# STAR COLOURING OF CENTRAL GRAPHS

<sup>1</sup>Mrs. D. Vijayalakshmi & <sup>2</sup>P. Poonkodi\*

<sup>1</sup>Assistant Professor and Head, Department of Mathematics CA, Kongunadu Arts and Science College, Coimbatore-29, India

<sup>2</sup>Research Scholar, Department of Mathematics, Kongunadu Arts and Science College, Coimbatore-29, India

(Received on: 17-10-12; Revised & Accepted on: 06-03-13)

#### ABSTRACT

 $m{I}$ n this paper, we discuss about the star colouring and its chromatic number of a Central graph of Complete bipartite graph, Complete graph, Cycle, Path denoted by  $C(K_{m,n})$ ,  $C(K_n)$ ,  $C(C_n)$ ,  $C(P_n)$  respectively.

Keywords: Chromatic number, Central graph, Star colouring, Star chromatic number.

Subject Classification: 05C15, 05C75.

#### 1. INTRODUCTION

Let G be a finite undirected graph with no loops and multiple edges. The Central graph of a graph G [11], C(G) is obtained by subdividing each edge of G exactly once and joining all the non-adjacent vertices of G.

The notion of star chromatic number was introduced by Grunbaum in 1973. A Star colouring of a graph G[1, 4, 5] is a proper vertex colouring (no two adjacent vertices of G have the same colour) such that every path of G on four vertices is not bicoloured. The minimum number of colours needed to star colour G is called as Star chromatic number and is denoted by Xs(G).

A number of results exist for star colourings of graphs formed by certain graph operations. Guillaume Fertin et al. [4] gave the exact value of the star chromatic number of different families of graphs such as Trees, Cycles, Complete bipartite graphs, Outerplanar graphs and 2-dimensional grids. They also investigated and gave bounds for the star chromatic number of other families of graphs, such as planargraphs, hypercubes, d-dimensional grids  $(d \ge 3)$ , ddimensional tori  $(d \ge 2)$ , graphs with bounded tree width and cubic graphs.

Albertson et al. [1] showed that it is NP-complete to determine whether  $Xs(G) \le 3$ , even when G is a graph that is both planar and bipartite. The problem of finding star colouring is NP-hard and remains so even for bipartite graphs [9].

# 2. THE STAR COLOURING OF $C(K_{m,n})$

- 2.1 Definition: A graph whose vertices can be partitioned into two sets such that every edge joins a vertex in one set with a vertex in the other and each vertex in one set is joined to each vertex in the other by exactly one edge.
- **2.2 Theorem:** Let  $K_{m,n}$  be a Complete bipartite graph on m and n vertices. Then  $X_s[C(K_{m,n})] = \text{Max } \{m, n\}$ .

**Proof:** Consider the Complete bipartite graph  $K_{m,n}$  with bipartitions (X,Y) where  $X=\{v_1,v_2,\ldots,v_m\}$  and  $Y = \{u_1, u_2, \dots, u_n\}$  in  $C(K_{m,n})$ . Let  $v_i$  and  $u_j$  be the vertices of  $K_{m,n}$  where  $\{v_i: 1 \le i \le m\}$  and  $\{u_j: 1 \le j \le n\}$ . By the definition of Complete bipartite graph, every vertex from  $v_i$ :  $1 \le i \le m$  is adjacent to every vertex in  $u_i$ :  $1 \le j \le n$ . Let  $e_{ii}$ :  $1 \le i \le m$ ,  $1 \le j \le n$ } be the set of edges of  $K_{m,n}$ . By the definition of Central graph, the edges  $\{e_{ii}: 1 \le i \le m, 1 \le j \le m\}$ n be subdivided by the vertex  $\{w_{ii}: 1 \le i \le m, 1 \le j \le n\}$  in  $C(K_{m,n})$ . Let  $w_{ii}$  represents the newly added vertex in the edge joining  $v_i$  and  $u_j$  in  $C(K_{m,n})$ . So  $(v_i, 1 \le i \le m)$ ,  $(u_j, 1 \le j \le n)$  are complete graphs in  $C(K_{m,n})$ .

