, Bx_n, t) = 1$$

So
$$Ay_n \to z$$
 as $Bx_n \to z$.

Since T(X) is a closed subset of X, $\exists v \in X \ni Tv = z \in X$.

We have $\lim_{n\to\infty} Ay_n = \lim_{n\to\infty} Tx_n = \lim_{n\to\infty} Sy_n = \lim_{n\to\infty} Bx_n = Tv$.

By (2.1.3),

$$M(Ay_n, Bv, kt) \ge min\{M(Sy_n, Tv, t), M(Sy_n, Ay_n, t), M(Tv, Bv, t), M(Sy_n, Bv, \alpha t), M(Tv, Ay_n, (2 - \alpha)t)\}$$

 \therefore On letting $n \to \infty$, we get

$$M(z, Bv, kt) \ge min\{1, 1, M(z, Bv, t), M(z, Bv, \alpha t), 1\}$$

= $min\{M(z, Bv, t), M(z, Bv, \alpha t)\}$
 $\ge M(z, Bv, \lambda t)$ where $\lambda = min\{1, \alpha\}$

$$\Rightarrow M(z, Bv, kt) \ge M(z, Bv, t) \ \forall \ t > 0$$

By lemma (1.7), z = Bv. $\therefore Tv = Bv$.

Since (B,T) is weakly compatible, $BTv = TBv \Rightarrow Bz = Tz$.

Since $B(X) \subset S(X)$, $\exists u \in X \ni Su = Bv$. By (2.1.3)

$$M(Au, Bv, kt) \ge min\{M(Su, Tv, t), M(Su, Au, t), M(Tv, Bv, t), M(Su, Bv, \alpha t), M(Tv, Au, (2 - \alpha)t)\}$$

$$\begin{split} M(Au, Tv, kt) &\geq \min \left\{ M(Bv, Tv, t), M(Tv, Au, t), M(Tv, Bv, t), M(Tv, Bv, \alpha t), M(Tv, Au, (2-\alpha)t) \right\} \\ &\geq \min \{ M(Tv, Au, t), M(Tv, Au, (2-\alpha)t) \} \\ &\geq M(Tv, Au, \lambda t) \quad \text{where } \lambda = \min \{ 1, (2-\alpha) \} \end{split}$$

K. P. R. Sastry¹, G. A. Naidu² and N. Umadevi^{3*}/ A common fixed point theorem for four self maps on a fuzzy metric space under S-B property/IJMA- 4(1), Jan.-2013.

$$\Rightarrow M(Au, Tv, kt) \ge M(Au, Tv, t) \ \forall \ t > 0$$

 \therefore By lemma (1.7) Au = Tv.

Since (A, S) is weakly compatible, we have $ASu = SAu \Rightarrow Az = Sz$.

By (2.1.3),

$$M(Au, Bz, kt) \ge min\{M(Su, Tz, t), M(Su, Au, t), M(Tz, Bz, t), M(Su, Bz, \alpha t), M(Tz, Au, (2 - \alpha)t)\}$$

$$\geq M(z, Tz, \lambda t)$$
 where $\lambda = min\{1, \alpha, (2 - \alpha)\}$

- $\therefore M(z,Tz,kt) \ge M(z,Tz,t) \ \forall \ t > 0$
- \therefore By lemma (1.7), z = Tz.

By (2.1.3),

$$M(Az, Bv, kt) \ge min\{M(Sz, Tv, t), M(Sz, Az, t), M(Tv, Bv, t), M(Sz, Bv, \alpha t), M(Tv, Az, (2 - \alpha)t)\}$$

$$M(Az, z, kt) \ge \min \{ M(Az, z, t), M(Az, Az, t), M(Tv, Tv, t), M(Az, z, \alpha t), M(z, Az, (2 - \alpha)t) \}$$

$$\ge \min \{ M(Az, z, t), 1, 1, M(Az, z, \alpha t), M(z, Az, (2 - \alpha)t) \}$$

$$\ge M(Az, z, \lambda t) \text{ where } \lambda = \min \{ 1, \alpha, (2 - \alpha) \}$$

$$\Rightarrow M(Az, z, kt) \ge M(Az, z, t) \ \forall \ t > 0$$

 \therefore By lemma (1.7) z = Az

$$\Rightarrow z = Tz = Bz = Sz = Az.$$

 \Rightarrow z is a common fixed point of A, B, S and T.

