International Journal of Mathematical Archive-4(3), 2013, 13-16 MMA Available online through www.ijma.info ISSN 2229-5046

STAR COLOURING OF CENTRAL GRAPHS

${ }^{1}$ Mrs. D. Vijayalakshmi \& ${ }^{2}$ P. Poonkodi*
${ }^{1}$ Assistant Professor and Head, Department of Mathematics CA, Kongunadu Arts and Science College, Coimbatore-29, India
${ }^{2}$ Research Scholar, Department of Mathematics, Kongunadu Arts and Science College, Coimbatore-29, India

(Received on: 17-10-12; Revised \& Accepted on: 06-03-13)

Abstract

In this paper, we discuss about the star colouring and its chromatic number of a Central graph of Complete bipartite graph, Complete graph, Cycle, Path denoted by $C\left(K_{m, n}\right), C\left(K_{n}\right), C\left(C_{n}\right), C\left(P_{n}\right)$ respectively.

Keywords: Chromatic number, Central graph, Star colouring, Star chromatic number.
Subject Classification: 05C15, 05C75.

1. INTRODUCTION

Let G be a finite undirected graph with no loops and multiple edges. The Central graph of a graph G [11], $C(G)$ is obtained by subdividing each edge of G exactly once and joining all the non-adjacent vertices of G.

The notion of star chromatic number was introduced by Grunbaum in 1973. A Star colouring of a graph $G[1,4,5]$ is a proper vertex colouring (no two adjacent vertices of G have the same colour) such that every path of G on four vertices is not bicoloured. The minimum number of colours needed to star colour G is called as Star chromatic number and is denoted by $X s(G)$.

A number of results exist for star colourings of graphs formed by certain graph operations. Guillaume Fertin et al. [4] gave the exact value of the star chromatic number of different families of graphs such as Trees, Cycles, Complete bipartite graphs, Outerplanar graphs and 2-dimensional grids. They also investigated and gave bounds for the star chromatic number of other families of graphs, such as planargraphs, hypercubes, d-dimensional grids ($d \geq 3$), d dimensional tori ($d \geq 2$), graphs with bounded tree width and cubic graphs.

Albertson et al. [1] showed that it is NP-complete to determine whether $X s(G) \leq 3$, even when G is a graph that is both planar and bipartite. The problem of finding star colouring is $N P$-hard and remains so even for bipartite graphs [9].

2. THE STAR COLOURING OF $C\left(K_{m, n}\right)$

2.1 Definition: A graph whose vertices can be partitioned into two sets such that every edge joins a vertex in one set with a vertex in the other and each vertex in one set is joined to each vertex in the other by exactly one edge.
2.2 Theorem: Let $K_{m, n}$ be a Complete bipartite graph on m and n vertices. Then $X_{s}\left[C\left(K_{m, n}\right)\right]=$ Max $\{m, n\}$.

Proof: Consider the Complete bipartite graph $K_{m, n}$ with bipartitions (X, Y) where $X=\left\{v_{1}, v_{2}, \ldots \ldots . . v_{m}\right\}$ and $Y=\left\{u_{1}, u_{2}, \ldots \ldots . . u_{n}\right\}$ in $C\left(K_{m, n}\right)$. Let v_{i} and u_{j} be the vertices of $K_{m, n}$ where $\left\{v_{i}: 1 \leq i \leq m\right\}$ and $\left\{u_{j}: 1 \leq j \leq n\right\}$. By the definition of Complete bipartite graph, every vertex from $v_{i:} 1 \leq i \leq m$ is adjacent to every vertex in $u_{j}: 1 \leq j \leq n$. Let $e_{i j}$: $\left.1 \leq i \leq m, 1 \leq j \leq n\right\}$ be the set of edges of $K_{m, n}$. By the definition of Central graph, the edges $\left\{e_{i j}\right.$: $1 \leq i \leq m, 1 \leq j \leq$ $n\}$ be subdivided by the vertex $\left\{w_{i j}\right.$: $\left.1 \leq i \leq m, 1 \leq j \leq n\right\}$ in $C\left(K_{m, n}\right)$. Let $w_{i j}$ represents the newly added vertex in the edge joining v_{i} and u_{j} in $C\left(K_{m, n}\right)$. So ($\left.v_{i: 1} 1 \leq i \leq m\right),\left(u_{j}: 1 \leq j \leq n\right)$ are complete graphs in $C\left(K_{m, n}\right)$.