Now assign a colouring to the vertices of  $C(K_{mn})$  as follows.

#### **Case 1:** When $m \ge n$

Assign the colour  $c_i$  to the vertex  $v_i$  for i=1,2,...m and assign the colour  $c_j$  to the vertex  $u_j$  for j=1,2,...m. So for a proper colouring we require minimum m colours to colour the vertices of  $v_i$  and  $u_j$ , which produces a star colouring. Next we assign a colouring to the vertices  $\{w_{ij}: 1 \le i \le m, 1 \le j \le n\}$ . Suppose if we assign any new colour  $c_{m+1}$  to the vertices  $w_{ij}$ ,  $\{w_{ij}: 1 \le i \le m, 1 \le j \le n\}$ , it will not produce a star colouring because none of the vertices  $w_{ij}$  does not realize its own colour. Therefore, the only possibility is to assign an existing colour to the vertices  $w_{ij}$ . Hence by colouring procedure the above said colouring is minimal and star colouring.

## Case 2: When $n \ge m$

Assign the colour  $c_i$  to the vertex  $v_i$  for i=1,2,....m and assign the colour  $c_j$  to the vertex  $u_j$  for j=1,2,.....m. So for a proper colouring we require minimum n colours to colour the vertices of  $v_i$  and  $u_j$ , which produces a star colouring. Next we assign a colouring to the vertices  $\{w_{ij}: 1 \le i \le m, 1 \le j \le n\}$ . Suppose if we assign any new colour  $c_{n+1}$  to the vertices  $w_{ij}$ ,  $\{w_{ij}: 1 \le i \le m, 1 \le j \le n\}$ , it will not produce a star colouring because none of the vertices of  $w_{ij}$  does not realize its own colours. Therefore, the only possibility is to assign an existing colour to the vertices  $w_{ij}$ . Hence by colouring procedure the above said colouring is minimal and star colouring.

### Case 3: When m = n

In this case m will become n. Thus we get n+1 complete graph for n vertices. Proceeding similarly as in case (1), we get  $Xs[C(K_{m,n})] = n$ 

$$\therefore X_s [C(K_{m,n})] = \text{Max } \{m, n\}.$$

# **Example:**



Figure: 1  $X_s[C(K_{5.4})] = 5$ 

### 3. STAR COLOURING OF $C(K_n)$

**3.1 Definition:** A complete graph is a simple graph G with n vertices in which every vertex is adjacent to each other. Each vertex is of degree n-l and is denoted by  $K_n$ 

**3.2 Theorem:** Let  $K_n$  be a complete graph on *n*-vertices. Then  $X_s[C(K_n)] = n, n > 3$ 

**Proof:** Consider a complete graph  $K_n$  on n-vertices, n>3. Let  $v_{ij}$  represents the newly added vertex in the edge joining  $v_i$  and  $v_i$ .

Now assign a colouring to the vertices of  $C(K_n)$  as follows. Consider the colour class  $C = \{c_1, c_2, c_3, \ldots, c_n\}$ . Assign the colour  $c_i$  to the vertex  $v_i$  for  $1 \le i \le n$ . So for a proper colouring, we need minimum n colours to colour the vertices of  $v_i$  which results in star colouring.

Next we assign a colouring to the vertices  $v_{ij}$  for  $i = 1, 2, \dots, n$ . Suppose if we assign a new colour  $c_{n+1}$  to vertex  $v_{ij}$  for  $i = 1, 2, \dots, n$  then it will not be a star colouring because none of the vertices  $v_{ij}$ 's realizes its own colours. Thus to make a proper star colouring, we use only the existing colours to the vertex to realizes its own colour. Therefore, we have to assign only the existing colours to the vertices of  $v_{ij}$ 's. Thus colouring procedure is minimal and thus results in star colouring.

$$\therefore X_s [C(K_n)] = n, n > 3$$

### **Example:**



**Figure: 2**  $X_s [C(K_8)] = 8$ 

## 4. STAR COLOURING OF CYCLE $(C_n)$

**4.1 Definition:** A Cycle is a circuit in which no vertex except the first (which also the last) appears more than once. A Cycle with n vertices is denoted as  $C_n$ .