Uniqueness: Let p, q be two common fixed points of A, B, S and T. Then by (2.1.3),

$$\begin{split} M(Ap, Bq, kt) & \geq \min \left\{ M\left(Sp, Tq, t\right), M(Sp, Ap, t), M(Tq, Bq, t), \ M(Sp, Bq, \alpha t), M(Tq, Ap, (2-\alpha)t) \right\} \\ & \geq \min \left\{ M\left(p, q, t\right), M(p, p, t), M(q, q, t), M(p, q, \alpha t), M(q, p, (2-\alpha)t) \right\} \\ & \geq \min \left\{ M\left(p, q, t\right), 1, 1, M(p, q, \alpha t), M(q, p, (2-\alpha)t) \right\} \\ & \geq M(p, q, \lambda t) \quad \text{where } \lambda = \min \{1, \alpha, (2-\alpha)\} \end{split}$$

- $\Rightarrow M(p,q,kt) \ge M(p,q,\lambda t)$
- $\Rightarrow M(p,q,kt) \ge M(p,q,t)$
- \therefore By lemma (1.7), p = q. This completes the proof of the theorem.

Corollary: 2.2 Let (X, M, *) be a fuzzy metric space and * is min t – norm with condition (I). Let A, B, S and T be mappings of X into itself such that

 $(2.2.1) A(X) \subset T(X)$ and $B(X) \subset S(X)$, T(X) is a closed subset of X.

(2.2.2) (B,T) satisfies the property (S-B),

K. P. R. Sastry¹, G. A. Naidu² and N. Umadevi^{3*}/ A common fixed point theorem for four self maps on a fuzzy metric space under S-B property/IJMA- 4(1), Jan.-2013.

(2.2.3) there exists a constant $k \in (0,1)$, $\mu > 0$ and $\alpha \in (0,2)$, such that $k < \alpha, k + \alpha < 2$

 $M^{\mu}(Ax, By, kt) \ge min\{M^{\mu}(Sx, Ty, t), M^{\mu}(Sx, Ax, t), M^{\mu}(Ty, By, t), M^{\mu}(Sx, By, \alpha t), M^{\mu}(Ty, Ax, (2 - \alpha)t)\}$

(2.2.4) (A, S) and (B, T) are weakly compatible.

Then A, B, S and T have a unique common fixed point in X.

Proof:

$$M^{\mu}(Ax, By, kt) \ge min\{M^{\mu}(Sx, Ty, t), M^{\mu}(Sx, Ax, t), M^{\mu}(Ty, By, t)M^{\mu}(Sx, By, \alpha t), M^{\mu}(Ty, Ax, (2 - \alpha)t)\}$$

$$\Rightarrow M(Ax, By, kt) \geq \min \{ M(Sx, Ty, t), M(Sx, Ax, t), M(Ty, By, t), M(Sx, By, \alpha t), M(Ty, Ax, (2 - \alpha)t) \}$$

Hence the corollary follows.

Note: Theorem 1.8 follows as a corollary to the corollary (2.2), if $k < \alpha < 1$ and $k + \alpha < 2$, since in this case ,(1.8.3) \Rightarrow (2.2.3).

Also $t * t \ge t$ for all $t > 0 \implies *$ is the min = t - norm.

We conclude the paper with an open problem.

Open problem: If the min(m) - norm is replaced by any continuous t - norm, is theorem 2.1 still true?

ACKNOWLEDGEMENT

The third author (N.U) is grateful to Raghu Engineering College authorities for giving permission and the management of SITAM for giving facilities to carry on this research.

REFERENCES

- [1] Banach.S.Theoriedesoperations Lineaires, Monografie Mathematyczne, Warsawa, Poland, 1932.
- [2] Cho, Y.J., Fixed points in fuzzy metric spaces, J. Fuzzy Math., 5(4) (1997), 949-962.
- [3] George. A and Veeramani. P, On some results in fuzzy metric spaces, Fuzzy Sets and Systems, 64(1994), 395-399.
- [4] Grabiec. M, Fixed points in fuzzy metric space, fuzzy sets and systems, 27(1988), 385-389.
- [5] Kramosil.I and Michalek.J, Fuzzy metric and statistical metric spaces, Ky-bernetika, 11(1975), 336-344. . .
- [6] Rajinder Sharma, Common fixed point of weakly compatible mappings under a new property in fuzzy metric spaces, vol2, no4 (2012), Network and Complex Systems.
- [7] Schweizer.B and Sklar.A, Probabilistic Metric Spaces, North Holland, Amsterdam, 1983.
- [8] Singh.B and Jain.S. Weak compatibility and fixed point theorems in fuzzy metric spaces, Ganita, 56(2) (2005), 167-176.
- [9] Sharma, Sushil and Bamboria, D. (2006). Some new common fixed point theorems in fuzzy metric space under strict contractive conditions, *J. Fuzzy Math.*, 14, No.2, 1-11.
- [10] Mishra, S. N., Sharma, N. and Singh, S. L. (1994). Common fixed points of maps in fuzzy metric spaces. *Internat. J. Math. Sci.*, 17, 253-258
- [11] Zadeh.L.A, Fuzzy sets, Infor. and Control, 8(1965), 338-353.

Source of support: Nil, Conflict of interest: None Declared