Now assign a colouring to the vertices of $C\left(K_{m, n}\right)$ as follows.

[^0]Case 1: When $m \geq n$
Assign the colour c_{i} to the vertex v_{i} for $i=1,2, \ldots . . m$ and assign the colour c_{j} to the vertex u_{j} for $j=1,2, \ldots \ldots .$. . So for a proper colouring we require minimum m colours to colour the vertices of v_{i} and u_{j}, which produces a star colouring. Next we assign a colouring to the vertices $\left\{w_{i j}: 1 \leq i \leq m, l \leq j \leq n\right\}$. Suppose if we assign any new colour $c_{\mathrm{m}+1}$ to the vertices $w_{i j}$, $\left\{w_{i j}: 1 \leq i \leq m, l \leq j \leq n\right\}$, it will not produce a star colouring because none of the vertices $w_{i j}$ does not realize its own colour. Therefore, the only possibility is to assign an existing colour to the vertices $w_{i j}$. Hence by colouring procedure the above said colouring is minimal and star colouring.

Case 2: When $n \geq m$
Assign the colour c_{i} to the vertex v_{i} for $i=1,2, \ldots . . m$ and assign the colour c_{j} to the vertex u_{j} for $j=1,2, \ldots \ldots \ldots . .$. . So for a proper colouring we require minimum n colours to colour the vertices of v_{i} and u_{j}, which produces a star colouring. Next we assign a colouring to the vertices $\left\{w_{i j}: 1 \leq i \leq m, l \leq j \leq n\right\}$. Suppose if we assign any new colour $c_{\mathrm{n}+1}$ to the vertices $w_{i j}$, $\left\{w_{i j}: 1 \leq i \leq m, l \leq j \leq n\right\}$, it will not produce a star colouring because none of the vertices of $w_{i j}$ does not realize its own colours. Therefore, the only possibility is to assign an existing colour to the vertices $w_{i j}$. Hence by colouring procedure the above said colouring is minimal and star colouring.

Case 3: When $m=n$
In this case m will become n. Thus we get $n+1$ complete graph for n vertices. Proceeding similarly as in case (1), we get $X s\left[C\left(K_{m, n}\right)\right]=n$

$$
\therefore X_{s}\left[C\left(K_{m, n}\right)\right]=\operatorname{Max}\{m, n\}
$$

Example:

Figure: $1 \quad X_{s}\left[C\left(K_{5,4}\right)\right]=5$

3. STAR COLOURING OF $C\left(K_{n}\right)$

3.1 Definition: A complete graph is a simple graph G with n vertices in which every vertex is adjacent to each other. Each vertex is of degree $n-1$ and is denoted by K_{n}
3.2 Theorem: Let K_{n} be a complete graph on n-vertices .Then $X_{s}\left[C\left(K_{n}\right)\right]=n, n>3$

Proof: Consider a complete graph K_{n} on n-vertices, $n>3$. Let $v_{i j}$ represents the newly added vertex in the edge joining v_{i} and v_{j}.

Now assign a colouring to the vertices of $C\left(K_{n}\right)$ as follows. Consider the colour class $C=\left\{c_{1}, c_{2}, c_{3} \ldots c_{n}\right\}$. Assign the colour c_{i} to the vertex v_{i} for $1 \leq i \leq n$. So for a proper colouring, we need minimum n colours to colour the vertices of v_{i} which results in star colouring.