**4.2Theorem:** Let  $C_n$  be the Cycle of length n, n>3 then  $X_s[C(C_n)] = n-2$ .

**Proof:** Let  $C_n$  be the Cycle of length n with vertices  $v_1$ ,  $v_2$ ,  $v_3$ ..... $v_n$ . Let  $v_{ij}$  represents the newly added vertex in the edge joining  $v_i$  and  $v_j$ . Now in  $C(C_n)$ , we can note that the vertex  $v_i$  is adjacent with all vertices except  $v_{i+1}$  and  $v_{i-1}$  for i=1,2,3,....n-1.  $v_1$  is adjacent with all the vertices except  $v_2$  and  $v_n$ .  $v_n$  is adjacent with all the vertices except  $v_{n-1}$  and  $v_1$ .

Now assign a star colouring to the vertices of  $C(C_n)$  as follows. Consider the colour class  $C = \{c_1, c_2, c_3....c_n\}$ . Suppose if we assign the colour  $c_i$  to the vertices  $v_i$  for i=1, 2...n, it require n distinct colours which will not result in star colouring.

Thus we assign the same colour to the non-adjacent vertices. Assign  $c_i$  to  $v_i$  and  $v_{i+1}$ . Suppose if we assign  $c_1$  to  $v_1$  and  $v_2$  as they are non adjacent in  $C(C_n)$ . Assign  $c_2$  to  $v_3$  and  $v_4$  as they are non adjacent in  $C(C_n)$ . Assign  $c_3$  to  $v_5$  and  $v_6$  as they are non adjacent in  $C(C_n)$ . As the same, we cannot assign the same colour to all the non-adjacent vertices  $v_i$  and  $v_{i+1}$ .

Due to the above mentioned non adjacency of  $v_i$ 's this colouring will not be a star colouring. Thus to make a star colouring, we should assign a proper colouring to  $v_{ij}$ 's. Suppose if we assign the new colour  $c_{i+1}$  to the vertex  $v_{ij}$ , for all  $1 \le i \le n$ , which does not produces a star colouring. So we cannot assign new colours to the vertex  $v_{ij}$ . Thus assign only the existing colours to the vertices of  $v_{ij}$ 's. So the colouring procedure is minimal and thus results in star colouring.

$$X_s[C(C_n)] = n-2$$

## **Example:**



Figure: 3  $X_s[C(C_8)] = 6$ 

### 5. STAR COLOURING OF Path (P<sub>n</sub>)

**5.1 Definition:** A Path is a sequence of consecutive edges in a graph and the length of the Path is the number of edges traversed. A Path with n vertices is denoted as  $P_n$ .

**5.2 Theorem:** For any Path  $P_n$  of n > 3, then  $X_s$  [ $C(P_n)$ ] = n-2.

**Proof:** Let  $P_n$  be the Path of length n-1 with vertices  $v_1, v_2, v_3, \dots, v_n$ . Let  $v_{ij}$  represents the newly added vertex in the edge joining  $v_i$  and  $v_j$ . Now in  $C(P_n)$ , we can note that the vertex  $v_i$  is adjacent with all vertices except  $v_{i+1}$  and  $v_{i-1}$  for  $i=1,2,3,\dots,n-1$ .  $v_1$  is adjacent with all the vertices except  $v_2$  and  $v_n$ .  $v_n$  is adjacent with all the vertices except  $v_{n-1}$  and  $v_1$ .