Next we assign a colouring to the vertices $v_{i j}$ for $i=1,2, \ldots \ldots \ldots$. . Suppose if we assign a new colour c_{n+1} to vertex $v_{i j}$ for $i=1,2, \ldots \ldots . n$ then it will not be a star colouring because none of the vertices $v_{i j}$'s realizes its own colours. Thus to make a proper star colouring, we use only the existing colours to the vertex to realizes its own colour. Therefore, we have to assign only the existing colours to the vertices of $v_{i j}$'s. Thus colouring procedure is minimal and thus results in star colouring.

$$
\therefore X_{s}\left[C\left(K_{n}\right)\right]=n, n>3
$$

Example:

Figure: $2 \quad X_{s}\left[C\left(K_{8}\right)\right]=8$

4. STAR COLOURING OF CYCLE ($\boldsymbol{C}_{\boldsymbol{n}}$)

4.1 Definition: A Cycle is a circuit in which no vertex except the first (which also the last) appears more than once. A Cycle with n vertices is denoted as C_{n}.
4.2Theorem: Let C_{n} be the Cycle of length $n, n>3$ then $X_{s}\left[C\left(C_{n}\right)\right]=n-2$.

Proof: Let C_{n} be the Cycle of length n with vertices $v_{1}, v_{2}, v_{3} \ldots \ldots . . v_{n}$. Let $v_{i j}$ represents the newly added vertex in the edge joining v_{i} and v_{j}. Now in $C\left(C_{n}\right)$, we can note that the vertex v_{i} is adjacent with all vertices except v_{i+1} and v_{i-1} for $i=1,2,3, \ldots \ldots n-1 . v_{1}$ is adjacent with all the vertices except v_{2} and $v_{n} . v_{n}$ is adjacent with all the vertices except v_{n-1} and v_{1}.

Now assign a star colouring to the vertices of $C\left(C_{n}\right)$ as follows. Consider the colour class $C=\left\{c_{1}, c_{2}, c_{3} \ldots . . c_{n}\right\}$. Suppose if we assign the colour c_{i} to the vertices v_{i} for $i=1,2 \ldots n$, it require n distinct colours which will not result in star colouring.

Thus we assign the same colour to the non-adjacent vertices. Assign c_{i} to v_{i} and v_{i+1}. Suppose if we assign c_{1} to v_{1} and v_{2} as they are non adjacent in $C\left(C_{n}\right)$. Assign c_{2} to v_{3} and v_{4} as they are non adjacent in $C\left(C_{n}\right)$. Assign C_{3} to v_{5} and v_{6} as they are non adjacent in $C\left(C_{n}\right)$. As the same, we cannot assign the same colour to all the non-adjacent vertices v_{i} and v_{i+1}.

Due to the above mentioned non adjacency of v_{i} 's this colouring will not be a star colouring. Thus to make a star colouring, we should assign a proper colouring to $v_{i j}, s$. Suppose if we assign the new colour c_{i+1} to the vertex $v_{i j}$, for all $1 \leq i \leq n, 1 \leq j \leq n$, which does not produces a star colouring. So we cannot assign new colours to the vertex $v_{i j}$. Thus assign only the existing colours to the vertices of $v_{i j}$'s. So the colouring procedure is minimal and thus results in star colouring.

$$
\therefore X_{s}\left[C\left(C_{n}\right)\right]=n-2
$$

Example:

Figure: $3 \quad X_{s}\left[C\left(C_{8}\right)\right]=6$

5. STAR COLOURING OF Path (P_{n})

5.1 Definition: A Path is a sequence of consecutive edges in a graph and the length of the Path is the number of edges traversed. A Path with n vertices is denoted as P_{n}.
5.2 Theorem: For any Path P_{n} of $n>3$, then $X_{s}\left[C\left(P_{n}\right)\right]=n-2$.

Proof: Let P_{n} be the Path of length $n-1$ with vertices $v_{1}, v_{2}, v_{3} \ldots . . v_{n}$. Let $v_{i j}$ represents the newly added vertex in the edge joining v_{i} and v_{j}. Now in $C\left(P_{n}\right)$, we can note that the vertex v_{i} is adjacent with all vertices except v_{i+1} and v_{i-1} for i $=1,2,3, \ldots \ldots \ldots \ldots \ldots n-1 . v_{1}$ is adjacent with all the vertices except v_{2} and $v_{n} . v_{n}$ is adjacent with all the vertices except v_{n-1} and v_{1}.

Now assign a star colouring to the vertices of $C\left(P_{n}\right)$ as follows. Consider the colour class $C=\left\{c_{1}, c_{2}, c_{3} \ldots . c_{n}\right\}$.Suppose assign the colour c_{i} to the vertices v_{i} for $i=1,2,3, \ldots \ldots . n$ it require n distinct colours which will not result in star colouring.