Now assign a star colouring to the vertices of  $C(P_n)$  as follows. Consider the colour class  $C = \{c_1, c_2, c_3, ..., c_n\}$ . Suppose assign the colour  $c_i$  to the vertices  $v_i$  for i=1, 2,3,...,n it require n distinct colours which will not result in star colouring.

So we assign the same colour to the non-adjacent vertices. Assign  $c_i$  to  $v_i$  and  $v_{i+1}$ . Suppose if we assign  $c_1$  to  $v_1$  and  $v_2$  as they are non adjacent in  $C(P_n)$ . Assign  $c_2$  to  $v_3$  and  $v_4$  as they are non adjacent in  $C(P_n)$ . Assign  $c_3$  to  $v_5$  and  $v_6$  as they are non adjacent in  $C(P_n)$ . As the same, we cannot assign the same colour to all the non-adjacent vertices  $v_i \& v_{i+1}$ .

## <sup>1</sup>Mrs. D. Vijayalakshmi & <sup>2</sup>P. Poonkodi\*/ STAR COLOURING OF CENTRAL GRAPHS / IJMA- 4(3), March.-2013.

Due to the above mentioned non adjacency of  $v_i$ 's this colouring will not be a star colouring. Thus to make a star colouring, we should assign a proper colouring to  $v_{ij}$ 's. Suppose if we assign the colour  $c_{i+1}$  to the vertex  $v_{ij}$ , for all  $1 \le i \le n$ , which does not produces star colouring. So we cannot assign new colours to the vertex  $v_{ij}$ . Thus assign only the existing colours to the vertices of  $v_{ij}$ 's. So the colouring procedure is minimal and thus results in star colouring.

$$\therefore X_s [C(P_n)] = n-2.$$

#### **Example:**



**Figure: 4**  $X_s[C(P_7)] = 5$ 

#### REFERENCES

- [1] Albertson M O, Chappell G G, Kier stead H A et al 'Colouring with no 2 colored p4's' [J], Electronic Journal of Combinatorics 2004, 11:1-13.
- [2] Arundhadhi R and Sattanathan.S, 'Acyclic colouring of Central graphs', International Journal of Computer Applications, Volume -38, 12, 2012.
- [3] Bondy J. A. and Murthy U.S.R., 'Graph Theory with Applications', London: MacMillan (1976).
- [4] Fertin G,Raspaud A, Reed B, 'Star Colouring of Graphs' [J], Journal in Graph Theory, 2004, 47:163-182.
- [5] Grunbaum B, 'Acyclic Colouring of Planar Graphs', Israel Journal of Mathematics, 1973, 14:390-408.
- [6] Hongyong F U, De Zheng Xie , 'A note on Star Chromatic Number of Graphs', Journal of Mathematical Research and Exposition, Volume -30, 5, 2010
- [7] Thilagavathi K and Shahnasbanu, 'Acyclic Colouring of Star Graph Families', International Journal of Computer Applications, Volume-7, 2, 31-33, 2010.
- [8] Thilagavathi K and Vernold Vivin J and Akbar Ali M 'On Harmonious Colouring of Central Graphs' Advances and Application in Discrete Mathematics, 2, 17-33 (2009)
- [9] Thomas F, Coleman and Jin-Yi Cai, 'The Cyclic Coloring Problem and Estimation of Sparse Hessian Matrices', SIAM Journal of Algebraic and Discrete Mathematics, 7 (1986), 221-235.
- [10] Vernold V.J, Venkatachalam M, 'A note on Star colouring of Star graph families', preprint.
- [11] Vernold V.J, Venkatachalam M, 'A note on Star colouring of Central graph of Bipartite Graph and Corona Graph of Complete Graph with Path and Cycles, Journal of Combinatorics, 2012, Volume -1, 31-34.
- [12] Vernold V. J, Venkatachalam M, and Ali Akbar M M, 'A Note on Achromatic Colouring of Star Graph Families', 2009 b, Filomat 23:251-255.

Source of support: Nil, Conflict of interest: None Declared