So we assign the same colour to the non-adjacent vertices. Assign c_{i} to v_{i} and v_{i+1}. Suppose if we assign c_{1} to v_{1} and v_{2} as they are non adjacent in $C\left(P_{n}\right)$. Assign c_{2} to v_{3} and v_{4} as they are non adjacent in $C\left(P_{n}\right)$. Assign c_{3} to v_{5} and v_{6} as they are non adjacent in $C\left(P_{n}\right)$. As the same, we cannot assign the same colour to all the non-adjacent vertices $v_{i \&} v_{i+1}$.
${ }^{1}$ Mrs. D. Vijayalakshmi \& ${ }^{2}$ P. Poonkodi*/ STAR COLOURING OF CENTRAL GRAPHS / IJMA- 4(3), March.-2013.
Due to the above mentioned non adjacency of v_{i} 's this colouring will not be a star colouring. Thus to make a star colouring, we should assign a proper colouring to $v_{i j}{ }^{\prime}$. Suppose if we assign the colour c_{i+1} to the vertex $v_{i j}$, for all $1 \leq i$ $\leq n, 1 \leq j \leq n$, which does not produces star colouring. So we cannot assign new colours to the vertex $v_{i j}$. Thus assign only the existing colours to the vertices of $v_{i j}$'s. So the colouring procedure is minimal and thus results in star colouring.

$$
\therefore X_{s}\left[C\left(P_{n}\right)\right]=n-2 .
$$

Example:

Figure: $4 \quad X_{s}\left[C\left(P_{7}\right)\right]=5$

REFERENCES

[1] Albertson M O, Chappell G G, Kier stead H A et al ‘Colouring with no 2 colored p4’s’ [J], Electronic Journal of Combinatorics 2004, 11:1-13.
[2] Arundhadhi R and Sattanathan.S, 'Acyclic colouring of Central graphs’, International Journal of Computer Applications, Volume -38, 12, 2012.
[3] Bondy J. A. and Murthy U.S.R., 'Graph Theory with Applications’, London: MacMillan (1976).
[4] Fertin G,Raspaud A, Reed B, ‘Star Colouring of Graphs’[J],Journal in Graph Theory, 2004, 47:163-182.
[5] Grunbaum B, 'Acyclic Colouring of Planar Graphs’, Israel Journal of Mathematics, 1973, 14:390-408.
[6] Hongyong F U, De Zheng Xie , 'A note on Star Chromatic Number of Graphs’, Journal of Mathematical Research and Exposition, Volume -30, 5, 2010
[7] Thilagavathi K and Shahnasbanu, ‘Acyclic Colouring of Star Graph Families’, International Journal of Computer Applications, Volume-7, 2, 31-33, 2010.
[8] Thilagavathi K and Vernold Vivin J and Akbar Ali M ‘On Harmonious Colouring of Central Graphs’ Advances and Application in Discrete Mathematics, 2, 17-33 (2009)
[9] Thomas F, Coleman and Jin-Yi Cai, ‘The Cyclic Coloring Problem and Estimation of Sparse Hessian Matrices’, SIAM Journal of Algebraic and Discrete Mathematics, 7 (1986), 221-235.
[10] Vernold V.J, Venkatachalam M, ‘A note on Star colouring of Star graph families’, preprint.
[11] Vernold V.J, Venkatachalam M, ‘A note on Star colouring of Central graph of Bipartite Graph and Corona Graph of Complete Graph with Path and Cycles, Journal of Combinatorics, 2012, Volume -1, 31-34.
[12] Vernold V. J, Venkatachalam M, and Ali Akbar M M, ‘A Note on Achromatic Colouring of Star Graph Families’, 2009 b, Filomat 23:251-255.

Source of support: Nil, Conflict of interest: None Declared

[^0]: Corresponding author: ${ }^{2}$ P. Poonkodi*
 ${ }^{2}$ Research Scholar, Department of Mathematics, Kongunadu Arts and Science College, Coimbatore-29, India International Journal of Mathematical Archive- 4(3), March - 2013

